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ABSTRACT Hypoglycaemia is one of the most common complications in diabetes, which can be life
threatening if not managed appropriately. So far, research on hypoglycaemia prediction has been scarce,
focusing on small cohorts linked to specific geographical regions, thus limiting the generalizability
of the findings. In this paper, we developed and validated different machine learning models for
next-day hypoglycaemia prediction in type 2 diabetes. We used a large international cohort comprising
669 participants, who had been regular users (for over a couple of years) of a mobile app for diabetes
self-management and used common portable commercial devices for measuring their blood glucose and
blood pressure levels, collecting in total 96121 observations (from which we extracted a balanced dataset of
2998 observations). Random Forests (RF), Support Vector Machines, Adaptive Boosting and Feed-Forward
Artificial Neural Networks were employed to train predictive models based on 10-day temporal sequences
with blood glucose and blood pressure measurements towards estimating next day hypoglycaemic episodes.
We used a leave-one-subject-out (LOSO) approach for model validation, and found that RF achieved the
best accuracy (0.814) and F1-score (0.812) with sensitivity (0.805) and specificity (0.824) for next-day
hypoglycaemia prediction. The results of this study provide an expedient and reliable app-based approach to
accurately predict hypoglycaemia in day-to-day life, thereby facilitating patient and care provider awareness
and potentially preventing other serious complications.

INDEX TERMS Hypoglycaemia, machine learning, mobile health, diabetes, self-management.

I. INTRODUCTION
Diabetes is one of the leading causes of mortality and
disability in the world [1]. The global diabetes prevalence
in 20-79 year olds in 2021 was estimated to be 10.5%
(536.6 million people), and it is expected to rise to
12.2% (783.2 million) by 2045 [2]. The aging popula-
tion along with other major risk factors such as obesity,
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have been drivers of diabetes higher prevalence, leading
to reduced life expectancy and costly complications [3],
[4], [5].

Assisting people to make changes towards a healthier
lifestyle and self-manage diabetes is an important strategy
to maintain a good quality of life and avoid possible
complications [6]. In particular, low blood sugar level, i.e.,
hypoglycaemia, is one of the most common barriers in
Type 1 Diabetes Mellitus (T1DM) and Type 2 Diabetes
Mellitus (T2DM) to achieve tight glycaemic control, which
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can be life-threatening if not treated quickly [7]. Research
has shown that people with diabetes with an episode
of severe hypoglycaemia during the last 5 years, had a
3.4-fold increased risk of death than those with mild or no
hypoglycaemia [8]. The economic impacts of hypoglycaemia
due to increased blood glucose monitoring, hospitalisations,
medical contact, and absence from work, are enormous [9].
In this context, appropriate management of hypoglycaemia is
of vital importance.

Mobile health (mHealth) has recently shown benefits [10]
of efficient medical care for chronic diseases anytime-
anywhere [11], [12]. Mobile devices such as smartphones and
portable medical devices with sensing and communication
capabilities could be utilized by participants and their
care providers, in order to monitor patient health status
continually, and thus reduce the probability of potential
complications, by providing adjusted therapeutic plans
and improving patient self-management or remote medical
management [13], [14].

Machine learning methods, which harness data generated
through mobile and sensing devices, have already shown
their capability to predict disease exacerbations and health
status deterioration, e.g. exacerbation in chronic obstructive
pulmonary disease [15], anxiety [16] and cardiovascular
risk [17]. Therefore, machine learning could be a vehi-
cle to facilitate hypoglycaemia management, by acquiring
knowledge derived from patient’s data, and predicting the
occurrence of hypoglycaemic episodes. Prediction of hypo-
glycaemic episodes could be useful for both patients and their
care providers, because it may improve glycaemic control,
reduce the possible fear or anxiety over facing hypoglycaemic
episodes, and facilitate adherence to treatment [18], [19],
[20], [21].

Related research works in hypoglycaemia prediction based
onmHealth data, have been rather limited. Bertachi et al. [22],
used the OhioT1DM dataset to predict hypoglycaemic
episodes, based on Continuous Glucose Monitoring (CGM)
data received from 6 individuals with T1DM for a limited
period of 8 weeks. The same dataset (with the addition
of 6 participants from the 2020 version of the OhioT1DM
dataset) was also explored by Deng et al. [23], in order to test
different neural network architectures. Along similar lines,
Marcus et al. [24] used CGM data from 11 participants with
T1DM for 50 days, to test kernel methods for prediction of
hypoglycaemia. Sudharsan et al. [25], used prediction models
based on Random Forests (RF), Support Vector Machines
(SVM), k-nearest neighbor, and naïve Bayes, by harnessing
56K self-monitored blood glycose samples from a clinical
trial with 163 T2DM participants over one year in Maryland,
US. Other research studies have focused on hypoglycaemia
prediction without considering mHealth data, but acquiring
data from resources such as electronic health records and
health insurer databases [26], [27]. Furthermore, a recent
review [28] has called for the need to continue research work
in the development of accurate machine learning models to
predict hypoglycaemia, considering also the lack of focus

FIGURE 1. Screens to view recordings (blood glucose, blood pressure,
meal, medication, physical activity) in forDiabetes mobile app.

FIGURE 2. Mean of glucose records per country: 2%–20% dark blue,
1%–2% light blue, <1% white.

on T2DM and the inaccuracy of CGM in the hypoglycaemic
range.

In this paper, our main objective is to develop and
validate different machine learning models for next-day
hypoglycaemia prediction in T2DM based on the use of
a mobile app for diabetes self-management and regular
consumer portable devices for measuring blood glucose
and blood pressure. The ultimate aim of our work is to
provide the means for accurate prediction of hypogly-
caemia and the prevention of its complications, through the
use of machine learning models within mHealth services
provided for participants and their care providers in the
real-world.

II. DATA
A. MOBILE APP FOR DIABETES SELF-MANAGEMENT
The mobile app ‘forDiabetes’1 was developed in order to
improve self-management and remote medical management
of diabetes. The mobile app included several functions such
as a diary for recording measurements (blood glucose, blood
pressure, meals, physical activity, medication, HbA1c, etc.),
goal setting and editing, measurement graphs, and exchange
of data with care providers. The mobile app also allows
the automated recording of blood glucose measurements
measured using popular consumer glucometers such as the
Contour Next ONE, Contour Plus ONE, GlucoMen areo, and
Beurer GL50. The mobile app is GDPR-compliant and it has
been available in Android and iOS (both free and commercial
versions available) since May 2018. In addition to English it

1https://fordiabetes.app/
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FIGURE 3. Mean of hypoglycemic incidents (< 70mg/dL) weighted by
number of glucose measurements per country 5%–16% dark blue,
2%–5% light blue, <2% white.

has been translated in 10 languages, and had received more
than 40K downloads from users around the world until May
2022. Figure 1 presents the user interface of the forDiabetes
mobile app.

B. DATA DESCRIPTION
The dataset was obtained from the database of forDiabetes
and includes data from 2013 (the majority of data is from
2018) up to November of 2020. The dataset comprises:

• 808276 glucose records from 11165 different users
• 25025 hypoglycemic incidents (<70mg/dL) from
1438 different users

• 180373 manual medication logs
• 5506 records of Glycated haemoglobin (HbA1c)
• 65708 records of blood pressure (systolic and diastolic)
• 27160 records of weight
• 29735 meal records (hydrocarbons and glycemic index)
• 113509 records of physical activity (type and duration,
calorie burns,distance)

From these users only 998 provided data over ten-day
consecutive intervals of glucose records. The mean number
of ten-day consecutive intervals per patient with T2DM was
318± 371, with a range from 22 (patient with minimum data
points) to 3958 (patient with maximum data points). The data
was extracted from the database of the forDiabetes app as a
set of text files in the Comma Separated Values (CSV) format,
whereas each file corresponded to a database table.

In Figure 2 we present the mean of glucose records
geographically distributed, and in Figure 3 we present
an overview of the weighed hypoglycemic episodes per
country.

III. METHODS
A. DATA PRE-PROCESSING
We retained only the participant data which contained at
least a ten-day interval of consecutive glucose data, which
correspond to 998 participants that contain 317549 glu-
cose records and 33287 blood pressure records. The
selection of the ten-day interval was based on the
work by Sudharsan et al. [25]. The devices supported
for recording glucose measurements were the following:

‘‘Accu-Chek Instant,’’ ‘‘Amazon Alexa,’’ ‘‘Apple Health,’’
‘‘Beurer GL50 evo (Bluetooth),’’ ‘‘Contour Next ONE,’’
‘‘Contour Plus ONE,’’ ‘‘ControlBios TD 4277,’’‘‘GlucoMen
areo,’’ ‘‘GlucoMen areo 2K,’’ ‘‘forDiabetes.’’ The source
‘‘forDiabetes’’ corresponds to the user manually entering the
measurement to the mobile app, whereas the other options
correspond to the automatic insertion of the records by
a specific device. No records were found in the data of
the following 3 supported sources: Google Fit, Fitbit and
the Beurer GL50 evo (NFC). Regarding blood pressure
measurements 98% were entered manually, while 2% was
automatically integrated in the participants’ record using
‘‘Apple Health.’’

B. FEATURE EXTRACTION
Subsequently, we created temporal sequences of ten-day data
for diabetes 2 participants using a sliding window technique,
starting from the last glucose measurement of each user to
the first in steps of -1, and taking the previous 10 glucose
measurements of the same meal type (that is, we match by
selecting only the observations that were measured at the
same period of each day as the current observation for the
window, that is either all before lunch, or all after lunch
etc.) as the current glucose measurement, for the previous
10 days. The choice of using only 10 measurements for
each prediction was inspired by other work [25] and we
extend that approach by matching measurements of the same
meal type. The 10 measurements of each window are not
combined in any way, instead each one is used ‘‘raw’’ i.e.
as a feature that will be used as input into the subsequent
statistical learners. So for each glucose measurement selected
as the current we fill its corresponding window by querying
the past 10 days to fill in the features. The current glucose
measurement, in each iteration, is not added to the data but is
instead used to calculate the hypoglycemic episode status for
each observation. As this process is iterative each participant
will contain many time windows of ten-day data. The
timestamps of themeasurements are also added to the dataset.
For example: suppose the current glucose measurement is
60 mg/dL and is taken before a meal. In this iteration the
previous 10 glucose measurements that were taken before
a meal will be added to the dataset and the value of 1 will
be added as episode status (as 60 < 70mg/dL). Moreover,
for each glucose record its source_id (1 <= source_id <=

10) will also be added to the dataset. Source_id records
the device used to take the measurement, where 1 defines
the user manually inputting the measurement to the mobile
app, II for Apple Health, 3 for Google Fit, 4 for Fitbit,
5 for Contour Next ONE etc (see Figure 5). In addition,
in the same (ten-day) time windows for each iteration, the
last 10 measurements of systolic blood pressure, as well as
the last 10 measurements of diastolic blood pressure will
be added, along with their respective timestamps. If there
are missing measurements a value of −1 will be added
for each missing blood pressure measurement (but not for
glucose ones, if the respective time window contains less
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FIGURE 4. Data pre-processing pipeline.

than 10 previous glucose measurements this window will be
dropped, thus the method requires 10 glucose measurements
for each 10-day window). For each observation a one-hot
encoding vector, of length 5, will be added encoding the meal
type of the glucose measurements kept for each iteration. The
five classes are: (fasting, before meal, after meal, bedtime,
other). Finally, for each observation we add the participant’s
age, weight and a glycated hemoglobin (h1bc) measurement
(nearest previous measurements in the time window) along
with the timestamp of the measurement (or 0 and −1
respectively if no such record exists), as well as we calculate
the ratio of sum_of _after_medication_glucose_measurements

number_of _glucose_measurements for each
time-window. The full pipeline for the final inclusion of
96121 observations from 669 participants is presented in
Figure 4.

FIGURE 5. Devices used for recording glucose measurements for the
selected data.

Before any further processing, we need to decide on a
strategy to handle missing data. Only the ‘age’ variable
was missing in 15 participants (5157 samples); otherwise
this is a design matrix with complete entries. Given that
preliminary analysis (see the section ‘Statistical analysis’) did
not reveal age to be statistically significantly associated with
the outcome, we decided not to include it in the model and
retain the data from the 15 participants.

Figure 5 presents the sources for the measurements that are
retained in the final dataset, after the application of the pre-
processing pipeline. The final number of the participants is
669 and their average age is 57 ± 11 years. No information
was stored about the gender of the participants. Table 1
presents the demographics of the 669 participants whose
countries had at least 10 participants included in the study.
They are from 86 countries in total. The countries in Table 1
are sorted according to the number of participants in descend-
ing order. However 24 participants had not defined their coun-
try in the app. We note these participants as Undefined in the
table.

C. STATISTICAL ANALYSIS
We started data exploration using standard data visualization
plots to assess probability densities, scatter plots, and
computed statistical correlations between each of the features
and the binary outcome to determine both whether these
statistical relationships are statistically significant (at the
p = 0.05 level) and also to assess the extent of the
statistical strength. We used the empirical rule of thumb
in medical applications that correlation coefficients that
exhibit a magnitude above 0.3 are deemed to be statistically
strong [29].

D. FEATURE SELECTION
Extracting a large number of features (70 in this study,
once age has been excluded) may be detrimental for the
performance of statistical models and challenging to interpret

7472 VOLUME 12, 2024



A. Alexiadis et al.: Next-Day Prediction of Hypoglycaemic Episodes

TABLE 1. Participant demographics.

findings. According to Hastie et al. [30] advanced statistical
learning algorithms, in practice, are typically fairly robust
to the inclusion of potentially noisy or irrelevant features.
However, identifying a smaller feature set always facilitates
insight into the application by focusing on the key features
contributing towards estimating the outcome [31]. Therefore,
although in this studywe do not have a very high-dimensional
dataset, we nevertheless aimed to develop a parsimonious
generalizable model with a succinct feature set. We used the
new feature selection algorithm called relevance, redundancy
and complementarity trade-off (RRCT), which was recently
demonstrated to be extremely competitive across domains
in 12 datasets when benchmarked against 20 state-of-art
feature selection algorithms [32]. In brief, RRCT inher-
ently accounts for the key elements towards identifying a
robust information-rich compact feature subset, i.e. relevance
(quantifying the statistical relationship of features with the
outcome), redundancy (quantifying the statistical relationship
between pairs of features in the selected subset), and
complementarity (or conditional relevance, quantifying the
conditional added value of joint feature sets over and above
their univariate statistical association with the outcome).
The features were selected using the strategy we have
developed and explained in detail in previous work. The
underlying concept is using a voting strategy to aggregate
the feature sets selected when presented with perturbed
versions of the dataset to ensure this robustly generalizes [32],
[33], [34].

E. STATISTICAL MAPPING
We used state-of-the-art statistical mapping algorithms to
develop a functional supervised learning model using the
selected feature set from the preceding step to map onto
the binary outcome. Specifically, we used: (1) RF [35],
(2) Support Vector Machines (SVM), (3) Adaptive Boost-
ing (AdaBoost), (4) XGBoost, (5) Feed-Forward Artificial
Neural Network (ANN). We chose these methods as they
are commonly used off-the-shelf classifiers that have been
shown to be accurate in diverse supervised learning problems.
Similarly to our previous studies, we explored different

approaches towards optimizing the statistical learners’
hyperparameters [36]. For the RF we explored optimizing
performance using Breiman’s recommendation with half
and twice the default recommended number of features
over which to select features for the trees and explored
the use of 500 and 1000 trees. We used the ‘Statistics
and Machine Learning Toolbox’ for MATLAB for RF and
the scikit-learn implementation (for Python 3) for SVMs
and AdaBoost, xgboost (for Python 3) for XGBoost and
tensorflow 2 for ANNs. We applied Z-Score Standardization
for the features for all models except RF and the SVM.
For the SVM we linearly rescaled the features to the [0..1]
range and used a Gaussian radial basis function kernel.
We clarify that for the scaling of the features in both the
training and the testing subsets only the information from
the training subset was used and subsequently applied to the
testing subset. The regularization parameter C and the kernel
coefficient γ were determined using a grid search where C =

[10−2, 10−1, . . . , 102] and gamma = [10−1, . . . , 101]. For
AdaBoost, the learning rate hyper-parameter was explored in
the range 0.01 to 0.5 in steps of 0.05 using 1000 trees with
a maximum depth of 2. For ANNs we used a grid-search
using a parameter grid of various parameters of 2-layer to
4-layer networkswith first layer node count of [25, . . . 29] and
subsequently halved the next layer node count. We utilized
batch-sizes of 5, 20, 50 and tested 3 dropout configurations
(0.2, 0.3, decrementing dropout ending with 0.2 on the final
layer and increasing by 0.1 in each previous layer).We trained
for 300 epochs with early-stopping (on validation loss with
patience = 7) and use of the Adam Optimizer.

F. MODEL VALIDATION AND GENERALIZATION
The dataset in this study is highly unbalanced (94622/1499,
total: 96121 samples indicating that most observations did not
involve a hypoglycemic episode, i.e. > 98% samples in the
dominant class). Problems where a class is dominating at that
level are known to be particularly challenging for statistical
learners, and hence we need to decide on a strategy towards
the development and evaluation of the model. Given there is
a very large number of samples available, for computational
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FIGURE 6. Correlation coefficients for all 70 features used in the study.

FIGURE 7. Errorbar depicting balanced accuracy as a function of the
number of features presented into RF.

FIGURE 8. Confusion matrix along with probabilities of class estimates
with the RF model comprising the 25 features selected using RRCT
(C indicates control, D indicates diabetes).

efficiency and practicality, we created a balanced dataset
comprising all 1499 samples from the non-dominant class
and randomly selected 1499 samples from the dominant
class.

We clarify that all analysis was carried on this balanced
dataset, from the statistical analysis exploring associations
to selecting a feature subset and statistical mapping. For
the evaluation of the model performance we used the leave-
one-subject-out (LOSO) approach because this is how we
envisage this tool would likely be used in practice: we wanted
to evaluate how well we might expect the model to generalize
on new unseen people. We report different performance

FIGURE 9. Random forest feature importance using the selected feature
subset of 25 features. Higher value indicates that the corresponding
feature contributes more towards the estimation of the binary response
(detecting a hypoglycemic episode).

measures to assess model generalization, including confusion
matrices, balanced accuracy, sensitivity, specificity, and
F1-measure.

IV. RESULTS
We start our exploration by assessing statistical strength using
correlation coefficients. We found that correlations (between
the features used in the study) were generally relatively weak
(univariately no feature is statistically strongly associated
with the binary outcome). Nevertheless, some correlations
were about |0.2| (see Figure 6) which inspires confidence that
when considered jointly in a statistical learning model may
lead to good predictions.

Figure 6 presents the correlation coefficients for all fea-
tures, whereas Table 2 presents the selected feature subset in
descending order of importance. The five most important fea-
tures were glucose_-4, systolic_-3, meal_relatedHot_vec_1,
meal_relatedHot_vec_3, glucose_-1. Figure 7 presents the
balanced accuracy using LOSO as a function of the number
of features presented into RF. We note that performance is
very stable (in terms of using 5-30 features explored herein)
and is optimized with 25 features, reaching 0.814 balanced
accuracy. Figure 8 presents the confusion matrix of the RF
model comprising the 25 features. As can be observed from
the confusion matrix the misclassification rate between the
two classes is similar.

Table 3 presents the balanced accuracy, sensitivity, speci-
ficity and F1-score for eachmodel. The highest scoringmodel
(in terms of balanced accuracy and F1-measure) is the one
based on RF comprising the 25 features selected using RRCT
with a balanced accuracy of 0.814, a sensitivity score of
0.805 and specificity of 0.824. Finally, Figure 9 presents the
RF importance scores to obtain an overall impression of the
actual contribution of each of the selected features towards
estimating the two classes. As can be observed from the
figure, some features were more important than others in
estimating the binary response. The feature importance for
Random forest could be grouped in 3 clusters, with cluster
#1 containing all features with RF importance > 100, cluster
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TABLE 2. Selected features using RRCT in descending order of importance.

TABLE 3. Evaluation metrics.

#2 with feature #12 having an RF importance of around
80 and cluster #3 containing all features with RF importance
scores of <= 20. For convenience we present these results
using boxplots to also present the variability in the internal
RF importance weights arising from the different LOSO
repetitions.

V. DISCUSSION
We presented a machine learning approach for next-day
prediction of hypoglycaemia in daily life. Our primary
finding is that prediction of hypoglycaemic episodes for
T2DM based on mHealth data, such as blood glucose
records and blood pressure measurements captured by widely
available mobile devices for self-monitoring, is accurate.

The predictive outcomes relied on an international cohort
which used a mobile app for diabetes self-management
in the real world, in contrast with previous single-centre
studies restricted to small geographic areas [25], [37], [38].
Furthermore, other works have focused mostly on CGM or
data derived from electronic health records [28], and not data
captured from ordinary mHealth devices used in everyday
life. To the authors’ knowledge this is the first study to assess
next-day prediction of hypoglycaemia in an international
cohort.

We compared the performance of different machine
learning models in this study. RF proved to be empirically
superior to SVMs, Adaptive Boosting and Feed-Forward
Artificial Neural Networks. We do not have theoretical proof
for the justification of this finding, however we note that
in our experience RF has often worked well in complicated
practical settings, thus providing further evidence to support
the notion of being best of-the-shelf classifier as indicated by
Hastie et al. [30].

The highest scoring model, based on RF with the
25 features selected with RRCT, reached a balanced accuracy
of 0.814 and F1-score of 0.812 (with 0.085 sensitivity and
0.824 specificity). From the original features we selected
features that had a more direct impact on hypoglycaemic
incidents. Detailed information of medication, meals and
physical activity (see the section ‘Data description’) was not
utilised, because we found that to be of variable quality and
depending on how adherent participants were to enter that
information. The glucose records’ table from the database
of ‘forDiabetes’ contained columns which recorded the
measurement’s proximity to medication, physical activity
and meal, i.e., if the measurement was recorded after taking
medication/having a meal and exercising. Two of these
features were used in the original 71, that is the ratio of
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glucose measurements that were taken after medication to the
glucose measurements of each time window, and the one-hot
vector encoding the meal-type of the glucose measurements
of each time window (i.e., if the measurements were
taken after a meal/before a meal). The column containing
information correlating themeasurement withmedication use
was not included in the original 71 features as it was highly
imbalanced (after medication samples were around 10% of
the total samples).

In contrast with previous studies, our study relies on a large
international cohort of individuals who have downloaded and
used the mobile app in their daily lives. The dataset we
used was imbalanced in regards to hypoglycemic incidents,
as there were only 1499 cases of hypoglycemic incidents out
of 96121 observations (indicating that most observations did
not involve a hypoglycemic episode, i.e. > 98% samples
in the dominant class). This provided the need to create
a balanced dataset. We have repeated analysis twice using
a different randomly selected subset from samples in the
dominant class and repeated the methodology described.
We found that the out of sample reported performance was
very similar, which inspires confidence that the developed
model will likely generalize well in new unseen data.
However, additional studies in the real world are required to
confirm our findings and accumulate robust evidence.

VI. CONCLUSION AND FUTURE WORK
We demonstrated that accurate and practical next-day
hypoglycaemia prediction is feasible using real-world data
with a custom-built diabetes-specific smartphone application.
Therefore, the current work has enormous potential to enable
day-to-day glycaemic control by participants with diabetes
in the community, empower individuals to monitor potential
problems, and facilitate the optimization of diabetes type 2
therapeutic management by care providers.

For the future we plan to expand the work presented by
including a more diverse dataset covering various ethnicities,
age groups, and co-morbid conditions to improve the robust-
ness and universality of the findings, addressing potential
biases in machine learning models in healthcare. Moreover
we plan to contrast using other methods for feature selection
and compare them to RRCT, as well as conduct a more
thorough analysis of the model inaccuracies to understand the
limitations.
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