IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 3 November 2023, accepted 27 December 2023, date of publication 5 January 2024,
date of current version 12 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3350344

==l RESEARCH ARTICLE

Adaptive Pipeline Hardware Architecture Design
and Implementation for Image Lossless
Compression/Decompression Based on JPEG-LS

FANGJIA LIU"2, XIYAO CHEN"3, ZIJUN LIAO “4, AND CHONG YANG >

!'School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

2Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong 528300, China

3Depa.rtment of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China

4School of Electronic Information and Communication, Huazhong University of Science and Technology, Wuhan 430074, China
SBeijing General Research Institute of Mining and Metallurgy, Beijing 100160, China

Corresponding authors: Xiyao Chen (chenxiyao2020@ 163.com) and Zijun Liao (zijun@hust.edu.cn)

This work was supported in part by the Characteristic Innovation Project of Colleges and Universities in Guangdong Province under Grant
2022WTSCX315.

ABSTRACT Lossless compression of medical images can reduce data size, save storage and transmission
costs, and cope with the challenge of increasing resolution demand for medical images. This paper proposes
an adaptive pipeline hardware architecture for lossless compression/decompression of medical images based
on joint photographic experts group-lossless (JPEG-LS), which can achieve efficient image processing on
field programmable gate array (FPGA). In addition, by adding a pipeline pause mechanism, the problem
of coding errors caused by parameter updates is solved. On the one hand, the binary search method is
used to optimize the calculation process of the Golomb coding parameter k in the pipeline, which reduces
the parameter update delay. On the other hand, the construction process of the context causal template is
optimized, which effectively improves the throughput. Based on the parallel block compression architecture,
a hardware module for alpha red green blue (ARGB) image block compression/decompression with
customizable block size is implemented, which improves the image compression/decompression throughput
and reduces the compression and decompression delay. This paper implements the hardware architecture on
Zynq7000 FPGA and evaluates its performance. Compared with existing schemes, the proposed architecture
uses less resources and achieves higher compression ratio and clock frequency.

INDEX TERMS Lossless image compression/decompression, JPEG-LS, hardware design, FPGA.

I. INTRODUCTION technology, and the data transmission between different

Medical centers generate massive amounts of digital medi-
cal images daily, including computed tomography, magnetic
resonance imaging (MRI), ultrasound and capsule endoscopy
(CE) images [1]. With the continuous improvement of image
sensor resolution, the amount of image data that needs to be
processed in real time is also increasing, posing great chal-
lenges to the storage capacity and transmission bandwidth of
medical devices [2].

It is not cost-effective to solve the above problems by
simply increasing the storage capacity and transmission

The associate editor coordinating the review of this manuscript and

approving it for publication was Jun Wang

storage systems will also consume a lot of time [3].
However, the large amount of redundant information con-
tained in digital images provides theoretical possi-bilities
for image compression. In comparison, image com-
pression is more economical for processing medical
images.

Compared with that, image compression is a more
cost-effective option for processing medical images. Image
compression methods can be generally divided into two types
according to whether the compressed image can be restored
to the original image: one is based on lossy compression
technology; the other is based on lossless compression tech-
nology. Medical images need to be effectively reconstructed

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 5393


https://orcid.org/0009-0009-3994-1047
https://orcid.org/0000-0002-2200-7209
https://orcid.org/0009-0001-4126-047X
https://orcid.org/0009-0009-1222-3336
https://orcid.org/0000-0003-1911-4676

IEEE Access

F. Liu et al.: Adaptive Pipeline Hardware Architecture Design and Implementation

without any information loss [4], so they generally need to be
losslessly compressed.

JPEG-LS algorithm is based on the low complexity lossless
compression for images (LOCO-I) algorithm developed by
Hewlett-Packard Laboratories [5], which provides lossless
compression and near-lossless compression functions. The
algorithm only needs to implement data subtraction, shift
and other similar, simple processing processes [6]. Compared
with joint photographic experts group (JPEG), JPEG2000 and
other algorithms, JPEG-LS algorithm has the characteristics
of low complexity, easy hardware implementation, etc. [7],
[8]. In addition, these standards are considered in digital
imaging and communication in medicine (DICOM), which
is an industrial international standard for medical image rep-
resentation and coding [9].

At present, JPEG-LS lossless compression is widely used
in medical imaging, biometrics, satellite remote sensing
and professional photography fields. The research on the
algorithm mainly focuses on hardware implement-tation, and
also makes many improvements on the algorithm itself for
specific application scenarios. In 2001, Klimesh et al. [10]
modified the run coding mode of LOCO-I algorithm, which
was a significant advancement in hardware for space-efficient
image lossless compression. In 2009, Merlino et al. [11]
used pipeline structure to fully exploit the sequentiality of
the algorithm. However, the image processing speed of the
whole compression system was not fast. The maximum clock
frequency of the encoder circuit was about 21MHz, and that
of the decoder circuit was only 16MHz. In 2013, Mert [12]
proposed an efficient full pipeline scheme to design JPEG-
LS encoder. The processing speed of the encoder reached
120Mpixels/second. In 2016, Chen et al. [13] proposed
a novel near-lossless color filter array image compression
algorithm based on JPEG-LS using very large scale inte-
gration (VLSI), which had a gate count of only 10.9 K
and an area of 30625 pum2 using 90 nm complementary
metal oxide semiconductor (CMOS) process synthesis, suit-
able for wireless video capsule endoscopy system. In 2018,
Haddad et al. [14] proposed the first joint watermarking
encryption JPEG-LS compression scheme for protecting
medical images. In 2021, Wang et al. [15] proposed a hard-
ware/software co-design method for pixel-level parallelized
streaming image compressor based on JPEG-LS, which
proposed pixel grouping scheduling scheme and pseudo-
lossless (Pseudo-LS) method to exploit parallelism, and gave
a design space exploration method to limit resource usage
brought by parallelization. Cao et al. [16] proposed a con-
volutional neural network model with wavelet-based residual
learning mechanism for JPEG-LS near-lossless compressed
remote sensing image decompre-ssion recovery. In 2022,
Liu et al. [17] used context-aware residual learning mecha-
nism to realize JPEG-LS compressed remote sensing image
recovery. In 2023, Sun et al. [18] proposed a lossless image
compression and encryption algorithm combining JPEG-LS,
neural network and hyperchaotic mapping to protect the pri-
vacy of digital images and reduce data storage space.

5394

Although the software and hardware research on JPEG-LS
algorithm has improved its compression performance to vary-
ing degrees, the popularity of high-speed interface devices
and the increasing demand for higher compression perfor-
mance of JPEG-LS algorithm in medical practice make
improving the compression speed of JPEG-LS still one of the
focuses in research. Although there are many very mature
solutions for software-based compression at present, they
generally have problems such as occupying too much central
processor resources, high power consumption and processing
speed that can no longer match the interface speed. In an envi-
ronment where memory access speed and network bandwidth
are gradually increasing, software-based image lossless com-
pression gradually shows a performance bottleneck state [19].
Therefore, it is meaningful to study JPEG-LS algorithm with
higher compression performance and its hardware implemen-
tation. At the same time, because FPGA has the advantages
of powerful logic design function, short development cycle,
low investment cost and fast processing speed, FPGA-based
JPEG-LS encoder has become the focus of research.

This paper proposes an adaptive pipeline hardware archi-
tecture for medical image lossless compression based on
JPEG-LS, which avoids pipeline idle waiting caused by data
dependency in most cases. In order to improve the clock
frequency and throughput of the designed JPEG-LS encoder,
various methods are used to optimize it in the hardware
design and implementation process, such as optimizing the
construction process of context causal template and using
binary search method to optimize the calculation process of
Golomb coding parameter k. From the perspective of data
compression, the bandwidth and access efficiency of memory
are improved by reducing the amount of data accessing the
color buffer; on this basis, by calculating the offset value
of each two-dimensional block after compression, random
access of ARGB image two-dimensional blocks can be real-
ized, which can adapt to the needs of complex application
environment.

The rest of the paper is organized as follows: Section II
presents the analysis and design of the JPEG-LS com-
pression/decompression algorithm; Section III describes the
FPGA implementation of the JPEG-LS algorithm; Section IV
conducts the FPGA board-level verification and analysis of
the proposed encoder; Section V concludes and discusses
future work.

II. JPEG-LS ALGORITHM

A. JPEG-LS COMPRESSION ALGORITHM

The core of JPEG-LS algorithm is LOCO-I algorithm, which
includes two modes: normal coding mode and run coding
mode. It mainly consists of context modeling, normal coding,
run coding, interrupt coding and other parts, providing loss-
less compression and near-lossless compression functions.
When the threshold of lossless compression and near-lossless
compression is equal to 0, JPEG-LS performs lossless com-
pression, otherwise it performs near-lossless compression.
This paper only studies lossless compression, so the value is

VOLUME 12, 2024



F. Liu et al.: Adaptive Pipeline Hardware Architecture Design and Implementation

IEEE Access

Modeler : Coder

Context REGULAR

FIGURE 1. The operation structure of JPEG-LS algorithm.

c|b|d

a | X

FIGURE 2. Causal template used for context modelling and prediction.

0. As shown in Figure 1, it is the overall framework of JPEG-
LS Algorithm.

1) CONTEXT MODELING
Context modeling is to use the correlation between the current
pixel to be encoded and its adjacent pixels to model it. There
is correlation between image pixels, and the causal template
of the current pixel to be encoded can be completed by using
the four adjacent pixels of the current pixel to be encoded.
As shown in Figure 2, x is the position of the current pixel to
be encoded, corresponding to the pixel value Ix; a, b, ¢, d are
the four adjacent positions of the current pixel to be encoded,
corresponding to four reconstructed values Ra, Rb, Rc, Rc.
Context modeling first estimates the local gradients based
on the values of adjacent pixels, as shown in equation (1).

D1 =Rd — Rb
D2 = Rb — Rc
D3 =Rc —Ra @))

After the local gradient values D1, D2, D3 are calculated,
the coding mode is selected. If the absolute values of the local
gradient values are all less than or equal to N, then the current
pixel to be encoded enters the run coding mode, otherwise the
current pixel to be encoded enters the normal coding mode.

2) NORMAL CODING MODE

The normal mode consists of three parts: prediction of the
reconstructed value Px, calculation of the prediction error
Errval, and Golomb coding of the prediction error Errval.
As shown in equation (2), the predicted value Px of the current
pixel value x is formed by integrating the reconstructed values

VOLUME 12, 2024

Ra, Rb, and Rc of the three adjacent pixels a, b, and c.

min(Ra, Rb), Rc > max(Ra, Rb)
Px = { max(Ra, Rb), Rc < min(Ra, Rb) 2)
Ra + Rb — Rc, otherwise

After edge detection is completed, the predicted values are
corrected according to code segment 1. The predicted values
are corrected by C[Q] and SIGN, which are the correction
value of prediction error for context parameter Q and the sign
of context, respectively. Where C[Q] is the correction value of
the prediction error corresponding to the context parameter Q,
MAXVAL is the maximum pixel value of the scanned source
image, which is calculated by equation (3), and p is the bit
depth of the source image.

MAXVAL =27 — | 3)

Code segment 1 Prediction correction from the bias

Input: Px, C[Q], MAXVAL

Output: Px
1 if (SIGN == +1)
2 Px =Px + C[Q];
3 else
4 Px =Px - C[Q];
5 if (Px > MAXVAL)
6 Px =MAXVAL;
7 else if (Px <1)
8 Px=0;

Using the corrected Px value from the above procedure,
the prediction error Errval is calculated according to code
segment 2.

Code segment 2 Computation of prediction error

Input: Ix, Px, SIGN
Output: Errval
1 Errval = Ix — Px;
2 if (SIGN ==-1)
3 Errval = -Errval;

The prediction error coding module mainly performs the
calculation of the Golomb coding parameter k, the mapping
of the prediction error Errval, and the Golomb coding of the
mapped prediction error MErrval.

The function of the Golomb coding parameter k calculation
module is to calculate the coding parameter k through the
variables A[Q] and N[Q], so that the Golomb coding can
use the shortest codeword to represent the mapped prediction
error. The function of the prediction error mapping mod-
ule is to map the prediction error Errval that satisfies the
bilateral geometric distribution to the prediction error Errval
that satisfies the unilateral geometric distribution, and further
improve the efficiency of Golomb coding. The function of the
Golomb coding module is to encode the mapped prediction
error MErrval.

The commonly used method to calculate the value of
Golomb coding parameter k is to use sequential compari-
son, which requires at most 7 comparisons. Therefore, when
implementing in hardware, there are at most 7 levels of
comparator delay and 7 levels of shift register delay. This

5395



IEEE Access

F. Liu et al.: Adaptive Pipeline Hardware Architecture Design and Implementation

| Prediction error 4.‘ Golomb coding |
L |
Run-length Prediction error Prediction error
scanning correction mapping
Scan to the Scan to the Prediction error Golomb coding for
end of line g difference modulo reductios prediction error
termination reason
pixel pixel T
determinatios
Encode the run Encode the run Context parame- Context
length length ter calcul arameter update
Prediction value| Mapping coeffi-
calculation cient calculation
Over

FIGURE 3. Flowchart of run and interruption coding.

paper proposes to use binary search to calculate the value of
k, which requires at most 3 comparisons. Therefore, when
implementing in hardware, there are at most 3 levels of
comparator delay and 3 levels of shift register delay, which
can effectively improve the clock frequency of the designed
encoder. The specific implementation of using binary search
to complete the calculation of Golomb coding parameter will
be given in Chapter 3.

3) RUN AND INTERRUPT CODING MODE

Figure 3 shows the flowchart of the run-length coding mode
in the JPEG-LS algorithm. After the current pixel to be coded
enters the run-length coding mode, the pixel is first scanned
for the run-length. The termination of the run-length scan
is determined based on the reason for scanning. If the scan
reaches the end-of-line pixel, the run-length is coded and the
run-length coding mode is exited. However, if the scan is ter-
minated due to a run interruption, the run-length is coded and
the difference pixel is also coded. Subsequently, the predicted
value of the difference pixel is calculated, followed by the
calculation of the prediction error. This error is then corrected
and reduced modulo. Additionally, the context parameters,
mapping coefficients, and Golomb coding parameters are
calculated. The prediction error is then mapped and subse-
quently Golomb coded. Finally, the context parameters are
updated. Once all the variables are updated, the run-length
coding mode is exited.

4) BITSTREAM SPLICING

The function of the bitstream splicing module is to splice
the remaining bitstream from the previous splicing and the
encoded bitstream of the current frame, and to output the
spliced bitstream in units of 32 bits. Figure 4 shows the block
diagram of the bitstream splicing module.

B. JPEG-LS DECOMPRESSION ALGORITHM

The decoding process is the inverse of the encoding process,
that is, to obtain the value of x given the values of the context
Ra, Rb, Rc, and Rd. Before decoding, the compressed image
data must be preprocessed, that is, to perform corresponding

5396

Regular coding
bitstrcam

Run-length ] : :
Source ——» JPEG-LS codingbitstream?~ .. i = Bitstream Residual :

image data encoder H bitstream

coding bitstream] : l

32-bit coding
! Bitstream bitstrcam
i concatenation module (

FIGURE 4. Bitstream splicing block diagram.
Regular mode

decoding

Compressed Data pre-

5 5 Mode selection Reconstruct Rx
image bitstream

processing value
Run mode

decoding

FIGURE 5. Image decompression flowchart.

operations on the header file of the image, remove some
accessory information of the image, such as the height, width,
and precision of the image, etc., and only then can the actual
image bitstream participate in decoding. The decoding also
starts with mode selection, which is the same as encoding
mode selection and will not be repeated here. Figure 5 shows
the structure diagram of the decoding module.

1) NORMAL DECODING MODE

The normal decoding mode obtains the values of Q;, SIGN,
Px, and k by following the steps of gradient quantization,
gradient merging, prediction, and prediction error coding in
the encoding process. Then, the value of MErrval is decoded
from the value of k and the read-in bitstream.

2) RUN AND INTERRUPT DECODING MODE
First, read 1 bit R from the bitstream. If R = 1, fill the
image with 2/[RUNindex] samples of Ra (J is the index value
of the RUNindex entry vector table) until the end of the line.
If RUNindex <31, then decrement RUNindex by 1 and conti-
nue filling. If the line is not finished, then continue reading
the bitstream until the end of the line.

If R = 0, then read J bits from the bitstream and form
a number x from these binary bits. Fill the image with x
samples of Ra. If RUNindex <31, then decrement RUNindex
by 1 and continue filling. When the run is interrupted, per-
form run interruption decoding, which is the opposite of run
interruption encoding.

Ill. JPEG-LS HARDWARE DESIGN

This paper designs an ARGB image block compression/
decompression hardware module, which uses pipeline tech-
nology, based on parallel block architecture, realizes random
access of image two-dimensional blocks, and can also realize
custom block size.

A. JPEG-LS COMPRESSION HARDWARE MODULE

The JPEG-LS compression module designed in this paper
adopts pipeline architecture, and the hardware architecture
is shown in Figure 6. The whole JPEG-LS encoder mainly
includes context modeling module, normal coding module,

VOLUME 12, 2024



F. Liu et al.: Adaptive Pipeline Hardware Architecture Design and Implementation

IEEE Access

|
Front-end pipeline: add pause mechanism Back-end pipeline )
________________________________________________________________________________ i
|Level 1 Level2 Level 5 Level 6 Level 7 Level 8 Level 9 | Level 10
| ' i ' ' ' | RPN
i| Reuse module :Reuse module :Reuse module : cuse module || Heuse modulg' | — :
| 1 i | | |1 !
» |
Q Correct | 41 ppror | Errormodulol 110 pyrameter | 1 parameter ! )
| ca prediction I cammum\_* reduction and™ ™ A N updatd %’ B, C update ‘ H 1
| I\ value i i | mapping i Il | ¢ 1
Caleulate | || 1 ! i 1 i :
| : 1 piiion 1 : : : : S
a Run inlcrruption: | value " i | { I oo
| - s ' coding | l: i { { I o=
|| g Bl 2] e i H i [ | & 1
4 £ v e s
= N I N sl A R Bt 0 B K X QTR 4 I g
S o || [ - 17| Ritype, t sodiiie I I
I 32 sz B coding | 11 | S e | stlevely | 01 @ndleve) |} Grdlevel) |31 € | | i |
[ ] 2 sllafl b 1 . l' { | | i | 'E]
@, £ & f 1y 4 | | | il =
=3 = [ = L 1 | I I i | &
5] = Pl | L =4
li] 8 A ER T SoS-SEsEsses EEEEELLLE LS EEE S e B A
| 53 ! Run coding | 1 | )
1 )
i (" Run coding )—b( Delay )‘ Y 1
1 \ . I ™
i i
| e b oo | )
| Run end-of-line ' 1
| I i | IR
| interruption  (Run cnd-of-line Delay ) 1)
- i
I [ | {
N/ w w | N
[ 1 \
FIGURE 6. Compression hardware module.
N<<3 N<<§ <6
N ¥
- (N<<6)<A K=
T, N<<5)/ Sl <<6)>
A i | (N3)zA l & | (N<<512A J (N<<6)>A B
s 1
Ne<l 5
R R
E (N<<I)<A (N<<4)<A E K=5
~ IComparator <<4)>, -
G —:-: ‘ ’Compmmi (N<<dzA L G » K=4
o Shifter \» N<<2
(N<<l)2A
3
=O=A_f L kel
| | (N<<0zA K=0

-

clk

FIGURE 7. Structural block diagram of Golomb coding parameter k value calculation.

run-length coding module and output module. The whole
encoder is divided into ten stages of pipeline, each column
represents one stage of pipeline, and the parallel blocks in
the pipeline represent the parallel execution part. After the
second stage of pipeline, one of the four modes will be entered
(each row represents one mode). The first to fourth stages of
pipeline are added with pause mechanism. Whenever the Q
value calculated by the fourth stage is equal to any Q value in
the fifth to ninth stages, the first to fourth stages of pipeline
need to be paused, which solves the delay problem caused by
parameter update. The calculation of Golomb coding param-
eter k requires eight times of loop search. Here, using binary
method, it can be realized by placing it in three stages of
pipeline, which greatly reduces the delay. The main functions
of each stage of pipeline are introduced below.

Stage 1: Data acquisition. According to the input pixel
value x and index, output the pixel value x and the values
of the adjacent pixels a, b, c, d, as well as the end-of-line and
end-of-block flag signals. This is achieved by caching all the
pixels of the previous line and the previous pixel.

VOLUME 12, 2024

Stage 2: Gradient calculation and mode selection. Calcu-
late the current gradient value based on the adjacent pixels,
and combine with the end-of-line flag signal to select the
mode, which can be normal coding, run interruption coding,
run-length coding or run end-of-line interruption mode.

Stage 3: According to the mode selection, perform gradi-
ent quantization, remaining Run_Cnt coding and run-length
coding respectively.

Stage 4: If normal or run interruption coding mode is
entered, calculate the context parameter Q, predicted value
and Rltype, SIGN and other parameters simultaneously.
If run-length coding or run end-of-line interruption mode is
entered, only calculate the run-length coding. The subsequent
run-length coding or run end-of-line interruption mode only
need delay without any operation. The subsequent normal or
run interruption coding mode reuse the same module.

Stage 5: Predicted value correction. Binary search for
Golomb parameter k at the first level.

Stage 6: Error value calculation. Binary search for Golomb

parameter k at the second level.

5397



IEEE Access

F. Liu et al.: Adaptive Pipeline Hardware Architecture Design and Implementation

A[Q]—»

A memo
Bl | Ty
2{8} :: Context parameter ciQ] .

N[Q]—> update NI[QI | !

Errval —>

Erravl done__,. Context parameter

update timing control

FIGURE 8. Structural block diagram of context parameter update.

Q_done—

Stage 7: Error modulo reduction and mapping. Binary
search for Golomb parameter k at the third level.

Stage 8: Parameter update A, N and half of B update
process. Golomb coding.

Stage 9: Parameter update for the remaining B and C.

Stage 10: Output according to one of the four modes
selected by the mode selection.

1) BINARY SEARCH

In stages 5 and 6, this paper optimizes the calculation path
of Golomb coding parameter k, and uses binary search to
compare the sizes of N[Q] and A[Q] to determine the value of
k. Figure 7 shows the block diagram of the optimized Golomb
coding parameter k calculation, where A and N are A[Q] and
N[Q] respectively.

2) CAUSAL TEMPLATE OPTIMIZATION

In this paper, the context update module completes the read,
update and write of variables A[Q], B[Q], C[Q], N[Q].
In this paper, dual-port RAM (Random Access Memory)
IP core is used to store A[Q], B[Q], C[Q], N[Q]. When
the context update module detects that Q_done is high,
it starts to read variables A[Q], B[Q], C[Q], N[Q]. When
the context update module detects that the completion flag
Errval_done of the prediction error calculation module is
high, it updates variables A[Q], B[Q], C[Q], N[Q] and writes
variables A[Q], B[Q], C[Q], N[Q] into corresponding dual-
port RAM. Figure 8 shows the block diagram of context
parameter update, where A[Q], B[Q], C[Q], N[Q] are vari-
ables before update, and A1[Q], B1[Q], C1[Q], N1[Q] are
variables after update.

In JPEG-LS software compression process, variables
A[Q], B[Q], C[Q], N[Q] are updated after each encoding is
completed; in common hardware design process, the con-
struction of causal template of next pixel to be coded is
also performed after current pixel to be coded is encoded.
However, due to FPGA hardware design parallelism, this
paper optimizes context parameter update module. When
context parameter update module detects that completion flag
Errval_done of prediction error calculation module is high,
it starts to update variables A[Q], B[Q], C[Q], N[Q] without

5398

TABLE 1. Basic signal list of normal coding module.

Signal Bit Interface Comment
name width status
SIGN 1 Input correction symbol
Px 8 intermediate predicted value
variable
Errval 9 intermediate prediction error
variable
Errval_done 1 intermediate modulo reduction done flag
variable
rds Q 9 intermediate A, B, C, N memory read
variable address signal
wds Q 9 intermediate A, B, C, N memory write
variable address signal
rden_Q 1 intermediate A, B, C, N memory read
variable enable signal
wren_Q 1 intermediate A, B, C, N memory write
variable enable signal
A[Q] 14 intermediate corresponding to the sum of
variable absolute values of prediction
errors
B[Q] 9 intermediate  Q corresponding to the sum of
variable prediction errors
C[Q] 9 intermediate corresponding to the
variable correction value of prediction
error
N[Q] 9 intermediate Q occurrence count
variable

waiting for encoding to be completed before updating A[Q],
B[Q], C[Q], N[Q]. This saves 5 to 8 clk clock cycles required
by context parameter update module; meanwhile, since clock
cycles required by context parameter update module are
enough to perform two read operations on source image stor-
age device, therefore when context parameter update module
detects that completion flag Q_done of context modeling
is high, it starts to read source image storage device and
completes reading of next pixel to be coded Ix and pixel Rd at
position d in causal template without waiting for current pixel
to be coded encoding to be completed before construc-ting
causal template of next pixel to be coded. This saves time
of reading source image storage device twice. By optimizing
encoder structure, including optimization of start signal of
context parameter update module and optimization of causal
template construction process of next pixel to be coded, 11 to
14 clk clock cycles are saved, which effectively improves
encoder throughput.

B. JPEG-LS DECOMPRESSION HARDWARE MODULE

The top level of the decompression module is the run-length
decoding finite-state machine (FSM), which is the upper
part of the Figure 9, which continuously reads in the bit-
stream and determines the next state according to the read
bit. If normal decoding or run interruption decoding mode
is entered, it enters a part similar to the encoding mode,
which is the lower part of the Figure 9. This part is very
similar to the encoding mode process, only a few parts need
to be reversed and Golomb coding needs to be replaced with
decoding mode. This module is also implemented by FSM.
Note that, since the value of the current pixel is unknown

VOLUME 12, 2024



F. Liu et al.: Adaptive Pipeline Hardware Architecture Design and Implementation

IEEE Access

1 : N !
] ]
1 1 1
o ]
i
Pixel recon- 1 ] i
struction || | 1
1 ! 1
1 1 1
o ]
b b oo ]
]
! 1
—————————————————————————————————————————————————————————————————————————— | |
. 1 !

! C bit stream ) ;o :
[ e e ! 1
= ! |
s e O — I P RN, U PR I
{ i (" )} Regular i i N i i A
' :l |; decoding }' | Reuse module ﬂ Reuse module ! Golomb decoding n Reuse module s
! " " 4 " ) ! state machine 1 ! 1
i T " " N [ ! " b 1
: ol - Q| prediction | i @ Parameter || 1 ‘
I ] i y elay ]

1 I ! ) orrection 1
LB n BB i L i wdae bl |

S| uleg i " ! )
e :: 21| 8 Gradient ] ) :: :\l Do |
V2| 8 || & caloutaion T Predietion :; = ;

= | ) o ) N ) ) 1
| 3 il g 3 | i | i ,\ b 1
1 = hy = -1 I I I 1 ]
I 2 I 8 g | " I 1" i |

= 5 l ~, \ ]

{ ] 1 W[ Context \i | kvale | | kvale [i Lo ]
! i 1> sl parameter |1 | caletaton caleulation [} o w
i I i | Ritype, temp 1| Gstleved 2nd-3rd level |1 eror anel recon-|! . 1
| h ,\ Run interrup- u I ‘“‘I’P‘“E o4 |
1 :u .\ tion decodmg u I ,\ struction 1 | 1
1 1 " ‘Y 1 1 \_/ !

FIGURE 9. Decompression hardware module.

during decompression, pipeline architecture cannot be used,
and pixels need to be decompressed one by one. The follow-
ing introduces two FSM, and the rest of the parts are similar
to encoding and will not be repeated.

o Run-length decoding FSM, This FSM has four states:

IDLE: Idle state. After reading the start signal, it enters the
READ_ONE state.

READ_ONE: Read 1 state. Continuously read the bit-
stream. Whenever a 1 is read, it enters the OUT_DATA state
and outputs the corresponding number of pixels. When a 0 is
read, it enters the READ_CNT state and reads the remaining
part of the run.

READ_CNT: Read the remaining length of the run. This
value is the part that does not meet the cursor length when
run-length coding. Continuously read the bitstream. After
reading, it enters the OUT_DATA state and outputs the cor-
responding number of pixels.

OUT_DATA: Output data state. Output the pixel values
according to the input value, and update J, RUN_index and
other parameters. If the run is interrupted, it enters the IDLE
mode and gives a signal to start the interruption decoding.
If not interrupted, it continues to enter the READ_ONE state.

+ Golomb decoding FSM, This FSM has four states:

IDLE: Idle state. After reading the start signal, it enters the
High state.

High: High bit decoding state. Continuously read the bit-
stream. Whenever a 0 is read, the counter value increases by 1.
When a 1 is read, stop counting. If the counter value is greater
than Limit, then enter the Limit mode. Otherwise, assign the
high bit decoding value to the counter value and enter the Low
state.

Low: Low bit decoding state. Read k bits of bitstream and
assign the low bit decoding value to these k bits and enter the
IDLE state.

Limit: Limit mode, where the decoding value is spe-
cially processed according to the algorithm. See algorithm
intro-ducetion for details.

VOLUME 12, 2024

C. COMPRESSION/DECOMPRESSION SYSTEM DESIGN
The compression/decompression system is designed on the
zynq7020 platform. The compression/decompression modu-
les are separately packaged as custom AXI IP cores. The
IP core top level instantiates the compression/decompression
module and two BRAMSs to store the original/compressed
and compressed/decompressed data. If the block size after
compression is larger than the original block size, the orig-
inal block is directly used as the compressed data, and the
block size is written into the block header information. When
decompressing a block, if the block size is larger than the
original block size, it is not decompressed. The IP core also
needs to complete the logic of AXI reading and writing DDR,
with burst_length set to 16 and size set to 4, and adjust the
number of burst transfers according to the block size. The
block size can support 4, 8, 16, which can be adjusted in the
compression/decompression module header file. The CPU is
used to read the original image data from the SD card and
complete the block function, and write it into DDR. The
CPU also needs to read and configure registers to control
the compression/decompression module. Figure 10 shows the
system block diagram.

IV. EXPERIMENT PLATFORM AND RESULT
The following criteria are commonly used to evaluate the
hardware compression and decompression performance:

Compression ratio: The compression ratio is the ratio of
the information amount of the source image to that of the
compressed image. A larger compression ratio indicates a
better compression effect without reducing the image infor-
mation entropy. The compression ratio of the image is shown
in equation (4).

=2 @)
np

Here, ¢ is the compression ratio, n; is the information
amount of the source image, and 7 is the information amount
of the compressed image.

5399



IEEE Access

F. Liu et al.: Adaptive Pipeline Hardware Architecture Design and Implementation

TABLE 2. Examples of the custom test image set.

Test image collectionn original image

Decompressed image size No.

custom
custom
. -—
_
-— I
BRAM
e
— |
l I DECODER IP BRAM
BRAM

ENCODER IP BRAM

FIGURE 10. Compression/decompression system architecture diagram.

Clock frequency: The clock frequency is the frequency
of the digital clock signal inside the FPGA, which has a
certain relationship with the FPGA’s computing capability.
A higher clock frequency means that the CPU can execute
more instructions per second. A higher clock frequency also
means that the designed hardware architecture works faster.

Throughput: The throughput in compression is the
amount of data compressed or decompressed per unit time,
usually in bytes/second or bits/second. The throughput can
be used to measure the performance and efficiency of com-
pression software or hardware. Generally speaking, a higher
throughput means a faster compression or decompression
speed, but it may also mean a lower compression ratio.

Resource utilization: look up table (LUT) resources and
slice resources are two types of logic resources in FPGA,
which are used to implement different functions. LUT can
store truth tables, implement combinational logic or dis-
tributed memory. Slice is a logic slice composed of multiple
LUTs and flip-flops (FF), which can implement sequential
logic, arithmetic operations, data selectors, etc. Generally
speaking, a lower resource utilization means that the system

5400

256*256 1

256*256 33

FIGURE 11. Hardware physical diagram of the experiment based on
XC7Z020 chip.

has more idle resources, which can handle more requests or
loads.

The development board used in this paper is the Zynq7000
series chip from Xilinx, with the model number XC7Z020-
CLG484-1, 53200 LUTs, 106400 FFs, 4.9Mb BRAM,
512MB DDR on board, and SD card slot on board, as shown
in Figure 11. This scheme supports different compression
block sizes.

To verify the robustness of the scheme for practical appli-
cations, and to facilitate comparison with other schemes, this
paper selected a custom test image set that conforms to the
JPEG-LS standard specification for testing.

Austom test image set consisting of 33 images of differ-
ent types with 8-bit depth and 256%256 size was used for
compression and decompression. The block size of the test
image set was 88, and the clock frequency was 100MHz.
In the compression test, LUT and FF occupied 1316 and
1110 respectively. The timing report generated under the
50MHz clock constraint showed that the maximum frequency
could reach 108.6MHz after removing the 10.793ns slack.
In the decompression test, LUT and FF occupied 789 and
803 respectively. The timing report generated under the

VOLUME 12, 2024



F. Liu et al.: Adaptive Pipeline Hardware Architecture Design and Implementation

IEEE Access

TABLE 3. Compression and decompression test results of 33 images.

Total number Total number . Total time for Total time for Avcra%.c Avcmg‘c‘A

sample of cycles for of cycles for Cort:zifsmn Width Height compression/ decompression/ C(Szlzl;;;l?n dcc(;)erl(;];r;:-lon
compression decompression us bs block/ 1s block/ s
1 66541478 39142486 17.95 1920 1056 0.6650 0.3910 20.9912 12.3422
2 35779745 39345835 7.07 1240 960 0.3580 0.3930 19.2473 21.1290
3 41951603 135407463 3.20 1920 1080 0.4200 1.3540 12.9630 41.7901
4 68004241 306823787 2.53 2496 1600 0.6800 3.0680 10.8974 49.1667
5 153887419 590418154 2.88 3840 2160 1.5380 5.9050 11.8673 45.5633
6 113832341 707384025 2.12 3840 2120 1.1380 7.0740 8.9465 55.6132
7 17768520 94435881 2.26 1416 800 0.1780 0.9440 10.0565 53.3333
8 144989635 656355109 2.03 3840 2160 1.4500 6.5640 11.1883 50.6481
9 124948952 710330118 2.07 3840 2160 1.2490 7.1030 9.6373 54.8071
10 163918118 492954237 3.72 4000 2000 1.6390 4.9300 13.1120 39.4400
11 199306642 437322926 4.29 3840 2160 1.9930 4.3730 15.3781 33.7423
12 137776449 643752915 2.74 3840 2160 1.3780 6.4380 10.6327 49.6759
13 129104453 696193156 2.10 3840 2160 1.2910 6.9620 9.9614 53.7191
14 177096905 511681197 3.79 3840 2160 1.7700 5.1170 13.6574 39.4830
15 131443579 644803870 224 3840 2096 1.3140 6.4480 10.4485 51.2723
16 186695223 502349785 3.71 3840 2160 1.8670 5.0230 14.4059 38.7577
17 98325151 290033770 2.99 3168 1440 0.9830 2.9000 13.7907 40.6846
18 180573914 401948967 4.72 3456 2160 1.8060 4.0190 15.4835 34.4564
19 69280167 262314764 2.58 2560 1440 0.6930 2.6230 12.0313 45.5382
20 60671715 243102892 2.96 2304 1440 0.6070 2.4310 11.7091 46.8943
21 101646805 147590673 5.38 2552 1432 1.0160 1.4760 17.7930 25.8489
22 230276562 241287584 7.93 2880 2632 2.3030 2.4130 19.4444 20.3732
23 165033927 246591373 5.42 3000 2000 1.6500 2.4660 17.6000 26.3040
24 128907754 158508166 6.22 2744 1616 1.2890 1.5850 18.6040 22.8762
25 57011683 299238979 2.45 2560 1440 0.5700 2.9920 9.8958 51.9444
26 55289688 342917048 177 2520 1568 0.5530 3.4290 8.9569 55.5394
27 20125669 86774028 2.29 1416 800 0.2010 0.8680 11.3559 49.0395
28 38058058 148812584 2.58 1920 1080 0.3810 1.4880 11.7593 45.9259
29 31836750 174706030 1.98 1920 1080 0.3180 1.7470 9.8148 53.9198
30 29606519 180992551 2.01 1920 1080 0.2960 1.8100 9.1358 55.8642
31 31376562 175959318 1.89 1920 1080 0.3140 1.7600 9.6914 54.3210
32 53501360 93653993 4.23 1920 1080 0.5350 0.9370 16.5123 28.9198
33 30925248 177591819 1.63 1920 1080 0.3090 1.7760 9.5370 54.8148
Mean value 99257359 329718954 2.85 2790 1619 0.9925 3.2972 12.9244 42.5378

50MHz clock constraint showed that the maximum frequency
could reach 128.5MHz after removing the 12.220ns slack.

The smoothness of the image greatly affects the compres-
sion performance of the JPEG-LS algorithm. Images with
high smoothness have small variations in the gray values of
adjacent pixels, and most of the prediction errors are small or
zero, which can be represented by fewer bits, thus enhancing
the compression ratio and speed. Images with low smooth-
ness have large variations in the gray values of adjacent
pixels, and the prediction errors are also large, seldom zero
or near zero. Such images require more bits to represent the
prediction errors, thus lowering the compression ratio and
speed.

Due to the high smoothness of image 1, more pixels fall
into the flat region, so the run-length coding mode can be

VOLUME 12, 2024

applied to most of the pixels, thus achieving efficient com-
pression; in contrast, image 33 has low smoothness, fewer
pixels fall into the flat region, that is, fewer pixels enter
the run-length coding mode, so the compression ratio of the
image is low. In fact, for medical images such as Computed
Tomography (CT), MRI, etc., they are usually smooth, and it
can be expected that this scheme can achieve good compres-
sion results.

Since there are few identical chip configurations in pre-
vious researches, this paper tries to compare the encoder
designed in this paper with the original one under the same
chip model. In order to compare with previous research
results, the JPEG-LS encoder designed in this paper is based
on the Zynq7000 series XC7Z020 chip and Virtex series
XCV300 chip for logic synthesis and layout routing. Table 2

5401



IEEE Access

F. Liu et al.: Adaptive Pipeline Hardware Architecture Design and Implementation

TABLE 4. Comparison to existing lossless compression works.

Work Technology Resource CR Clock Freq. Throughput
(MHz) (Mpixel/s)
Ours Zynq-7XC72020 1316LUT 2.85 108.60 43.03
VirtexXCV300 3161slice 2.85 63.60 28.7
Ref.[10] VirtexXCV300 - - 12 21.28
Ref.[20] VirtexXCV300 4938slice -- 61.1 --
Ref.[21] Virtex-6 XC6VCX75 8.3k LUT 2.14 - 52
Ref[15] Zyng-7XC7Z2020 19.5k LUT 2.14 185 826

shows the performance comparison table of the encoder
designed in this paper and previous research results.

The work in [14] combines the lossless compression stan-
dard JPEG-LS with bit substitution watermark modulation,
which is simple but has low performance. The work in [10]
modifies the run coding mode of the LOCO-I algorithm,
which greatly reduces the complexity of the algorith, but
the compression performance is not high enough. The work
in [15] proposes a hardware/software co-design method for a
pixel-level parallelized streaming image compressor based on
JPEG-LS, and proposes a pixel grouping scheduling scheme
and a Pseudo-LS method to exploit parallelism, achieving
high performance. This method is not only overly complex,
but also the results in the paper show that the performance
improvement is at the expense of high cache space and sac-
rificing some compression ratio, especially the Pseudo-LS
method does not have significant improvement after being
compatible with JPEG-LS. The work in [20] proposes a
high-performance implementation, which solves the data
dependency problem by pre-predicting the variable C[Q],
avoiding pipeline waiting. This implementta-tion ensures that
the worst-case performance of the algorithm is suitable for
domains with high real-time requirements. The limitation of
this method is that the logic of pre-prediction and compar-
ison selection limits the number of pipeline stages, and it
is difficult to further increase the clock frequency on this
structure, and the performance of the decompression process
is not considered. The hardware architecture designed in this
paper achieves a good balance between performance and
complexity, and realizes performance improvement of both
compression and decompression processes, and has some
advantages in compression ratio, which is very suitable for
practical application in medical image lossless compression/
decompression.

V. CONCLUSION

This paper proposes an adaptive pipeline hardware architec-
ture design and FPGA implementation for medical image
lossless compression/decompression based on JPEG-LS. The
main contributions are as follows:

o We study and optimize the JPEG-LS lossless compre-
ssion/decompression algorithm, and use Verilog
hard-ware description language (HDL) to design the
register transfer level (RTL) of JPEG-LS context mod-
eling module, normal coding/decoding module, run

5402

coding/ decoding module, and output module. We also
implement a hardware module for block compression/
decompression of ARGB images with customizable
block size;

« In the ARGB image block compression/decompression
module implemented in (1), we adopt an adaptive
pipeline design, which can improve the throughput and
clock frequency of the compression module, and solve
the delay problem caused by parameter updates by
adding a pause mechanism in the pipeline;

o Based on the ARGB image block compression/de-
compression module implemented in (1), we optimize
the construction process of the context causal tem-
plate. On the one hand, we use the causal template
of the previous encoded pixel to optimize the con-
struction process of the causal template of the current
pixel to be encoded. On the other hand, we complete
the construction of the causal template of the next
pixel to be encoded in the context parameter update
process. We also use a binary search method to opti-
mize the calculation process of the Golomb coding
parameter k;

« Based on the ARGB image block compression/decom-
pression module implemented in (1), we realize par-
allel compression/decompression of ARGB images by
instan-tiating multiple ARGB image block compression/
decompression modules in parallel, which improves the
bandwidth and access efficiency of memory. Based on
parallel block compression architecture, we calculate
the offset value of each two-dimensional block after
compression, and write the offset value to the header
file, which realizes random access of ARGB image two-
dimensional blocks;

o We test our design on FPGA development board, and
compare it with previous research results. Our design
achieves a good balance between performance and com-
plexity, and realizes performance improvement of both
compression and decompression processes. The test
results show that our design can achieve lossless com-
pression and decompression of images, which has some
significance for the research of lossless image process-
ing in medical practice.

The hardware design of the JPEG-LS lossless compres-
sion algorithm based on FPGA, which is completed in this
paper, has certain application value, but there are still many

VOLUME 12, 2024



F. Liu et al.: Adaptive Pipeline Hardware Architecture Design and Implementation

IEEE Access

aspects that can be improved. At present, our work is only
implemented on FPGA, and the frequency can only reach
the level of 100 MHz. For the self-built image test set of
33 images with 8*8 blocks, the average compression time is
12.9 ws. In the future, we can extend the compression and
decompression module to the chip-level platform, which can
reach the GHz level, and the compression time can be further
reduced to milliseconds or less, achieving higher real-time
performance of medical image compression.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, and
M. K. Khan, “Medical image analysis using convolutional neural net-
works: A review,” J. Med. Syst., vol. 42, no. 11, pp. 1-13, Oct. 2018.

L. Deng and Z. Huang, “The FPGA design of JPEG-LS image lossless
decompression IP core,” in Proc. Chin. Autom. Congr. (CAC), Nov. 2015,
pp- 2199-2203.

Md. A. Kabir and M. R. H. Mondal, “Edge-based transformation and
entropy coding for lossless image compression,” in Proc. Int. Conf. Electr.,
Comput. Commun. Eng. (ECCE), Feb. 2017, pp. 717-722.

G. Xin and P. Fan, “A lossless compression method for multi-component
medical images based on big data mining,” Sci. Rep., vol. 11, no. 1,
p- 12372, Jun. 2021.

P. Ryan and J. Connell, “Real-time lossless image compression in a
hardware environment,” in Proc. IEE Irish Signals Syst. Conf., Sep. 2005,
pp. 68-73.

H. Niu, Y. Shang, X. Yang, D. Xu, B. Han, and C. Chen, “Design
and research on the JPEG-LS image compression algorithm,” in
Proc. 2nd Int. Conf. Commun. Syst., Netw. Appl., vol. 1, Jun. 2010,
pp. 232-234.

G. Pavlidis, A. Tsompanopoulos, N. Papamarkos, and C. Chamzas,
“A multi-segment image coding and transmission scheme,” Signal Pro-
cess., vol. 85, no. 9, pp. 18271844, Sep. 2005.

S. D. Rane and G. Sapiro, “Evaluation of JPEG-LS, the new lossless
and controlled-lossy still image compression standard, for compression of
high-resolution elevation data,” IEEE Trans. Geosci. Remote Sens., vol. 39,
no. 10, pp. 2298-2306, Oct. 2001.

S.-G. Miaou, F.-S. Ke, and S.-C. Chen, “A lossless compression method for
medical image sequences using JPEG-LS and interframe coding,” IEEE
Trans. Inf. Technol. Biomed., vol. 13, no. 5, pp. 818-821, Sep. 2009.

M. Klimesh, V. Stanton, and D. Watola, “Hardware implementation of
a lossless image compression algorithm using a field programmable gate
array,” Mars, vol. 4, no. 4, pp. 5-72, 2001.

P. Merlino and A. Abramo, ““A fully pipelined architecture for the LOCO-
I compression algorithm,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 17, no. 7, pp. 967-971, Jul. 2009.

Y. M. Mert, “FPGA-based JPEG-LS encoder for onboard real-time lossless
image compression,” Proc. SPIE, vol. 9501, pp. 45-52, May 2015.

S.-L. Chen, T.-Y. Liu, C.-W. Shen, and M.-C. Tuan, *“VLSIimplementation
of a cost-efficient near-lossless CFA image compressor for wireless capsule
endoscopy,” IEEE Access, vol. 4, pp. 10235-10245, 2016.

S. Haddad, G. Coatrieux, M. Cozic, and D. Bouslimi, “Joint watermarking
and lossless JPEG-LS compression for medical image security,” in Proc.
Int. Conf. Watermarking Image Process., Sep. 2017, pp. 16-21.

X. Wang, L. Gong, C. Wang, X. Li, and X. Zhou, “UH-JLS: A parallel
ultra-high throughput JPEG-LS encoding architecture for lossless image
compression,” in Proc. IEEE 39th Int. Conf. Comput. Design (ICCD),
Oct. 2021, pp. 335-343.

Z. Cao, T. Zhang, M. Liu, and H. Luo, ‘“Wavelet-supervision con-
volutional neural network for restoration of JPEG-LS near lossless
compression image,” in Proc. IEEE Asia Conf. Inf. Eng. (ACIE), Jan. 2021,
pp. 32-36.

M. Liu, L. Tang, L. Fan, S. Zhong, H. Luo, and J. Peng, “CARNet: Context-
aware residual learning for JPEG-LS compressed remote sensing image
restoration,” Remote Sens., vol. 14, no. 24, p. 6318, Dec. 2022.

X. Sun, Z. Chen, L. Wang, and C. He, “A lossless image compression
and encryption algorithm combining JPEG-LS, neural network and hyper-
chaotic system,” Nonlinear Dyn., vol. 111, no. 16, pp. 15445-15475,
Aug. 2023.

VOLUME 12, 2024

(19]

(20]

(21]

K. Kanellopoulos, N. Vijaykumar, C. Giannoula, R. Azizi, S. Koppula,
N. M. Ghiasi, T. Shahroodi, J. G. Luna, and O. Mutlu, “SMASH: Co-
designing software compression and hardware-accelerated indexing for
efficient sparse matrix operations,” in Proc. 52nd Annu. IEEE/ACM Int.
Symp. Microarchitecture, Oct. 2019, pp. 600-614.

M. E. Papadonikolakis, A. P. Kakarountas, and C. E. Goutis, “Efficient
high-performance implementation of JPEG-LS encoder,” J. Real-Time
Image Process., vol. 3, no. 4, pp. 303-310, Dec. 2008.

L. Chen, L. Yan, H. Sang, and T. Zhang, *““High-throughput architecture for
both lossless and near-lossless compression modes of LOCO-I algorithm,”
IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 12, pp. 3754-3764,
Dec. 2019.

FANGIJIA LIU received the B.S. degree in engi-
neering mechanics from Northeastern University,
Shenyang, China, in 2021. He is currently pur-
suing the M.S. degree in mechanical engineering
with the University of Science and Technology
Beijing, Beijing, China. His research interests
include equipment diagnosis and intelligent man-
ufacturing, digital image processing technology,
and high-temperature material performance test-
ing and evaluation.

XIYAO CHEN received the M.S. degree in internal
medicine from the Third Affiliated Hospital, Sun
Yat-sen University, Guangzhou, China, where she
is currently pursuing the M.D. degree with the
Infection Division.

She has published articles in International Jour-
nal of Cancer, Canadian Journal of Gastroen-
terology and Hepatology, and European Journal
of Gastroenterology and Hepatology. Her main
research interests include hepatitis B, liver cirrho-

sis, hepatic failure, and medical image processing.

ZIJUN LIAO received the B.S. degree in electro-
magnetic fields and wireless technology from the
Huazhong University of Science and Technology,
Wuhan, China, in 2021, where he is currently
pursuing the M.S. degree in information and com-
munication engineering.

His research interests include teleoperations,
haptic communication, and FPGA.

CHONG YANG received the B.S. degree in
mechatronics engineering from the Harbin Insti-
tute of Technology, Harbin, China, in 2021. His
research interest includes medical robotics.

5403



