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ABSTRACT Considering photovoltaic systems’ sustainability and environmental friendliness, they have
been widely used due to ease of installation as their cost reduces and their efficiency is improved. Analytical
maximum power point tracking methods for photovoltaic system work effectively under uniform weather
conditions. However, they may fall into local maximum power points due to partial shading conditions.
Although numerous meta-heuristic methods can overcome these challenges, they can still be improved
regarding the convergence time to the global maximum power point. This paper suggests an improved
grey wolf optimization method to track global maximum power points, enhancing the convergence process
and efficiency under various weather conditions. The proposed method has been verified experimentally
under dynamic and real weather conditions, consisting of uniform and non-uniform weather conditions. The
method provides better dynamic tracking speed and efficiency up to 82% and 1.4% compared to the basic
grey wolf optimization. According to the daily performance evaluation, the IGWO reduces the runtime by up
to 76% and improves energy harvesting up to 2.3% compared to basic grey wolf optimization. The obtained
results validate the superiority of the method compared under partial shading conditions in terms of tracking
time and accuracy.

INDEX TERMS Heuristic algorithms, improved grey wolf optimization, maximum power point tracking,
partial shading, photovoltaic.

I. INTRODUCTION
The significant increase in energy demand, the recent envi-
ronmental concerns, and the reserve problem of fossil fuels
have led to a tendency towards renewable energy sources
(RES). Solar photovoltaic (PV) energy generation is intermit-
tent and variable because of sudden changes in irradiation and
temperature.Maximizing efficiency under variable irradiance
is a challenging issue for PV systems. Especially, partial
shading due to cloud movements or improper positioning
reduces the efficiency and output power. The maximum
power point tracker (MPPT) keeps the PV array continuously
on MPP with the help of optimization algorithms [1]. The
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non-linear nature of PV leads to many local maxima on
characteristics curves under partial shading [2], [3]. There
is only one MPP on the characteristic curve under uniform
irradiance, as indicated by the red line in Figure 1. However,
some local MPPs are on blue and green lines in Figure 1
due to partial shading. Besides, classical algorithms such as
incremental conductance/resistance, perturb&observe (P&O)
are insufficient to track the global MPP under non-uniform
irradiance [4], [5], [6]. Therefore, several methodologies
have also been proposed to determine the step size of
analytical methods for reducing steady-state oscillations and
maintaining a good tracking speed [7], [8].
Numerous studies have been conducted to track global

MPP (GMPP) under partial shading conditions for reducing
tracking time, power losses, and oscillations, enhancing
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FIGURE 1. Maximum power points on the P-V curve (red: uniform, blue
and green: non-uniform).

efficiency using various meta-heuristic optimization algo-
rithms [9], [10]. It is required that they avoid falling into
local maximum, especially under partial shading conditions,
and can easily be implemented. Particle Swarm Optimization
(PSO) is a bio-inspired, intelligence-based meta-heuristic
optimization algorithm [11]. The PSO technique performs
better than the conventional MPPT methods, which cannot
track GMPP under partial shading conditions [12]. PSO has
been extensively used for various engineering applications
due to good accuracy, simpler structure, high adaptability,
and few tuning parameters. Still, it has several drawbacks
like steady-state oscillation, convergence ability, and tracking
speed. Therefore, improving PSO in terms of searching speed
and reducing oscillation have gained enormous attention from
researchers [13], [14]. Harris Hawks optimization (HHO)
is proposed by Heidari et al. [15], [16]. HHO has been
utilized recently for multiple engineering problems like an
MPPT algorithm to find the global MPP of PV array during
partial shading (PS). The advantages of HHO for MPPT are
effectively minimizing the undesired steady-state oscillation
and high-power conversion efficiency with good accuracy.
However, HHO may fall into local maximum points, and it
takes longer to find the MPP under the shading conditions.
Grey Wolf Optimization (GWO) is a recently emerged bio-
inspired swarm-based meta-heuristic optimization algorithm
introduced by Mirjalili et al. in 2014 [17]. The GWO
gives competitive results compared to popular swarm-based
algorithms in terms of accuracy, convergence independency,
simple controlling, and the ability to deal with local minima.
GWO is used to estimate unknown parameters of solar
photovoltaics, such as series resistance, shunt resistance, and
ideality factor [18], and to improve the efficiency of MPPT
systems [19]. However, the accuracy and tracking time in the
basic GWO can still be further improved for various partial
shading conditions [20], [21].
Moreover, premature convergence and trapping into

local optima prevent basic meta-heuristic algorithms from
obtaining global maximum power points of PV array and
lead power oscillations due to solar irradiation variations.
Therefore, several researchers have tended to improve basic
meta-heuristic algorithms to overcome these deficits [22].
The meta-heuristic algorithms control the swarm movements
using several velocity-updating methods. For example,

adding an inertia weight factor to the velocity equation can
balance between the global and the local search. Furthermore,
chaotic search, which is aperiodic motion, can eliminate
disadvantages like premature convergence and trapping into
local optima, improving the uniformity and ergodicity of the
swarm [23]. For example, premature convergence can be
overcome using a chaotic strategy assigning the individual
position of the bat algorithm [24], [25]. The complex tradi-
tional MPPT techniques show poor performance in locating
the global MPP under partial shading conditions [26], [27],
[28]. Recently, there have been efforts to combine traditional
MPPT methods with meta-heuristic algorithms to track
global MPP under partial shading effectively [29]. Although
hybridization has improved the MPPT performance, it has
some disadvantages, such as increased complexity and com-
putational burden [30], [31]. The proposed hybrid GWOwith
the Nelder-mead algorithm enhances the convergence rate.
It decreases response time, avoiding unnecessary particle
exploration and effectively reducing steady-state oscillations,
especially under non-uniform weather conditions [32].

According to GWO, a new position for each wolf is
created for the three leader wolves resulting in slower
convergence, loss of diversity, and falling into the local
optima. Sharing the hunting information between neighbor
wolves can boost the search speed and avoid slipping into
the local optimum [33], [34]. GWO has been modified to
update only unequal duty values in any iterations to avoid
unnecessary searches and long tracking times [35]. On the
other hand, the linearly decreasing convergence parameter
‘‘a’’ cannot truly reflect the actual search process. If a non-
linearly decreasing parameter was chosen, better convergence
performance would be achieved with less tracking time and
fewer iterations [36], [37]. For example, the cosine control
parameter synchronously updates the positions further to
enhance the global exploration capability [38]. Also, the
improved GWO algorithm addressing the lack of population
variety, premature convergence, and mismatch between
exploitation and exploration has been implemented to tune
the controller’s gains of plug-in hybrid electric vehicles for
efficient charging management [39]. Additionally, ‘‘a’’ is
reduced at the early stage of the optimization process to
maintain a faster convergence rate and increased at the later
stage to expand the optimization range and avoid falling
into the local optimum [40]. The proposed method using a
non-linear tangent trigonometric function as a convergence
factor has improved efficiency to 98.54% under various
partial shading conditions with tracking time up to 0.24 s [41].
Additionally, an enhanced GWO reduced tracking time by
45.5% and improved the tracking efficiency by 1.02% [20].
Therefore, the improvements in meta-heuristic algorithms
have achieved to reduce power oscillations and present an
attractive tracking performance in MPPT compared to basic
meta-heuristic algorithms [42].

This study improves GWO to increase MPP tracking speed
and efficiency. MPP can be found in a shorter time if the
convergence factor is determined according to the proximity
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FIGURE 2. Equivalent circuit PVE with a single diode photovoltaic panel.

of α wolves. The other wolves approach the alpha wolf
faster, as much as the alpha wolf is closer to the prey.
In addition, critical regions have been identified according
to the power changes in wolves while hunting. Finally, the
results show that the GWO has been improved in terms of
global searching-ability, convergence speed, and precision.

The original contributions of this paper are as follows:

• A novel global MPPT method based on an improved
GWO is proposed to enhance tracking performance and
efficiency.

• Verifications were carried out experimentally using
various cases under uniform and non-uniform weather
conditions.

• The proposed method provides up to 76% less runtime
and up to 2.3% better energy harvesting compared to
basic grey wolf optimization, according to the daily
performance evaluation under real weather conditions.

• Simple, correct, and helpful PV models are designed
using De Soto for PV developers.

The remainder of the paper is organized as follows.
Section II explains the study’s methodology, including the
design stages of PV models and PV emulator (PVE).
In addition, the implementation and improvement of GWO
are introduced. Section III gives the results of experimental
performance evaluations. Section IV concludes the study.

II. METHODOLOGY
PVE equations are provided using a single-diode equivalent
circuit of a photovoltaic panel. PV models are introduced
using a single-diode equivalent circuit that acts as a PV
emulator. Then, shading patterns are described. accordingly,
PVMs are generated. After implementing GWO for MPPT,
GWO has been improved.

A. DESIGNING PV MODELS AND CHARACTERISTICS OF
THE PV EMULATOR
PVmodel (PVM) simulates characteristic curves of PV arrays
in any weather conditions. There are numerous PVM based
on the equivalent circuits of single-diode and two-diode [43],
[44], [45], [46]. Additionally, PVM based on a three-diode
equivalent circuit better shows the losses, but it is quite
complex due to nine unknown parameters. PVM parameters

FIGURE 3. Uniform and non-uniform irradiance patterns.

are determined using different optimization algorithms [47],
[48], [49]. The PV equivalent circuit in Figure 3 is used
to design theoretical PVM. The PV equivalent circuit
can be mathematically modeled using Equations 1-5 after
calculating the parameters using polynomial equations [50].

IPV = Iph − Id − Ir (1)

Iph = Isho

(
S

1000

)
+ J0(T − Tref ) (2)

Id = I0

[
exp

(
q(VPV + RsIPV )

nkT

)
− 1

]
(3)

I0 = Id0

(
T
Tref

)3

exp
(
qEg
nk

(
1
Tref

−
1
T

))
(4)

Ir =
(VPV + RsIPV )

Rsh
(5)

IPV , Ir , Id , Iph, and I0 are currents of PV panel, the shunt
resistance, the diode, generated by irradiance, and the reverse
saturation diode, respectively. Id0, Isho and J0 represent
reverse diode current, short-circuit current, and temperature
coefficient. S is the solar radiation in W/m2, Tref is the
reference temperature at 298 ◦K, T is the PV cell temperature,
Eg is the energy band gap of the cell semiconductor, k is the
Boltzmann constant, n is the diode emission factor. Rs and
Rsh are series and shunt resistances, respectively.

The mathematical models of the PVE with a single PV
panel are described in Equation 6-9. PVE acts as a current
source generating ICS . The PVE can simulate various I-V
curves within the allowed range of equipment with the ability
to repeat tests regardless of the atmospheric conditions.

IPVE = Ics − Id − Ir (6)

Id = I0

[
exp

(
VPVE − RsIPVE

NsVt

)
− 1

]
− Ir (7)

VPVE = IPVERs + NsVt ln
(
IPVE − Ir

I0

)
(8)

Ir =
VPVE − RsIPVE

Rs
(9)
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PVM, developed by De Soto, is used in the python
development environment PVLIB [51] due to its success
and ease of use. However, the PVM of PVLIB-De Soto
is valid if the series arrays operate under equal radiation.
The PS of one of the series-connected arrays significantly
reduces the array current. Bypass diodes remove the array
under PS from the system until shading passes to prevent the
series current from falling [52]. Therefore, the total power
of the PV array decreases according to the shading rate. The
characteristic curve of the arrays is distorted by the formation
of local maximum power points (LMPP) due to PS. There
is a need for a second PVM that can reflect PS. Therefore,
a new PS model was created by combining PVLIB-De Soto
with 0.8 Voc PVMs [53], [54]. During the calculation of the
main current passing through the series-connected modules
in 0.8 Voc PVM, the voltages of the module Vsub1 and
Vsub2 were calculated using Equations 10 and 11, considering
the change in the radiation level. In the new PS model
created by modifying the PVLIB-De Soto PVM; First, three
modules connected in series were calculated separately with
PVLIB-De Soto PVM. Then, P-V and I-V characteristic
curves for PS were created by combining the currents through
the first module at voltage Vsub1, the second module at
Vsub2, and the third module at a higher voltage than Vsub2.
G1,G2,G3 are irradiance levels of PVmodule.N1,N2 are the
number of PV array receiving the corresponding irradiation.
Voc is the open-circuit voltage. A is a coefficient usually taken
as 0.6347.

Vsub1 = N1

[
Voc +

1
A
ln

(
1 −

G2

G1

)]
(10)

Vsub2 = Vsub1 + N2

[
Voc +

1
A
ln

(
1 −

G3

G2

)]
(11)

B. INTRODUCING SHADING PATTERNS
The received solar irradiation under clear sky (CS), PS60,
and PS30 conditions are given in Figure 4. It is assumed
that all three modules receive uniform irradiation under CS.
On the other hand, the shading percentages of the three
modules under PS60 are 0%, 30%, and 90% of the reference
irradiance, and 0%, 20%, and 40% of the reference irradiance
under PS30.

C. GENERATING PVM CHARACTERISTICS
The P-V and I-V characteristics of PVMs under standard test
conditions (STC) 1000W/m2 and 25◦C are given in Figure 5.
Then, the same P-V and I-V characteristics of PVMs were
generated for nine cases which consists of the combinations
of different radiations and shading patterns.

The P-V and I-V characteristics of CS, PS60, and PS30
were generated under different irradiation of 1000, 600,
and 400 W/m2 as given in Figure 6. Due to the partial
shading, the I-V curves are shaped like staircases. The stars
indicate all MPPs in Figure 6. However, only one yellow
star represents the GMPP. The rest represents LMPPs that
cause power losses due to PS, as indicated with black

FIGURE 4. a) P-V and b) I-V characteristics of PVMs at STC.

and brown stars in Figure 6.B1, B2 and Figure 6.C1, C2.
It is evident in Figure 6.A1 that MPPs were found near
the same voltage, whereas the current belonging to MPP
changes significantly depending on the radiation. Therefore,
the array output power varies under different radiations.
Due to partial shading, LMPPs have the lowest current and
highest voltage and vice versa, as evident in Figure 6.B2.
On the other hand, the slightly differentiated current values
have appeared in Figure 6.C2 due to approximate shading
percentages. Also, the maximum powers found at GMPP are
9.43, 5.56, and 3.64 W under uniform irradiation of 1000,
600, and 400 W/m2, respectively. Due to uniform irradiance,
there is no local MPP in Cases 1-3. Besides, the irradiance
variations under uniform conditions cause up to 4% voltage
variation at GMPP (VGMPP). Due to non-uniform irradiance,
there exist two LMPPs in Cases 4-9. For example, the P-V
characteristics in Case 4-6 of PS60 have two LMPPs at the
lower voltage (VLMPP1 ) of 6.6 V and higher voltage (VLMPP2 )
of 21 V than (VGMPP), which is about 13.5 V. On the contrary,
due to different partial shading patterns in Case 7-9 of PS30,
the GMPP has been found at the highest voltage of 22 V,
whereas LMPPs have been found at lower than (VGMPP).
Partial shading patterns significantly affect the location of
the GMPP. Table 1 presents the numerical results behind
Figure 6.

D. IMPLEMENTING THE GWO FOR MPPT
The GWO algorithm imitates the leadership hierarchy and
hunting mechanism of grey wolves in nature. The grey wolf
population is divided hierarchically into four categories:
alpha (α), beta (β), delta (δ), and omega (ω). α wolf is
considered the fittest function. The second and third best
solutions are selected β and δ wolves, respectively. ω wolves
are assumed to form the remaining candidate solutions. It is
seen in Figure 6 that the grey wolves hunt as a group in a
certain order. Firstly, they track, pursue, and encircle the prey.
Secondly, they irritate the prey until it stops. Finally, they
attack the prey.

Equations 12-19 are the mathematical formulation of
grey wolves’ positions continuously updated during hunting.
In Equations 12 and 13,

−→
A and

−→
C calculated using the

random numbers r1 and r2 varying in the range (0, 1), and
the regularly decreasing number a starting from 2 and going
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FIGURE 5. P-V and I-V characteristics of PVMs under a) CS, b) PS60 and c) PS30.

TABLE 1. Characteristic results of PVMs.

FIGURE 6. Hunting of Grey wolves [55]: A)-B)-C) Tracking, pursuing,
encircling the prey, D) Irritating, E) Attacking.

to zero in the last iteration is given.

−→
A = 2−→a ·

−→r1 −
−→a (12)

−→
C = 2−→r2 (13)

In Equations 14 and 15,
−→
X α ,

−→
X β , and

−→
X δ represent the

locations of α, β, and δ wolves, respectively.
−→
X indicates the

location of the wolf, and
−→
D denotes the distance vector of a

wolf from prey. Equation 16 determines the next position of
the wolf.

−→
D α = |

−→
C 1 ·

−→
X α −

−→
X |

−→
D β = |

−→
C 2 ·

−→
X β −

−→
X |

−→
D δ = |

−→
C 3 ·

−→
X δ −

−→
X | (14)

−→
X 1 =

−→
X α −

−→
A 1 ·

−→
D α

−→
X 2 =

−→
X β −

−→
A 2 ·

−→
D β

−→
X 3 =

−→
X δ −

−→
A 3 ·

−→
D δ (15)

−→
X (t+1) =

−→
X 1 +

−→
X 2 +

−→
X 3

3
(16)

For applying GWO to MPPT, all solutions are considered
as the duty cycle of the dc-dc converter (dc), and the position
of α wolf is considered the fittest function. The prey is
considered the duty cycle corresponding to the GMPP. The
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positions of ω wolves are the rest of the possible solutions.
Therefore, Equations 14-16 can be modified to Equations 17-
19 as follows:

−→
D α = |

−→
C 1 ·

−→
dcα −

−→
dc|

−→
D β = |

−→
C 2 ·

−→
dcβ −

−→
dc|

−→
D δ = |

−→
C 3 ·

−→
dcδ −

−→
dc| (17)

−→
dc1 =

−→
dcα −

−→
A 1 ·

−→
D α

−→
dc2 =

−→
dcβ −

−→
A 2 ·

−→
D β

−→
dc3 =

−→
dcδ −

−→
A 3 ·

−→
D δ (18)

−→
dc (t+1) =

−→
dc1 +

−→
dc2 +

−→
dc3

3
(19)

E. IMPROVING THE GWO ALGORITHM
In this study, GWO was improved to increase speed and
efficiency according to the flowchart seen in Figure 8. In the
GWO algorithm, grey wolves approach α wolf by narrowing
the hunting circle at each iteration with the constant velocity,
ac, which is given in Equation 20. Encircling the prey with
constant velocity takes a longer time. If ac is determined by
the degree of closeness of α wolf, the prey can be attacked
in a shorter time. If the alpha wolf is closer to the prey,
the other wolves approach the alpha wolf faster. However,
if the distance between α wolves increases, a is calculated
by decreasing ac. In Equation 21, Pαi and Pr represent
the power of the α wolf in iteration ‘‘i’’ and the power
difference of the wolves between iterations, respectively. The
ac is calculated using Equation 22 starting from two. As a
result of the tests, critical regions for ac and 1 a steps
improving the algorithm performance were determined in
Equation 23. The breakpoints of the critical regions Pr1 and
Pr2 were determined to be 0.05 and 0.8, respectively. If 1a
is too small, the GWO may lose diversity, and the search
process can become trapped in local optima. On the other
hand, if 1a is too large, the exploration capability will be
high, but the exploitation power will be limited, leading
to slower convergence. Therefore, 1a is taken as 0.2 or
0 according to Pr .

−→a = 2 − i
(
ac
in

)
(20)

Pr = |Pαi+1 − Pαi | (21)

ac(i+1) =

{
ac(i) + 1a,Pr < Pαi .Pr1
ac(i) − 1a,Pr > Pαi .Pr2

(22)

1a =

 0.2,

{
Pr < Pr1
Pr > Pr2

0.0, Pr1 < Pr < Pr2

(23)

III. EXPERIMENTAL PERFORMANCE EVALUATIONS
Performing highly accurate tests for MPPT under various
radiations and temperatures requires all tests to be carried out
under equal conditions [56]. Nevertheless, tests in the open air

FIGURE 7. Improved GWO flowchart.

cannot be in the sameweather conditions. Therefore, different
methods are required to equalize weather conditions to verify
the result of different algorithms under the same condition.
For example, different MPPTs can be tested simultaneously
using the same experimental setup for each algorithm case.
However, it requires as much hardware as the number of
test cases [57]. On the other hand, an artificial lighting
system that controls radiation and temperature externally
was developed to test MPPT under equal conditions [58].
However, the high installation cost and time requirement
are the disadvantages of artificial lighting. Therefore, PVE
has been developed [59]. PVE is superior to artificial
lighting in terms of cost, accuracy, complexity, sensitivity
to environmental conditions, and efficiency [60]. Detailed
reviews on PVE may be found in [61] and [62]. The PVE
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FIGURE 8. Experimental setup.

FIGURE 9. The block diagram for proposed global MPPT.

structure communicates with Python as shown in Figure 9.
The PV array and weather data selected by the user are
entered into the PVLIB-De Soto PVM. The microcontroller
controls the current limiting and voltage regulation circuits
with an algorithm executed in a Python environment. Then,
reference values calculated according to PVMweremeasured
at the DC-DC converter output with approximately 1%
RMS error (under standard test conditions) using digital
potentiometers. The voltage regulator and current adjuster
are set by the digital potentiometer, X9C103 [63], having
a resistor array composed of 99 resistive elements and a
wiper-switching network. In this way, the success of the
optimization algorithms developed in Python in different
weather conditions can be compared by running PVE under
equal conditions. Figure 9 shows the experimental setup.

A. DYNAMIC TRACKING PERFORMANCE
To verify the tracking ability of the improved GWO (IGWO)
based GMPPT method, the dynamic tracking performance
of algorithms was experimentally compared under irradiance
variations. The irradiance sequence consists of K - L - M
stages. Meta-heuristic optimization algorithms were per-
formed in 60 iterations with five search agents using three
different PVMs under different radiations. P&O also was
performed using 150 steps. Irradiance patterns for dynamic
tracking experiments are determined in Table 2.

The power, voltage, and current for the three modules
under CS and PS are shown in Figure 10. All algorithms

TABLE 2. Irradiance patterns for dynamic tracking experiments.

have achieved tracking GMPP under CS.When the irradiance
pattern is changed, GWO locates the GMPP of 4.36 W,
HHO tracks the GMPP of 4.65 W, and PSO tracks the
GMPP of 4.66 W. The P&O works well under uniform
radiation conditions, but it is slow in tracking speed and
causes power oscillation under partial shading conditions.
P&O algorithm is unable to differentiate between LMPP and
GMPP. Because it tracks the MPP by constantly changing
the terminal voltage of the PV array, it results in steady-state
oscillations raising the power loss and reducing the tracking
efficiency. The tracking efficiency is calculated as the ratio
between the average output power obtained at steady-state
and the maximum available power of the PV array under
a certain shading pattern. It is evident in Figure 10.A2 and
Figure 10.A3 that P&O fails to reach GMPP and gets settled
at LMPP of 3.06 W and 3.29 W under PS60 and PS30, and
the efficiency reduces by 33% and 47%, respectively.

Meta-heuristic algorithms have higher efficiency under
both CS and PS. However, their tracking time and per-
formance differ depending on the nature of the algorithm,
especially under PS. For example, HHO has two times more
tracking time than other algorithms due to intensely complex
operations. Tracking time is used to describe the time it takes
to reach a certain convergence condition. Also, the efficiency
of PSO and GWO algorithms was reduced by 3.5% and 3%
under PS30, respectively. Despite the high tracking time,
HHO achieved the best performance, with 99.69% under CS.
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FIGURE 10. Dynamic tracking performance of algorithms.

GWO and PSO have similar tracking times. However, the
efficiencies of GWO under PS60 and PS30 were reduced
by 2.5% and 0.5%, respectively. PSO is the most suitable
MPPT method for PVE due to its higher efficiency and
shorter tracking time than traditional meta-heuristic methods.
Dynamic tracking performance details such as reference and
maximum power, efficiency, and tracking time according to
the K, L and M stages are given in Table 3.
On the other hand, according to the dynamic tracking

results, the proposed IGWO has improved dynamic tracking
speed by up to 82% and increased efficiency by 1.4%
compared to the basic GWO. The proposed IGWO has
better tracking time and efficiency compared to the study
in [20]. Another study improving GWO for MPPT algorithm
under partial shading conditions has achieved 58% better
tracking speed [64]. The dynamic tracking performance
of meta-heuristic algorithms is compared in Figure 11.
The IGWO tracks much faster than all other algorithms.
Moreover, it has been determined that the proposed IGWO
has up to 5 times lower tracking time than PSO.

B. DAILY PERFORMANCE UNDER REAL WEATHER
The daily performances of algorithms were experimentally
compared using measured weather data. The radiation and
temperature data were obtained for model simulation and

FIGURE 11. Dynamic tracking performance comparison.

verification using the 15-minute averages of the measured
data at the Department of Electrical Engineering of YTU.
Figure 12 shows the effects of weather and optimization
algorithms on energy harvesting performance for a one-day
simulation. The red line represents the observed power, and
the dotted blue line represents the theoretical reference power.
The daily harvested energies and efficiencies of algorithms
under CS are quite similar, with only a 2% difference.
The harvested energies in meta-heuristic algorithms of
GWO, HHO, and PSO under PS60 and PS30 are less than
50% and 30% compared to CS. On the other hand, the
daily harvested energies in P&O under PS60 and PS30
are less than 66% and 62% compared to CS. An extra
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TABLE 3. Numerical results of dynamic tracking performance.

FIGURE 12. Daily performance of meta-heuristic algorithms.

energy loss is observed during non-uniform irradiance
conditions because the gradient nature of P&O leads to falling
into LMPP.

Moreover, it is evident in Figure 12.E2 that the IGWO
resolves the observed power deviation in Figure 12.B2. HHO
shows weak performance in average efficiency and tracking
time among the other meta-heuristic algorithms. Under CS,
the IGWO reduces the runtime of GWO because of the
ability to narrow down the search area. Runtime comparison
reveals that the GWO took 2075 s while the IGWO took
1962.77 s under PS60. However, the GWO completes over
8000 s and the IGWO completes in 1947.5 s under PS30.
Thus, IGWO is an average of 4 times faster than GWO

under PS30. Consequently, the runtime comparison reveals
that partial shading conditions affect the performance of
algorithms. Therefore, the IGWO has up to 76% better
tracking performance than GWO, according to the daily
performance evaluation under real weather conditions. On the
other hand, the daily performance of IGWO has similar
efficiency to PSO, but the IGWO is much faster than PSO.
The daily performance of algorithms is compared in Table 4
in terms of daily harvested energy, efficiency, and runtime.
Runtime is the time it takes for all iterations to complete.
The runtime of meta-heuristic algorithms is presented in
Figure 13. The IGWO has a powerful performance among
the other meta-heuristic algorithms.
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TABLE 4. Comparison of the daily performance of algorithms.

FIGURE 13. Daily runtime comparison of meta-heuristic algorithms.

IV. CONCLUSION AND POTENTIAL FUTURE WORK
This study proposed a novel global MPPT method using
the proposed IGWO. Uniform and non-uniform weather
conditions were modeled by combining PVLIB-De Soto and
0.8 Voc in a Python environment. Therefore, simple, correct,
and helpful PV models are designed for PV developers. The
performance of IGWOwas compared to several optimization
algorithms such as P&O, PSO, HHO, GWO, and IGWO.
Dynamic tracking performance of gradient based P&O is
faster, but it falls into LMPPs because of partial shading
conditions. On the other hand, meta-heuristic algorithms have
found GMPP with high efficiency, but they have taken a long
time due to the randomness and complexity. Consequently,
the IGWO has increased dynamic tracking speed by up to
82% and efficiency by up to 1.4% compared to the basic
GWO. The daily performance under real weather conditions
has validated the results of dynamic tracking performance.
The results revealed that the IGWO performs better than
the other meta-heuristic algorithms. Additionally, the IGWO
reduces the runtime by up to 76% and improves energy
harvesting up to 2.3% more than basic GWO, thanks to
narrowing down the search area of GWO. The future research

direction will be hybridizing meta-heuristic algorithms with
artificial neural networks, helping to design and develop solar
PV systems.

REFERENCES
[1] N. Karami, N. Moubayed, and R. Outbib, ‘‘General review and classifica-

tion of different MPPT techniques,’’ Renew. Sustain. Energy Rev., vol. 68,
pp. 1–18, Feb. 2017.

[2] S. Sarwar, M. Y. Javed, M. H. Jaffery, J. Arshad, A. U. Rehman, M. Shafiq,
and J.-G. Choi, ‘‘A novel hybrid MPPT technique to maximize power
harvesting from PV system under partial and complex partial shading,’’
Appl. Sci., vol. 12, no. 2, p. 587, Jan. 2022.

[3] M. H. Zafar, N.M. Khan, A. F.Mirza,M.Mansoor, N. Akhtar,M. U. Qadir,
N. A. Khan, and S. K. R. Moosavi, ‘‘A novel meta-heuristic optimization
algorithm based MPPT control technique for PV systems under complex
partial shading condition,’’ Sustain. Energy Technol. Assessments, vol. 47,
Oct. 2021, Art. no. 101367.

[4] M. H. Zafar, N. M. Khan, A. F. Mirza, and M. Mansoor, ‘‘Bio-inspired
optimization algorithms based maximum power point tracking technique
for photovoltaic systems under partial shading and complex partial shading
conditions,’’ J. Cleaner Prod., vol. 309, Aug. 2021, Art. no. 127279.

[5] K. M. and J. S., ‘‘A novel coarse and fine control algorithm to
improvemaximumpower point tracking (MPPT) efficiency in photovoltaic
system,’’ ISA Trans., vol. 121, pp. 180–190, Feb. 2022.

[6] H. Gundogdu and A. Demirc, ‘‘Performance comparison of grey wolf
and perturb & observe MPPT algorithms in different weather conditions,’’
in Proc. 13th Int. Conf. Electr. Electron. Eng. (ELECO), Nov. 2021,
pp. 84–89.

[7] V. Jately, B. Azzopardi, J. Joshi, B. Venkateswaran V, A. Sharma, and
S. Arora, ‘‘Experimental analysis of hill-climbing MPPT algorithms under
low irradiance levels,’’ Renew. Sustain. Energy Rev., vol. 150, Oct. 2021,
Art. no. 111467. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1364032121007498

[8] V. Jately, S. Bhattacharya, B. Azzopardi, A. Montgareuil, J. Joshi, and
S. Arora, ‘‘Voltage and current reference based MPPT under rapidly
changing irradiance and load resistance,’’ IEEE Trans. Energy Convers.,
vol. 36, no. 3, pp. 2297–2309, Sep. 2021.

[9] S. M. Tercan, A. Demirci, Y. E. Unutmaz, O. Elma, and R. Yumurtaci,
‘‘A comprehensive review of recent advances in optimal allocation
methods for distributed renewable generation,’’ IET Renew. Power Gener.,
vol. 17, no. 12, pp. 3133–3150, Sep. 2023.

[10] M. Mao, L. Zhang, H. Huang, B. Chong, and L. Zhou, ‘‘Maximum
power exploitation for grid-connected PV system under fast-varying solar
irradiation levels with modified salp swarm algorithm,’’ J. Cleaner Prod.,
vol. 268, Sep. 2020, Art. no. 122158.

VOLUME 12, 2024 6157



H. Gundogdu et al.: Novel Improved Grey Wolf Algorithm Based Global Maximum Power Point Tracker Method

[11] S. Rajamand, ‘‘A novel sliding mode control and modified PSO-modified
P&O algorithms for peak power control of PV,’’ ISA Trans., vol. 130,
pp. 533–552, Nov. 2022.

[12] S. Javed and K. Ishaque, ‘‘A comprehensive analyses with new findings
of different PSO variants for MPPT problem under partial shading,’’ Ain
Shams Eng. J., vol. 13, no. 5, Sep. 2022, Art. no. 101680.

[13] M. Abdulkadir, A. H.M. Yatim, and S. T. Yusuf, ‘‘An improved PSO-based
MPPT control strategy for photovoltaic systems,’’ Int. J. Photoenergy,
vol. 2014, pp. 1–11, Jan. 2014.

[14] I. Dagal and B. Akin, ‘‘Improved particle swarm optimization based on
buck-boost converter (IPSO-BBC) for photovoltaic system applications,’’
Recent Adv. Sci. Eng., vol. 2, no. 2, pp. 42–48, 2022.

[15] M. H. Qais, H. M. Hasanien, and S. Alghuwainem, ‘‘Parameters extraction
of three-diode photovoltaic model using computation and Harris hawks
optimization,’’ Energy, vol. 195, Mar. 2020, Art. no. 117040.

[16] M. Mansoor, A. F. Mirza, and Q. Ling, ‘‘Harris hawk optimization-
based MPPT control for PV systems under partial shading conditions,’’
J. Cleaner Prod., vol. 274, Nov. 2020, Art. no. 122857.

[17] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[18] N. Rawat, P. Thakur, A. K. Singh, A. Bhatt, V. Sangwan, and
A. Manivannan, ‘‘A new grey wolf optimization-based parameter esti-
mation technique of solar photovoltaic,’’ Sustain. Energy Technol.
Assessments, vol. 57, Jun. 2023, Art. no. 103240.

[19] S. Mohanty, B. Subudhi, and P. K. Ray, ‘‘A new MPPT design using grey
wolf optimization technique for photovoltaic system under partial shading
conditions,’’ IEEE Trans. Sustain. Energy, vol. 7, no. 1, pp. 181–188,
Jan. 2016.

[20] I. S. Millah, P. C. Chang, D. F. Teshome, R. K. Subroto, K. L. Lian, and
J.-F. Lin, ‘‘An enhanced grey wolf optimization algorithm for photovoltaic
maximum power point tracking control under partial shading conditions,’’
IEEE Open J. Ind. Electron. Soc., vol. 3, pp. 392–408, 2022.

[21] S. N. Makhadmeh, M. A. Al-Betar, I. A. Doush, M. A. Awadallah,
S. Kassaymeh, S. Mirjalili, and R. A. Zitar, ‘‘Recent advances in grey
wolf optimizer, its versions and applications: Review,’’ IEEE Access, early
access, 2023, doi: 10.1109/ACCESS.2023.3304889.

[22] L. Gong, G. Hou, and C. Huang, ‘‘A two-stage MPPT controller for PV
system based on the improved artificial bee colony and simultaneous heat
transfer search algorithm,’’ ISA Trans., vol. 132, pp. 428–443, Jan. 2023.

[23] R. S. Pal and V. Mukherjee, ‘‘Metaheuristic based comparative MPPT
methods for photovoltaic technology under partial shading condition,’’
Energy, vol. 212, Dec. 2020, Art. no. 118592.

[24] Z. Pan, N. V. Quynh, Z. M. Ali, S. Dadfar, and T. Kashiwagi,
‘‘Enhancement of maximum power point tracking technique based on
PV-battery system using hybrid BAT algorithm and fuzzy controller,’’
J. Cleaner Prod., vol. 274, Nov. 2020, Art. no. 123719.

[25] S. Motahhir, A. El Hammoumi, and A. El Ghzizal, ‘‘The most used MPPT
algorithms: Review and the suitable low-cost embedded board for each
algorithm,’’ J. Cleaner Prod., vol. 246, Feb. 2020, Art. no. 118983.

[26] A. Moghassemi, S. Ebrahimi, S. Padmanaban, M. Mitolo, and
J. B. Holm-Nielsen, ‘‘Two fast metaheuristic-based MPPT techniques for
partially shaded photovoltaic system,’’ Int. J. Electr. Power Energy Syst.,
vol. 137, May 2022, Art. no. 107567.

[27] Z. Xie and Z. Wu, ‘‘A flexible power point tracking algorithm
for photovoltaic system under partial shading condition,’’
Sustain. Energy Technol. Assessments, vol. 49, Feb. 2022,
Art. no. 101747.

[28] Y. Jiang, J. Xu, X. Leng, and N. Eghbalian, ‘‘A novel hybrid maximum
power point tracking method based on improving the effectiveness
of different configuration partial shadow,’’ Sustain. Energy Technol.
Assessments, vol. 50, Mar. 2022, Art. no. 101835.

[29] N. A. Windarko, E. N. Sholikhah, M. N. Habibi, E. Prasetyono,
B. Sumantri, M. Z. Efendi, and H. Mokhlis, ‘‘Hybrid photovoltaic
maximum power point tracking of seagull optimizer and modified perturb
and observe for complex partial shading,’’ Int. J. Electr. Comput. Eng.,
vol. 12, no. 5, p. 4571, Oct. 2022.

[30] S. Mohanty, B. Subudhi, and P. K. Ray, ‘‘A grey wolf-assisted perturb &
observe MPPT algorithm for a PV system,’’ IEEE Trans. Energy Convers.,
vol. 32, no. 1, pp. 340–347, Mar. 2017.

[31] J. Ahmed and Z. Salam, ‘‘An enhanced adaptive P&O MPPT for
fast and efficient tracking under varying environmental conditions,’’
IEEE Trans. Sustain. Energy, vol. 9, no. 3, pp. 1487–1496,
Jul. 2018.

[32] S. K. T., V. Reddy, and A. Robinson, ‘‘An innovative grey wolf
optimizer with Nelder–mead searchmethod basedMPPT technique for fast
convergence under partial shading conditions,’’ Sustain. Energy Technol.
Assessments, vol. 59, Oct. 2023, Art. no. 103412.

[33] M. H. Nadimi-Shahraki, S. Taghian, and S. Mirjalili, ‘‘An improved grey
wolf optimizer for solving engineering problems,’’ Expert Syst. Appl.,
vol. 166, Mar. 2021, Art. no. 113917.

[34] L. Zhang, T. Gao, G. Cai, and K. L. Hai, ‘‘Research on electric vehicle
charging safety warning model based on back propagation neural network
optimized by improved gray wolf algorithm,’’ J. Energy Storage, vol. 49,
May 2022, Art. no. 104092.

[35] İ. Yazıcı and E. K. Yaylacı, ‘‘Modified grey wolf optimizer based MPPT
design and experimentally performance evaluations for wind energy
systems,’’ Eng. Sci. Technol., Int. J., vol. 46, Oct. 2023, Art. no. 101520.

[36] W. Long, J. Jiao, X. Liang, and M. Tang, ‘‘An exploration-enhanced grey
wolf optimizer to solve high-dimensional numerical optimization,’’ Eng.
Appl. Artif. Intell., vol. 68, pp. 63–80, Feb. 2018.

[37] R. Motamarri, N. Bhookya, and B. Chitti Babu, ‘‘Modified grey wolf
optimization for global maximum power point tracking under partial
shading conditions in photovoltaic system,’’ Int. J. Circuit Theory Appl.,
vol. 49, no. 7, pp. 1884–1901, Jul. 2021.

[38] Y. Li, X. Lin, and J. Liu, ‘‘An improved gray wolf optimization algorithm
to solve engineering problems,’’ Sustainability, vol. 13, no. 6, p. 3208,
Mar. 2021.

[39] S. Saleem, I. Ahmad, S. H. Ahmed, and A. Rehman, ‘‘Artificial
intelligence based robust nonlinear controllers optimized by improved
gray wolf optimization algorithm for plug-in hybrid electric vehicles
in grid to vehicle applications,’’ J. Energy Storage, vol. 75, Jan. 2024,
Art. no. 109332.

[40] Q. Xie, Z. Guo, D. Liu, Z. Chen, Z. Shen, and X. Wang, ‘‘Optimization
of heliostat field distribution based on improved gray wolf optimization
algorithm,’’ Renew. Energy, vol. 176, pp. 447–458, Oct. 2021.

[41] K. Guo, L. Cui, M. Mao, L. Zhou, and Q. Zhang, ‘‘An improved gray wolf
optimizer MPPT algorithm for PV system with BFBIC converter under
partial shading,’’ IEEE Access, vol. 8, pp. 103476–103490, 2020.

[42] M.Mao, L. Cui, Q. Zhang, K. Guo, L. Zhou, and H. Huang, ‘‘Classification
and summarization of solar photovoltaic MPPT techniques: A review
based on traditional and intelligent control strategies,’’ Energy Rep., vol. 6,
pp. 1312–1327, Nov. 2020.

[43] R. Venkateswari and N. Rajasekar, ‘‘Review on parameter estimation
techniques of solar photovoltaic systems,’’ Int. Trans. Electr. Energy Syst.,
vol. 31, no. 11, p. e13113, Nov. 2021.

[44] E. Batzelis, ‘‘Non-iterative methods for the extraction of the single-diode
model parameters of photovoltaic modules: A review and comparative
assessment,’’ Energies, vol. 12, no. 3, p. 358, Jan. 2019.

[45] B. Maniraj and A. P. Fathima, ‘‘Parameter extraction of solar photovoltaic
modules using various optimization techniques: A review,’’ J. Phys., Conf.
Ser., vol. 1716, no. 1, Dec. 2020, Art. no. 012001.

[46] F. E. Ndi, S. N. Perabi, S. E. Ndjakomo, G. O. Abessolo, and
G. M. Mengata, ‘‘Estimation of single-diode and two diode solar cell
parameters by equilibrium optimizer method,’’ Energy Rep., vol. 7,
pp. 4761–4768, Nov. 2021.

[47] M. H. Qais, H. M. Hasanien, and S. Alghuwainem, ‘‘Identification of elec-
trical parameters for three-diode photovoltaic model using analytical and
sunflower optimization algorithm,’’ Appl. Energy, vol. 250, pp. 109–117,
Sep. 2019.

[48] O. S. Elazab, H. M. Hasanien, I. Alsaidan, A. Y. Abdelaziz, and
S. M. Muyeen, ‘‘Parameter estimation of three diode photovoltaic model
using grasshopper optimization algorithm,’’Energies, vol. 13, no. 2, p. 497,
Jan. 2020.

[49] J. D. Bastidas-Rodriguez, G. Petrone, C. A. Ramos-Paja, and
G. Spagnuolo, ‘‘A genetic algorithm for identifying the single diode
model parameters of a photovoltaic panel,’’ Math. Comput. Simul.,
vol. 131, pp. 38–54, Jan. 2017.

[50] T. Ikegami, T. Maezono, F. Nakanishi, Y. Yamagata, and K. Ebihara,
‘‘Estimation of equivalent circuit parameters of PV module and its
application to optimal operation of PV system,’’ Sol. Energy Mater. Sol.
Cells, vol. 67, nos. 1–4, pp. 389–395, Mar. 2001.

[51] W. F. Holmgren, C. W. Hansen, and M. A. Mikofski, ‘‘Pvlib Python:
A Python package for modeling solar energy systems,’’ J. Open Source
Softw., vol. 3, no. 29, p. 884, Sep. 2018.

6158 VOLUME 12, 2024

http://dx.doi.org/10.1109/ACCESS.2023.3304889


H. Gundogdu et al.: Novel Improved Grey Wolf Algorithm Based Global Maximum Power Point Tracker Method

[52] H. Patel andV.Agarwal, ‘‘MATLAB-basedmodeling to study the effects of
partial shading on PV array characteristics,’’ IEEE Trans. Energy Convers.,
vol. 23, no. 1, pp. 302–310, Mar. 2008.

[53] J. Ahmed and Z. Salam, ‘‘An improved method to predict the position of
maximum power point during partial shading for PV arrays,’’ IEEE Trans.
Ind. Informat., vol. 11, no. 6, pp. 1378–1387, Dec. 2015.

[54] H. Patel and V. Agarwal, ‘‘Maximum power point tracking scheme for PV
systems operating under partially shaded conditions,’’ IEEE Trans. Ind.
Electron., vol. 55, no. 4, pp. 1689–1698, Apr. 2008.

[55] C. Muro, R. Escobedo, L. Spector, and R. P. Coppinger, ‘‘Wolf-pack
(Canis lupus) hunting strategies emerge from simple rules in computational
simulations,’’ Behav. Processes, vol. 88, no. 3, pp. 192–197, Nov. 2011.

[56] A. Chalh, S. Motahhir, A. El Hammoumi, A. El Ghzizal, and A. Derouich,
‘‘Study of a low-cost PV emulator for testing MPPT algorithm under fast
irradiation and temperature change,’’ Technol. Econ. Smart Grids Sustain.
Energy, vol. 3, no. 1, p. 11, Dec. 2018.

[57] Z. Zhou, P. M. Holland, and P. Igic, ‘‘MPPT algorithm test on a
photovoltaic emulating system constructed by a DC power supply and
an indoor solar panel,’’ Energy Convers. Manage., vol. 85, pp. 460–469,
Sep. 2014.

[58] A. Haque, ‘‘Maximum power point tracking (MPPT) scheme for solar
photovoltaic system,’’ Energy Technol. Policy, vol. 1, no. 1, pp. 115–122,
Jan. 2014.

[59] R. Ayop and C. W. Tan, ‘‘A comprehensive review on photovoltaic
emulator,’’ Renew. Sustain. Energy Rev., vol. 80, pp. 430–452, Dec. 2017.

[60] J. P. Ram, H. Manghani, D. S. Pillai, T. S. Babu, M. Miyatake, and
N. Rajasekar, ‘‘Analysis on solar PV emulators: A review,’’ Renew.
Sustain. Energy Rev., vol. 81, pp. 149–160, Jan. 2018.

[61] M. Shahabuddin, A. Riyaz, M. Asim, M. M. Shadab, A. Sarwar, and
A. Anees, ‘‘Performance based analysis of solar PV emulators: A review,’’
in Proc. Int. Conf. Comput. Characterization Techn. Eng. Sci. (CCTES),
Sep. 2018, pp. 94–99.

[62] Z. Zhou and J. Macaulay, ‘‘An emulated PV source based on an
unilluminated solar panel and DC power supply,’’ Energies, vol. 10, no. 12,
p. 2075, Dec. 2017.

[63] Renesas Corporation. (2023). Digitally Controlled Potentiometer.
Accessed: Dec. 8, 2023. [Online]. Available: https://www.renesas.
com/us/en/document/dst/x9c102-x9c103-x9c104-x9c503-
datasheet?r=502671

[64] D. J. K. Kishore, M. R. Mohamed, K. Sudhakar, and K. Peddakapu, ‘‘An
improved grey wolf optimization based MPPT algorithm for photovoltaic
systems under diverse partial shading conditions,’’ J. Phys., Conf.
Ser., vol. 2312, no. 1, Aug. 2022, Art. no. 012063, doi: 10.1088/1742-
6596/2312/1/012063.

HASAN GUNDOGDU received the B.Sc. degree
in electrical engineering from Yildiz Technical
University, İstanbul, Turkey, in 2021, where he is
currently pursuing the M.Sc. degree in electrical
machines and power electronics. Since 2021,
he has been an Electrical Engineer with the
Propulsion Electronic System Team. His research
interests include renewable energy systems, elec-
trical machines, power electronics, UAVs, and
electrical vehicles. He published several articles
related his research areas.

ALPASLAN DEMIRCI received the B.Sc. degree
in electrical and electronics engineering from
Sakarya University, Turkey, the B.Sc. and M.Sc.
degrees in electrical education from Marmara
University, İstanbul, Turkey, in 2007 and 2011,
respectively, and the Ph.D. degree in electrical
engineering from the Graduate School of Sci-
ence and Engineering, Yildiz Technical University
(YTU), İstanbul, in 2023. He is currently an Assis-
tant Professor with the Department of Electrical

Engineering, YTU. His research interests include power system optimization
methods, distributed renewable energy systems, energy economics, electric
vehicles, and energy storage systems. He has published several articles
related his research areas.

SAID MIRZA TERCAN received the B.Sc. degree
from the Department of Electrical Engineering,
Istanbul Technical University, in 2012, and the
M.Sc. and Ph.D. degrees in electrical engineering
from the Graduate School of Science and Engi-
neering, Yildiz Technical University (YTU), in
2015 and 2022, respectively. He is currently an
Assistant Professor with the Department of Elec-
trical Engineering, YTU. His research interests
include energy storage systems, power distribution

grid, renewable energy systems, and electric vehicles. He has published
several articles and conference papers related his research areas.

UMIT CALI received the B.E. degree in electrical
engineering from Yildiz Technical University,
İstanbul, Turkey, in 2000, and the M.Sc. degree
in electrical communication engineering and the
Ph.D. degree in electrical engineering and com-
puter science from the University of Kassel,
Germany, in 2005 and 2010, respectively. With
over 20 years of experience in both industry and
academia, he is currently a Professor of Digital
Engineering for Future Technologies with the

University of York. His research interests include energy informatics,
artificial intelligence, blockchain technology, renewable energy systems,
and energy economics. He is also the Chair for the Digital Privacy-Energy
Industry TC under IEEE Future Directions. He serves as the Vice Chair for
the IEEE Blockchain in Energy Standards WG (P2418.5).

VOLUME 12, 2024 6159

http://dx.doi.org/10.1088/1742-6596/2312/1/012063
http://dx.doi.org/10.1088/1742-6596/2312/1/012063

