
Received 27 October 2023, accepted 22 December 2023, date of publication 5 January 2024,
date of current version 11 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3350381

Video-Based Vehicle Speed Estimation
Using Speed Measurement Metrics
KEATTISAK SANGSUWAN AND MONGKOL EKPANYAPONG
School of Engineering and Technology, Asian Institute of Technology, Khlong Nueng 12120, Thailand

Corresponding author: Keattisak Sangsuwan (st117815@ait.asia)

ABSTRACT Camera system is widely used as a road traffic monitoring nowadays but if the system is
used as a speed camera, an additional speed sensor is required. In this work, we demonstrate a novel
method to estimate speed of vehicle in the traffic video without using the additional sensor. We implement
two speed measurement models which are measuring traveling distance of the vehicle in a given unit of
time and measuring traveling time in a given unit of distance. To get parameters of the models, we define
four virtual intrusion lines on road in the camera view. Then, YOLOv3, DeepSORT, GoodFeatureToTrack,
and Pyramidal Lucas-Kanade optical flow algorithm are implemented together to detect and track the
target vehicle while moving in the camera view. From the tracking data, pixel displacement between two
consecutive frames (before and after the vehicle crossing the line) is measured as Crossing distance. The
number of frames that the vehicle uses while moving from the first line to the other lines is measured as
Traveling time. These two parameters at each intrusion line are used as speed measurement metrics. Solution
of the metrics are solved by using tracking data of 20 vehicles at 9 different ground truth speeds measured
by a laser speed gun. Then, the metrics are used to estimate speed of 813 vehicles. Our best accuracy is with
MAE of 3.38 and RMSE of 4.69 km/h when comparing to their ground truth speed. The same dataset are
tested on a Multilayer Perceptron Neural Network model. It can reach accuracy with MAE of 3.07 km/h
(RMSE 3.98 km/h).

INDEX TERMS Vehicle speed estimation, DeepSORT, YOLOv3, GoodFeatureToTrack, Lucas-Kanade,
optical flow, vehicle tracking.

I. INTRODUCTION
Vehicle speed measurement can be categorized into two
groups including intrusive and non-intrusive technologies [1],
[2]. For intrusive technologies, the speed sensors are embed-
ded under the road surface. These sensors, for examples, are
Inductive loop detectors, Magnetic detector, Piezo-electric,
Weight-In-Motion. Installation and maintain of these sensors
are costly and difficult. For non-intrusive technologies, the
speed sensors can be divided into overhead mounted and
side-fired sensors. The sensors are, for example, infrared
speed sensor, microwave radar speed sensor, and laser speed
sensor. These advanced sensors are costly but easy to install,

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Yan .

access, and maintain [1], [2], [3]. However, both intrusive and
non-intrusive technologies require a camera for applying as
an automatic road speed limit violation system (called speed
camera system) because the camera has to be used for taking
a photo of the speed violation vehicle. On the other hand,
many cameras (without speed sensor) are widely installed on
highways, Toll ways, urban road, or intersections in order
to be used for traffic monitoring or traffic management
purpose [4]. Therefore, it would be a great advantage if these
cameras can be integrated with speed measurement function
without additional speed sensor.

Recent advance computer vision technologies introduce
numerous studies and research in vision-based vehicle speed
measurement. The main effort is trying to adapt the traffic
monitoring camera to be used as a speed camera without

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 4845

https://orcid.org/0000-0002-1602-8521
https://orcid.org/0000-0002-9697-2108

K. Sangsuwan, M. Ekpanyapong: Video-Based Vehicle Speed Estimation

using additional speed sensor. With many proposed solving
techniques over this problem, the solution can be broken
down into three main groups [5] including, camera settings
and calibration techniques, vehicle detection and tracking
technique, and the technique of ground truth speed generation
for accuracy evaluation. Camera settings and calibration
techniques require complicated work to get parameters for
transferring between 2D camera image plane (x, y) and
3D real-world coordinate system (Xw, Yw, Zw) [6], [7], [8],
[9]. Vehicle detection and tracking technique can be done
by various approaches including background/foreground
subtraction [10], [11], [12], feature-based detection [6], [7],
[13], [14], machine learning-based detection [15], [16], [17],
[18], [19], [20]. Ground truth speed generation is the work to
generate data for evaluating the proposed speed measurement
model [16]. The data can be generated by the existing vehicle
speed measurement system both intrusive or non-intrusive
technologies. In summary, integrating speed measurement
function into the camera is a complicated task and it still
be a challenge problem to be solved for a great potential
advantage.

In this work, we focus on speed estimation of moving
vehicle in the video frames received from a fixed Field of
View (FoV) traffic camera system. The goal is to provide
a method which is easy to integrate speed measurement
function into the system without using additional speed
sensor.

Our proposed process starts by applying a Deeplearning-
based computer vision technology, YOLOv3 [21] and Simple
Online Real-time Tracking with Deep association metric
algorithm (DeepSORT) [22], to detect and track the target
vehicle while GoodFeatureToTrack [23] and pyramidal
Lucas-Kanade optical flow [24] algorithms are supported
to increase tracking precision by tracking the vehicle at
wheel area. These algorithms together with four virtual
intrusion lines on the videos frame are used to generate speed
measurement metrics and then the metrics is used to estimate
speed of the other vehicle in the same FoV camera. The main
contributions of this work are:

1) We show that YOLOv3 with DeepSORT and feature
tracking at wheel area improves vehicle tracking accuracy
than using only YOLOv3 detection box.

2) We introduce two speed measurement metrics with
simple machine learning method techniques to obtain higher
speed estimation accuracy.

3) We show that the metrics for speed measurement reduce
error from fault detection.

4) We propose an input metric for vehicle speed estimation
by using a simple machine learning model.

5) We analyze impact and errors arising from two speed
measurement metrics and arising from changing of video
frame rate.

The remainder of this paper is organized as follows.
Section II presents some related works on vehicle speed
estimation with different computation techniques. Section III
presents our proposed method for vehicle speed estimation.

Section IV presents the experimental results. Finally,
Section V presents the conclusion of this work.

II. RELATED WORKS
Vision-based vehicle speed measurement is a work to analyze
a series of consecutive traffic video frames. The vehicle
must be detected first and keep tracking in the following
frame to get speed in pixel per seconds. Then, the speed on
the image plane is converted to real-world speed (km/h) by
using pixel-to-meter relationship (called camera perspective
or geometric transformation). In this section, we discuss the
existing vehicle detection and tracking techniques.

A. BACKGROUND-FOREGROUND BASED
Vehicle detection using background-foreground technique is
a computer vision technology to detect vehicle in traffic
video frames by using frame difference. The technique is the
subtraction between reference frame and current frame. The
reference framewith no vehicle is considered as a background
image while another frame with a vehicle is considered as
the current frame. Subtraction between these two frames
results in a foreground image showing location of the detected
vehicle (as a group of different pixels). Then, a series of
the foreground image can be generated by subtracting the
background with each traffic video frame. Later, the traveling
distance of the detected vehicle between frames (or pixel
displacement) can be calculated by subtracting (x, y) values
among the foreground image. Where (x, y) is the horizontal
and vertical pixel location which represent the geometric
center of the detected vehicle (called centroid). Finally, the
traveling distance in pixel unit compared to video frame rate
in seconds can be converted to km/h by using the pixel-to-
meter ratio.

In the study of Genyuan et al. [11], they used a simple
machine learning algorithm such K-nearest Neighbor to
model the background and then to detect vehicle on their
traffic video. The centroid was used for vehicle tracking
(Fig.1(a)). Finally, speed of the moving vehicle was estimated
by using pixel-to-meter ratio referred to the road mark. The
best accuracy was with the side view traffic video (comparing
to top and intersection view). In [12], a near-top side
view camera was used with background-foreground vehicle
detection. By tracking the centroid, the speed estimation
accuracy was 94% with in +3/−2 km/h of 1,870 vehicles in
the speed range 0 to 79 km/h. However, detecting and tracking
vehicle by using this technique is sensitive to background,
light intensity, vehicle occlusion, and the other moving object
in the frame.

B. FEATURE BASED
A small point on the detected vehicle is hi-lighted for some
studies. In [6], after the vehicle was detected by background-
foreground technique, SURF [25] and FLANN [26] algo-
rithms were implemented for vehicle feature detection and
tracking. Although, they claimed that it was a robust method
when facing light change conditions. However, they still

4846 VOLUME 12, 2024

K. Sangsuwan, M. Ekpanyapong: Video-Based Vehicle Speed Estimation

had a problem with vehicle occlusion. In [7], the moving
vehicle was detected by background-foreground technique
then some features on the vehicle license plate was selected
and tracked by using GoodFeatureToTrack [23], Lucas-
Kanade [24], and SIFT [27] algorithm (Fig.1(b)). Later,
tracking distance in the pixel unit was transformed to meter
by using camera perspective transformation. Finally, vehicle
speed was estimated based on the video frame rate. The error
value was reported at −0.5 km/h compared to the ground
truth speed in range between 10 to 69 km/h detected by using
inductive sensor. However, detecting and tracking vehicle
on the license plate has some limitations, for example, the
camera has to be installed in a near FoV, the high-resolution
camera is required for good license plate detection, the
height of license plate from ground level is sensitive to
estimated speed, the license plate has to be in a good
condition.

Another interesting feature detection was proposed in [28].
Instead of detecting feature of the vehicle, they detected a
movement pattern vector of the vehicle in the traffic video.
They systematically placed four intrusion lines on a single-
lane road. Then, the passing vehicle was detected by using
an optical flow algorithm. The passing frame number on
each intrusion line was recorded as the vector. Finally, the
probability distribution function model was applied to the
vector for speed estimation. The maximum error 4% was
reported compared to the ground truth speed measured by
using GPS. However, a single-lane road is required and only
a narrow speed range between 72 to 94 km/h was reported in
the study.

C. MACHINE LEARNING BASED
A recent computer vision technology on machine learning
such as Deeplearning-based object detection algorithm [29]
is also easily applied to vehicle detection [5]. The algorithm
can be fed by a traffic video frame and, if there is
only one vehicle on the frame, the output will be a
rectangle box showing location of the detected vehicle on
the image plane. The box is presented by four values
(x, y,width, height). Where x and y represent respectively the
top-left horizontal location and the top-left vertical location
of the box. width and height are the size of the box in pixel
unit.

Deeplearning-based object detection algorithms can be
categorized into two types: Two-stage and One-stage. Two-
stage type will find regions of the possible object at the
first stage and then perform object classification on the
second stage while these two stages are combined together
for One-stage type. Among various proposed algorithms
over these two types, One-stage type such RetinaNet [30]
showed outstanding performance as illustrated in [21], but
when testing with many traffic videos for vehicle detection,
another One-stage type such YOLOv3 showed the lowest
Floating Point Operation Per seconds (FLOPs) resulting in
faster frame per seconds as illustrated in [31]. However, both
types are applied for vehicle speed estimation with different

techniques and some techniques can receive a good speed
estimation accuracy as presented following.

Two-stage type such Faster-RNN [32] was applied in [16]
to detect and track vehicle in traffic video. Tracking position
of the 2D rectangle box given by the detector was not precise
enough for speed estimation because the box position had
too much variation (example in violet dot tracking line in
Fig.1(c)). Then, the box was transformed to 3D bounding
box and mapping to actual 3D box of the vehicle in database.
By this way, size of the detected vehicle was estimated and
tracked precisely with association of Kalman filter. Finally,
the tracking distance in pixel unit and traveling time of the
vehicle were used to estimate speed referring to pixel-to-
meter ratio. Although, the study archived a good mean speed
measurement error at 1.10 km/h but they used a complicated
work processes and vehicle 3Dmodel metadata were required
for 2D to 3D bounding box transformation and mapping.

Another Two-stage type work presented in [33]. They used
Kalman-based tracker called Simple Online and Realtime
Tracking (SORT) [34] and DeepSORT [22] to track the
bottom center of the box given by Mask-CRNN [35]. Finally,
vehicle speed in pixel-per-seconds unit was transformed
to real world unit in km/h by using camera perspective
transformation. The error was reported at 15.35 km/h
(9.54 mph).

One-stage type was in study of Bell et al. [17]. They used
YOLOv2 [36] for vehicle detection. The bottom center of the
box given by YOLOv2 was tracked by SORT (See the white
van in Fig.1(c)). Then, the speed of was estimated by using
camera perspective transformation. Their error was 2.25 km/h
(0.25 m/s) but the samples were a few vehicle in urban traffic
at low speed in range 1.6 to 15.8 km/h (0.452 to 4.393 m/s).
Rangel et al. [18] used One-stage YOLOv3 algorithm to
detect passing vehicle on side road and Kalman filter was
used for tracking center of the box. Speed of the vehicle was
estimated by linear regression models and machine learning
models. Their best mean absolute error was 1.695 km/h.
However, this work was performed on side road which had
high pixel-to-meter ratio.

Fully apply of Deeplearning algorithm for vehicle speed
estimation was presented in [19] and [20]. One-stage object
detection algorithm YOLOv5 [37] was used to generate a
series of vehicle detection box from side road video dataset.
And another Deeplearning model was used to estimate speed
of vehicle after trained. The average error was reported at
2.76 km/h and 4.08 km/h respectively.

D. PROBLEMS AND SOLUTION
As our analysis, background-foreground vehicle detection
technique faces unstable of background-foreground, chang-
ing of light intensity, and the detector detects other moving
objects or shadows in the frame. These problems affect speed
estimation accuracy. However, as our research, these prob-
lems could be solved by using Deeplearning-based vehicle
detection algorithm. The algorithm has a good performance in

VOLUME 12, 2024 4847

K. Sangsuwan, M. Ekpanyapong: Video-Based Vehicle Speed Estimation

FIGURE 1. Vehicle detection and tracking methods. From left,
(a) Background-foreground based [11] (Top is vehicle detection, bottom is
centroid tracking), (b) Feature based [7] (License plate tracking), and
(c) Machine learning based [17] (Box tracking).

vehicle detection under different situations such as nighttime,
rainy, or cloudy [38]. In addition, because the algorithm
detects by using the whole body of the vehicle, then, this is
easy for humans to identify characteristics or classify types
of the target vehicle for further purposes. Among various
proposed Deeplearning-based vehicle detection algorithms,
we select YOLOv3 as our vehicle detector for the following
reasons:

1) YOLOv3 facilitated with multi-scale detection. This is
very helpful for us because our target vehicle is moving away
from the camera during the detecting and tracking period.

2) YOLOv3 has a fast processing speed. This is potentially
allowed us for real-time processing.

3) YOLOv3 is well tested for vehicle detection in many
studies.

4) YOLOv3 is user friendly [39] and its accuracy is
acceptable in our long tracking period.

Although there are many variant versions of YOLO such
v4, v5, R, x, PP-YOLO, v6, v7, v8. These different version
were proposed with some improvement features for different
kind of target application [40], [41], [42]. For example,
YOLOv7 is the most accurate for tiny object detection due
to higher input resolution [43] but, here, we do not need to
detect a small vehicle.

Another problem with vision-based vehicle speed estima-
tion is tracking accuracy. As in [17], tracking vehicle on the
box given by the detector provides unstable tracking lines.
Then, we propose to detect and track feature on the vehicle
as [7]. We select DeepSORT for vehicle identification and
we use pyramidal Lucas-Kanade optical flow algorithm for
feature detection and tracking. In addition, we improve the
speed estimation accuracy by applying vehicle movement
pattern vector borrowing from [28].

III. PROPOSED METHOD
A. VEHICLE SPEED MEASUREMENT IN TRAFFIC VIDEO
In general, to get speed of the moving vehicle, we can simply
measure by using two models. The first model is to measure
traveling distance in a given unit of time and the second
model is to measure vehicle traveling time in a given unit
of distance. Then, speed in m/s or km/h can be calculated.
Here, we are going to do both measurement models by using

a traffic camera. However, to use a camera as a vehicle
speed sensor, we have to note that the camera is a discrete
sensor with a constant sampling rate at frame per seconds
(fps). Therefore, the camera can only get a series of temporal
movement location of the vehicle on the road surface in video
frame. It is rather hard to detect exactly at a specific given
point on the road. Then, the speed estimated by the camera is
a discrete value.

For the first speed measurement model, measuring travel-
ing distance of the vehicle in a given unit of time, we use
camera frame rate as a given unit of time and measuring
traveling distance of the vehicle between two consecutive
frames. In this case, we have to note that error of the distance
measurement is higher at the farther point comparing to the
error measuring at the closest point from the camera due to
pixel-to-meter ratio from the camera FoV. Hence, measuring
traveling distance is better to be done at the closest point from
the camera for the higher accuracy.

If we consider position of the vehicle between any
two consecutive frames, traveling distance of the vehicle
between these two frames called pixel displacement (1d) is
represented by:

1d =

√
(xi+1 − xi)2 + (yi+1 − yi)2 (1)

where (xi, yi) is horizontal and vertical pixel position of the
target vehicle on frame i and (xi+1, yi+1) is the horizontal and
vertical position of the target vehicle on the later frame i+ 1.
Speed of the vehicle (v) can be calculated by dividing the
distance with traveling time which is camera frame rate (fps)
as:

v =
1d
fps

(2)

Unit of 1d is in pixel and fps is in seconds then v is in
pixel per seconds. If 1d can be transferred to the distance in
real world unit using pixel-to-meter ratio. Then, (2) can be
used to estimate speed of moving vehicle between any two
consecutive frames in m/s or km/h.

For the second speed measurement model, measuring
traveling time in a given unit of distance, if we define a unit
of distance by placing two virtual intrusion lines on the road
surface in the video framewith distance L. Then, we count the
number of frames that the vehicle takes to move from the first
line to the second line (n) andmultiply by the video frame rate
(fps). Hence, the traveling time of the vehicle is measured.
As mentioned earlier, camera is a discrete sensor then this
traveling time is a discrete number given by n × fps where
n = 1, 2, 3, 4,. . . , N and n starts counting after the vehicle
crosses the first virtual intrusion line until the vehicle crosses
the second virtual intrusion line. Finally, speed of the vehicle
can be calculated by:

v =
L

n× fps
(3)

where L represents the distance in pixel unit and v is the speed
in pixel per seconds. If L is defined in meter then the speed v
can be converted into km/h.

4848 VOLUME 12, 2024

K. Sangsuwan, M. Ekpanyapong: Video-Based Vehicle Speed Estimation

B. VEHICLE MOVEMENT PATTERN AND SPEED
ESTIMATION EQUATIONS
In this analysis phase, two speed measurement models in
section A are implemented. We created some traffic videos
by setting up a traffic camera at the height approximately
7.3 meters on a skycrossing bridge over Phaholyothin road,
Pathumthani, Thailand as shown in Fig.2 (Google map coor-
dinate: 14.07500439231682, 100.61762530378513). A new
iPad Pro 2012 was installed as a traffic camera for capturing
traffic videos. Its back camera was configured to Full HD
resolution 1920 × 1080 pixels and its frame rate was
60 fps. Laser speed gun LTI 20/20 TruSpeed with accuracy
+/− 2 km/h was used to measure ground truth speed of
the target vehicle in the range between 40 to 60 meters
from the camera. Voice reading was used to record speed
value from the speed gun into the video during capturing
period.

FIGURE 2. Traffic video recording and vehicle speed measurement on the
skycrossing bridge over Phahonyothin road at the height 7.3m over the
road. (Image on the road from Google street view.)

Based on our traffic video frame, four virtual intrusion
lines Start line0, line1, line2, and line3 are defined at y
equals to 490, 310, 226, 164, respectively. Where the image
pixel coordinate x=0 and y=0 is at the top-left corner of
the image as shown in Fig.3. Distance among the lines are
known based on the road mark sign referring to data from
Thailand Department of Highways (DOH). The white dash
line length in the green box on Fig.3 is 3 meters and the gap
between each white dash lines is 9 meters. However, these
data are only used as a reference, we do not use them in our
speed estimation process. Our target vehicles are only the
vehicles that pass the Region of Interest (ROI) as defined with
the green box shown in Fig.3 because speed limit violation
always occurs on this most right lane.

From Fig.3, we now can implement our two speed
measurement models (2) and (3) by using four virtual
intrusion lines. We track a target vehicle in ROI and then we
calculate the pixel displacement1d together with the number
of frames n at each virtual intrusion line. A simple model of
the vehicle moving in ROI is illustrated in Fig.4.

At this stage, two sets of temporal vehicle movement
pattern can be introduced. First, a set of 1d called ‘‘Crossing

FIGURE 3. Four virtual intrusion lines (Red lines) and ROI location (Green
dash box) are defined on the video frame size 1920 × 1080.

FIGURE 4. A simple model of a vehicle moving in ROI, 1d0, 1d1, 1d2
and 1d3 are the Crossing distance at each intrusion line. n1, n2, n3 are
the number of frames that the vehicle takes to move in the distance
L1, L2, L3, respectively.

distance’’. It is a set of pixel displacements between two
consecutive frames before and after the vehicle crosses each
virtual intrusion line at speed v. Crossing distance represents
by:

1dv = [1d0v, 1d1v, 1d2v, 1d3v] (4)

where 1dv is a Crossing distance belong to the vehicle
moving at speed v km/h in ROI. 1d0v, 1d1v, 1d2v, and
1d3v are the pixel displacement at line0, line1, line2, and
line3, respectively.

The second set of the temporal vehicle movement pattern
is a set of the number of frames n called ‘‘Frame counter
number’’. It is a set of the number of frames that the vehicle
takes after crossing line0 until the vehicle crosses the other
lines at speed v. Frame counter number represents by:

nv = [n0v, n1v, n2v, n3v] (5)

where nv is a Frame counter number belong to the vehicle
moving at speed v km/h in ROI. n1v, n2v, and n3v are the
number of frames that the vehicle took after crossing line0
until the vehicle crosses line1, line2, and line3, respectively.
n0v is the starting frame and it always equals to one.

In our assumption, if the target vehicle moves at a constant
speed vc km/h in ROI and we know the relationship between
image and real-world coordinate, then, speed of the target
vehicle can be calculated with (2) by using any 1d in (4) or
it can be calculated with (3) by using n1, n2 or n3 in (5). All
calculated speeds v have to equal vc. We can see that the speed

VOLUME 12, 2024 4849

K. Sangsuwan, M. Ekpanyapong: Video-Based Vehicle Speed Estimation

of the vehicle moving in the video frame can be calculated
easily if the vehicle is tracked precisely to generate Crossing
distance and Frame counter number.

In this study, we implement a Deeplearning-based object
detection, YOLOv3, to detect position of vehicle in the video
frame. The detected vehicle is passed as a box with (x, y,
width, height) to DeepSORT to get an identification number
(ID). Then, DeepSORT tracks the vehicle throughout the
ROI. However, the box given by YOLOv3 is not accurate
enough to reflect vehicle trajectory (similar to Fig.1-c), then,
GoodFeatureToTrack and Pyramidal Lucas-Kanade optical
flow algorithms are implemented to get better tracking
accuracy on the vehicle trajectory. At this study stage,
we manually point GoodFeatureToTrack algorithm to detect
features at the wheel area of the vehicle. Tracking features
at the wheel area, which is the closest part of the vehicle
to the road surface, helps to reduce speed estimation error
caused by the height of the tracking point on the vehicle in
3D world coordinate. After some features on the wheel area
are selected, Pyramidal Lucas-Kanade optical flow algorithm
is applied to track all the selected features. The centroid of
the selected features is used as a reference point to generate
vehicle tracking data.

Fig.5 shows six features on the wheel area of the vehicle
selected by GoodFeatureToTrack (Red dots). Their centroid
(Blue dot) is calculated as the reference point to generate
vehicle tracking data. The tracking result is illustrated in
Fig.6. We compare the tracking data generated by using
GoodFeatureToTrack and Pyramidal Lucas-Kanade optical
flow algorithm (The wheel area tracking as Blue dot line) and
the tracking data generated by using YOLOv3 (Center of the
box tracking as Green dot line).

FIGURE 5. Six features on the wheel area are selected by
GoodFeatureToTrack algoritm (Red dots) and their centroid (Blue dot) is
calculated as the reference point to generate vehicle tracking data.

In this study step, we analyze 187 traffic videos
recorded by the method mentioned previously. In the
video, we have only one target vehicle in one video
file, each video is processed manually to get the vehicle
tracking data. The process consists of three manual steps as
follows:

FIGURE 6. The better accuracy of vehicle tracking data provided by
GoodFeatureToTrack and Pyramidal Lucas-Kanade optical flow algorithm
at the wheel area (Blue dot line) compared to the box tracking data
provided by YOLOv3 (Green dot line).

1) We create a Python script with the implementation of
YOLOv3 and DeepSORT to generate the vehicle identifica-
tion number (ID) of every vehicle that entering the ROI in
each video file. Results from the script are the image of every
vehicle entering ROI with its ID.

2) Virtual inspection is performed on each video file to
identify the target vehicle and get its speed from voice
recording in the video. Then, the target vehicle is matched to
the image from the first step. Here, we know the ID and speed
of each target vehicle. This information is manually entered
into a CSV (Comma Separate Values) file including the video
file name.

3) We create a new Python script with the implementation
of YOLOv3, DeepSORT, GoodFeatureToTrack, and Pyrami-
dal Lucas-Kanade optical flow algorithm. The script takes the
video file name and the ID from the CSV file and searches
the target vehicle in the video file. When the target vehicle
is found, the script makes a pause and allows us to point
GoodFeatureToTrack to the wheel area of the target vehicle.
Then, it continues to use Pyramidal Lucas-Kanade optical
flow algorithm to track the selected features until the end of
ROI (Blue dot line in Fig.6).

Finally, from the third step, we get only 135 valid tracking
data of 135 target vehicles. The data include the pixel
position of the centroid and its frame number. Some tracking
data are not valid because the tracking point disappears
during the tracking period, the target vehicle changes
lane, and no features are selected by GoodFeatureToTrack
algorithm.

Fig.7 shows tracking data of 9 target vehicles at ground
truth speed 72, 77, 82, 87, 92, 97, 102, 108, and 112 km/h,
respectively (From left to right). In the Figure, we can find a
linear decrease in Traveling time (frameCount on the plot)
when the target vehicle moves at a higher speed (See the
bottom black arrow). In contrast, 1d (pixel displacement)
increases by increasing the speed (The top blue arrow).

From the tracking data of 9 target vehicles in Fig.7,
we apply the intrusion lines onto the data to get Crossing

4850 VOLUME 12, 2024

K. Sangsuwan, M. Ekpanyapong: Video-Based Vehicle Speed Estimation

FIGURE 7. Increasing the speed causes a decrease in Traveling time
(frameCount) in ROI (Bottom black arrow) while the pixel displacement
increases by increasing the speed (Top blue arrow).

distance at each speed (4). Then, we plot the Crossing
distance of 9 target vehicles comparing to their speed as
shown in Fig.8. The plot shows better visibility to see
the linear relationship between vehicle speed and Crossing
distance at each virtual intrusion line. We can see the
increasing speed causes an increase in Crossing distance.

FIGURE 8. Relationship between Crossing distance (1d0, 1d1, 1d2, and
1d3) and vehicle speed.

From the Crossing distance data in Fig.8, The linear
relationship equation between Crossing distance and vehicle
speed on the virtual intrusion line0 and line1 can be computed
by:

Sp0 = (slope0 × d0) + B0 (6)

and,

Sp1 = (slope1 × d1) + B1 (7)

where slope0, B0 and slope1, B1 are a constant value that can
be calculated by using the linear curve fitting method.

In the similar way, from the tracking data of 9 target
vehicles in Fig.7, we again apply the intrusion lines onto
the data to get Frame counter number at each speed (5).
Then, we plot the Frame counter number of 9 target vehicles

comparing to their speed as shown in Fig.9. The plot shows
better visibility to see the linear relationship between vehicle
speed and Frame counter number at each virtual intrusion
line. We can see the increasing speed causes an decrease in
Frame counter number.

FIGURE 9. Relationship between Frame counter number at each virtual
intrusion line (n0 D 1, n1, n2, and n3) and vehicle speed.

From the Frame counter number data in Fig.9, The linear
relationship equation between Frame counter number and
vehicle speed on the virtual intrusion line2 and line3 can be
computed by:

Sp2 = (slope2 × n2) + B2 (8)

and,

Sp3 = (slope3 × n3) + B3 (9)

where slope2, B2 and slope3, B3 are a constant value that can
be calculated by using the linear curve fitting method.

IV. EXPERIMENTS
A. DATASET
The similar process to create the dataset in the analysis phase
is performed in this phase but the iPad camera is replaced by
iPhone 13 Mini camera. The back camera of iPhone 13 Mini
is configured to Full HD resolution 1920 × 1080 pixels at
120 fps. The same laser speed gun is used to measure speed
of the target vehicle. The voice reading recording is used to
record the measured speed value into the video. The same
location on the skycrossing bridge is used to create the new
dataset. The videos are captured in the afternoon of December
1st , 2022. The captured time is between 11:00 to 16:00 Local
time. The weather conditions on the capturing day are clear
with very bright sunlight. All target vehicles are on the most
right lane in the video frame. We capture it as a short video
file with a few target vehicles in the video for easy processing
in the next step.

From 138 video files, with 898 target vehicles, the steps
to process the video file are similar to our analysis phase. But
one video file now can consist of more than one target vehicle.
Then, the frame number when the target vehicle enters the
camera FoV has to be added to the CSV file for reference.
Information in the CSV file includes the video file name, the
entering frame number, the vehicle ID, and the ground truth

VOLUME 12, 2024 4851

K. Sangsuwan, M. Ekpanyapong: Video-Based Vehicle Speed Estimation

speed. The total 898 target vehicles have a minimum speed
at 44 km/h and a maximum speed at 127 km/h. There are
70% of the target vehicles moving at speed between 70 to
90 km/h.

The whole dataset here are available online for research
purposes and shall be considered as one of our work
contribution.(https://drive.google.com/drive/folders/12F7Al
Jiv2AMiJ1DZ4PiOlAZlEXzSUPS7?usp=drive_link)

B. EXPERIMENTAL SETTING
In our analysis phase, the wheel of the target vehicle was
pointed manually for feature selection but this is rather hard
for the new dataset. Then, we train one YOLOv3 model
especially for wheel detection. Training data are taken from
the vehicle entering the ROI in the analysis phase.

Another change here is we track directly to the selected
features on the wheel area because tracking by the centroid
was not stable. Here, two tracking points are selected
among many good features given by GoodFeatureToTrack
algorithm. Flow diagram of our proposed system illustrates
in Fig.10.

FIGURE 10. Flow diagram of our system and example of outputs.

From the camera view of the new dataset, first, four visual
intrusion lines including line0, line1, line2 and line3 are
defined on the video frame at y = 655, 447, 351, and 278,
respectively (The top-left corner is x=0 and y=0 as in Fig.3).
Second, we create a new CSV file from the new dataset by
following step 1 and step 2 in the analysis phase. At this
time, we have to add the frame number that the target vehicle
enters the camera view. Last, we create a new Python script
to implement YOLOv3 for vehicle detection, DeepSORT,
YOLOv3 for wheel detection, GoodFeatureToTrack, and
Pyramidal Lucas-Kanade optical flow. The workflow of the
script is presented in Fig.10.

Referring to the flow diagram, after entering the camera
view, all vehicles are detected by YOLOv3 and receive the
ID from DeepSORT in a few frames later. Then, we identify
the target vehicle by using the ID in the CSVfile and the target
vehicle should appear at the corresponding frame number.
Then, GoodFeatureToTrack is applied to the target vehicle to
get tracking features (All big red dots over the white vehicle
in Fig.10 or more clear in Fig.11). We track every selected
features on the target vehicle until the vehicle enters wheel
detection area (at y=750). At this point, YOLOv3 for wheel

detection is applied to the vehicle to identify location of the
wheels (Two red rectangles at the wheels in Fig.11). Then,
the blue rectangle is created to link between the box of two
wheels (Fig.11). Later, only two tracking features that are
nearest to the horizontal half of the blue rectangle will be
selected. From now on, these two selected features will be
tracked until the end of the ROI (Fig.12). The pixel position
of the two selected features on the target vehicle in each video
frame will be recorded together with its frame number as a
tracking data. Fig.12 shows two tracking features at the front
wheel are tracked in the ROI.

FIGURE 11. Wheel detection (Red boxes) and area selection (Blue box) at
the side of target vehicle after the vehicle crossing wheel detection point
at y=750.

FIGURE 12. Two selected features at the front wheel area are
continuously tracked after the target vehicle enters the region of interest.

From 898 tracking data of 898 target vehicles, we use
vanishing point technique to remove tracking data that the
target vehicle is moving out from the most right lane and
the tracking features are not on the target vehicle. The other
invalid tracking data are also removed including tracking
data that lose tracking features and the vehicle ID changes
and it can not recover by DeepSORT. Finally, we have
only 833 valid tracking data. Speed distribution of the valid
tracking data are illustrated in Fig.13.

4852 VOLUME 12, 2024

K. Sangsuwan, M. Ekpanyapong: Video-Based Vehicle Speed Estimation

FIGURE 13. The number of vehicles at each ground truth speed in the
dataset after filtering invalid data.

For the video processing and computation in the analysis
phase, we worked on the work station CPU: Intel® Core
i7-8750H 2.2GHz with memory 32 GB and GPU: nVidia
GeForce GTX 1060 Mobile. The operating system was
Ubuntu 18.04; processing software was coded by using
Python 3.6.9 with supported libraries from OpenCV 4.2.0,
CUDA 10.0 CuDNN 7.6, and Tensorflow 1.13.1 for video
processing. But the experiment is performed on the differ-
ence hardware configuration. It is on CPU: Intel® Core
i7-9700K 3.6GHz with memory 16 GB and GPU: nVidia
GeForceGTX1080Ti. The operating system isUbuntu 18.04;
Processing software is Python 3.6.9, OpenCV 4.4.0, CUDA
11.0, CuDNN 8.0, Tensorflow 2.6.0 for the implementation
of Multilayer Perceptron (MLP) and the testing is performed
on the same hardware.

C. EVALUATION
Statistical evaluation Mean Absolute Error (MAE) is adopted
as an evaluation tool. It is the summation of each absolute
error from individual estimated speed then divided by the
number of vehicles. MAE is defined as:

MAE =
1
M

m=M∑
m=1

| vgm − vem | (10)

where M is the number of vehicles to be measured, vgm is the
ground truth speed of vehiclem, and vem is the estimated speed
of vehicle m.
Root-Mean-Square Error (RMSE) is used to represent the

sensitivity of variation to large errors. It is the square root of
the mean of squared residual defined as:

RMSE =

√√√√√√
m=M∑
m=1

(
vgm − vem

)2
M

(11)

D. SPEED ESTIMATION RESULT
Results from the experiment are the estimated speed by using
our metrics model as an input of the linear equations. Neural
Network speed estimation is a parallel test for comparing

accuracy but the number of testing data is lower than the
linear estimation equation method.

1) LINEAR EQUATIONS SPEED ESTIMATION
We test the vehicle tracking data with 3 levels of frame rate
including 120fps, 60fps, and 30fps. From the original frame
rate at 120 fps, the tracking data of 20 vehicles are selected as
a sample to find slope and B of each linear equation (6), (7),
(8), and (9).

The sample with five tracking data at speed 79, 86, 93,
and 100 km/h are processed by Framedrop (1:1). Then, they
are filtered by using (4) and (5) to get Crossing distance
and Frame counter number at each speed. Later, the linear
curve fitting is applied to get slope and B for each linear
equation. Finally, the equations are used to estimate the speed
of 813 vehicles. The computation flow is illustrated in Fig.14.
The same computation process is repeated but Framedrop is
changed to 2:1 and 4:1 to drop the tracking data down to 60fps
and 30fps respectively.

FIGURE 14. Computation flow for the experiment, Framedrop is 1:1, 2:1,
and 4:1.

Table 1 shows the linear equation (6), (7), (8), and (9) with
their slope and B at the difference Framedrop (fps) received
from the sample.

TABLE 1. The constant value slope and B of each linear equation received
from the sample 20 tracking data.

Tables 2, 3, and 4 show speed estimation evaluation results
at each fps, 120fps, 60fps, and 30fps, respectively. The
estimation uses (6), (7), (8), and (9) with their slop and B in
Table 1.
Based on MAE and RMSE values, the best accuracy of

speed estimation using Crossing distance equation (6) and (7)
can be found in Table 4 at 30fps. The best of (6) has MAE
5.92 km/h and RMSE 12.42 km/h while the best of (7) has
MAE 4.37 and RMSE 7.65 km/h. The Crossing distance
equations give lower accuracy when applying with 60fps and
120fps as shown in Table 2 and Table 2 respectively.

VOLUME 12, 2024 4853

K. Sangsuwan, M. Ekpanyapong: Video-Based Vehicle Speed Estimation

TABLE 2. Estimated speed statistical evaluation of 813 vehicles by using
Sp0, Sp1, Sp2, and Sp3 at 120fps.

TABLE 3. Estimated speed statistical evaluation of 813 vehicles by using
Sp0, Sp1, Sp2, and Sp3 at 60fps.

TABLE 4. Estimated speed statistical evaluation of 813 vehicles by using
Sp0, Sp1, Sp2, and Sp3. at 30fps.

The better speed estimation accuracy can be found in
Table 2 by using Frame counter number equation (8) and (9).
The accuracy of (8) is with MAE 3.38 km/h and RMSE
4.69 km/h. It is a bit higher than the accuracy of (9) withMAE
3.51 km/h and RMSE 6.72 km/h. However, the accuracy
of (9) at 120fps is still better than using Crossing distance
equations at all video frame rates. Frame counter number
equations are opposite to Crossing distance equations. For
Frame counter number equations, their accuracy increases at
the higher video frame rate (fps) as shown in Table 2, Table 3
and Table 4.

FIGURE 15. Inputs and output of the Fully connected neural network
model for the experiment.

2) NEURAL NETWORK SPEED ESTIMATION
We test if a fully connected neural network can get the same
accuracy for vehicle speed estimation after being trained by
some of our data. We create 5 hidden layers of 20 Dense
nodes. The Activation function is the combination of tanh
and linear. The dataset is the same 813 tracking data but we
take only Crossing distance data at 30fps and Frame counter

FIGURE 16. Speed distribution of 570 vehicles from training dataset.

FIGURE 17. Speed distribution of 243 vehicles from test dataset.

FIGURE 18. Loss of training data and testing data during training upto
300000 epoch.

number at 120fps because they can provide the best accuracy.
The output of the model is the estimated speed of the target
vehicle which is a function of d0, d1 at 30fps and n2, n3 at
120fps as presented in Fig. 15.

The tracking data are separated into training data and
testing data. The training data are about 70% of the dataset
(570 vehicles) and the remaining 30% (243 vehicles) are used
for speed estimation evaluation of the model. Fig.16 shows
speed distribution of the training data and Fig.17 shows speed
distribution of the testing data.

4854 VOLUME 12, 2024

K. Sangsuwan, M. Ekpanyapong: Video-Based Vehicle Speed Estimation

FIGURE 19. FoV comparison among each study, (a) [18], (b) [19], (c) [20], (d) [7], (e) [28], (f) [17], (g) [33], (h) [44], (i) [16].

Mean Squared Error (MSE) is configured as the loss for
training the model. Fig. 18 is the comparison between loss
of training data and testing data. The best result is at Epoch
141,197 with MAE 3.07 km/h and RMSE 3.98 km/h.

To compare speed estimation accuracy using the neural
network model with the accuracy using the linear equations,
the same testing data (243 vehicles) are statically summarized
in Table 5. This shows that the neural networkmodel provides
better performance than the linear equations when using our
metrics as the input.

TABLE 5. Estimated speed statistical evaluation of the testing data
243 vehicles by Sp0, Sp1 at 30fps, Sp2, Sp3 at 120fps.

3) EXPECTED RESULT
In comparison to other research, many different techniques
are applied to video-based speed measurement as discussed
in [5]. Here, we compare some similar techniques for
accuracy comparison based on their report as shown in
Table 6.

The first four studies, in Table 6, used a high pixel-to-meter
ratio method (see Fig.19 (a),(b),(c)). In [18], their accuracy
can reach MAE 0.95 km/h by using linear estimation method
while Multilayer Perceptron can do at 3.17 km/h. Our
Multilayer Perceptron model shows better accuracy with our
input metric. We can reach a lower MAE at 3.07 km/h
and this is also agreed by its RMSE at 3.98 km/h. Our
linear equation has a higher error because we have a lower
pixel-to-meter ratio by using the farther FoV. In another
study [19], their speed estimation by using 1D-CNN model
can do better than ours at RMSE 2.76 km/h but this is
not too far from ours at 3.98 km/h. Although, they worked
with a high pixel-to-meter ratio. Our Multilayer Perceptron
model is also a little bit better in accuracy comparing to
RNN speed estimation model [20]. They reported at RMSE
4.08 km/h. However, we have to note that in [20], theyworked
on side-road FoV with a high pixel-to-meter ratio video
frame.

Luvizon et al. [7] implemented KLT tracking on the license
plate of the vehicle with a top-down near FoV camera.
Their reported errors of speed estimation were in between
−4.68 km/h and +6.00 km/h but most of the vehicles had
a low speed between 10 to 59 km/h.

Javadi et al. [28] reported their speed estimation average
error 1.77% only at the speed of vehicle at 72, 73.8, 91.08,
and 94.32 km/h.

VOLUME 12, 2024 4855

K. Sangsuwan, M. Ekpanyapong: Video-Based Vehicle Speed Estimation

TABLE 6. Comparison of speed estimation between start-of-the-art works and our proposed method.

Bell et al. [17] used SORT to track YOLOv2 detection
box. Their approach presented promising performance of the
computation processes with an average RMSE at 2.25 km/h
(0.625 m/s). However, their experiment was performed on
urban road traffic under non-free-flowing conditions with a
few samples of vehicles.

Kumar et al. [33], similar FoV and method with ours, used
Mask-RCNN for vehicle detection and tracking by SORT in
the NVIDIA AI City challenge 2018. Their speed estimation
was reported at RMSE 15.35 km/h (9.54 mph) which has a
lower accuracy than ours.

Dong et al. [44] can reach a better MAE 2.71 km/h
than ours by using 3D ConvNets. But their RMSE
14.62 km/h shows the variation of large error which is similar
to [33].

It clearly illustrates that our input metrics of the Multilayer
Perceptronmodel have a better performance when comparing
our RMSE to RMSE reported by [33] and [44]. However,
we can not reach to accuracy of Sochor et al. [16] at MAE
1.10 km/h. But their method requires 3D model metadata
of vehicles while we use only simple metric model from
only 20 vehicles. The comparison results are illustrated in
Table 6 and Fig.19 shows the difference of FoV between each
study.

V. CONCLUSION
A simple video-based vehicle speed measurement method is
presented in this study. The main motivation is to integrate a
road traffic camera system with an automatic vehicle speed
limit enforcement function.

Two speed measurement models are considered here,
including measuring traveling distance of the moving vehicle
in a given unit of time (Crossing distance) and measuring
traveling time of the moving vehicle in a given unit of
distance (Frame counter number). To implement the mea-
surement models in the traffic video, four virtual intrusion
lines are defined in the Region of Interest (ROI). Then,
YOLOv3, DeepSORT, GoodFeatureToTrack, and Pyramidal

Lucas-Kanade optical flow algorithm are implemented
together to detect and track the target vehicle at the wheel
area in the ROI. The tracking data of 833 target vehicles
are analyzed based on two measurement models. Tracking
data of 20 vehicles at the ground truth speed 72, 77, 82, 87,
92, 97, 102, 108, and 112 km/h are selected to create the
speed estimation metrics that are used to estimate speed of
813 vehicles. The best speed estimation accuracy from the
results is with MAE 3.38 km/h RMSE 4.69 km/h. This best
accuracy is received from the relationship between Frame
counter number and the ground truth speed at the third virtual
intrusion line (line2) by using video frame rate at 120fps. The
accuracy is lower to be MAE 3.80 km/h RMSE 5.59 km/h
and MAE 5.30 km/h RMSE 8.05 km/h when the frame rate
is dropped down to 60fps and 30fps respectively. While
our Multilayer Perceptron model provides the best accuracy
with MAE 3.07 km/h RMSE 3.98 km/h. The model consists
of 20 Denses 5 hidden layers and it is trained by 70% of
dataset. The remaining 30% is used to evaluate accuracy of
the model.

Our proposed speed measurement metrics have a good
accuracy compared to the previous study and the metrics are
simple to create with only 20 samples at a wide range speed.
The metrics can also be applied as the input of Multilayer
Perceptron model for speed estimation. However, our method
still has some limitations as follows. The first one is the
failure of vehicle detection and wheel tracking because of
the occlusion from a vehicle in the next lane. The worst case
happens when there is a big vehicle such as a truck or a bus in
the next lane. These big vehicles will cover all camera views.
The second problem is that even though our approach does
not mainly rely on the vehicle detector. Missing detection
of the vehicle is allowed for a few frames. However, if the
missing detection happens during the target vehicle crosses
the intrusion line, this will result in a large error in speed
estimation. For future work, we plan to improve the speed
measurement of the dataset with a higher accuracy of the
ground truth speed.

4856 VOLUME 12, 2024

K. Sangsuwan, M. Ekpanyapong: Video-Based Vehicle Speed Estimation

REFERENCES
[1] T. V. Mathew. (2023). Automated Traffic Measurement. Indian Institute of

Technology, Bombay, India. Accessed: Sep. 11, 2023. [Online]. Available:
https://www.civil.iitb.ac.in/~vmtom/nptel/524_AutoMer/web/web.html

[2] P. Michalaki, M. Quddus, D. Pitfield, M. Mageean, and A. Huetson,
‘‘A sensor-based system for monitoring hard-shoulder incursions: Review
of technologies and selection criteria,’’ in Proc. 5th Int. Conf. Transp.
Traffic Eng., vol. 81, Oct. 2016, pp. 1–8.

[3] U.S. Department of Transportation Federal Highways Administration.
(2014). Traffic Monitoring Guide eBook. Washington, DC, USA.
Accessed: Sep. 11, 2023. [Online]. Available: https://www.fhwa.dot.gov/
policyinformation/tmguide/tmg_2013/traffic-monitoring-theory.cfm

[4] H. A. Kurdi, ‘‘Review of closed circuit television (CCTV) techniques
for vehicles traffic management,’’ Int. J. Comput. Sci. Inf. Technol.,
vol. 6, no. 2, pp. 199–206, Apr. 2014, doi: 10.5121/IJCSIT.2014.
6216.

[5] D. Fernández Llorca, A. Hernández Martínez, and I. García Daza,
‘‘Vision-based vehicle speed estimation: A survey,’’ IET Intell. Transp.
Syst., vol. 15, no. 8, pp. 987–1005, Aug. 2021, doi: 10.1049/ITR2.
12079.

[6] A. G. Yabo, S. I. Arroyo, F. Safar, and D. Oliva, ‘‘Vehicle classification
and speed estimation using computer vision techniques,’’ in Proc. Conf.
Argentina Assoc. Control Automat. (AADECA), Buenos Aires, Argentina,
2016, pp. 1–6. [Online]. Available: https://core.ac.uk/download/
pdf/296389522.pdf

[7] D. C. Luvizon, B. T. Nassu, and R. Minetto, ‘‘A video-based system
for vehicle speed measurement in urban roadways,’’ IEEE Trans.
Intell. Transp. Syst., vol. 18, no. 6, pp. 1393–1404, Jun. 2017, doi:
10.1109/TITS.2016.2606369.

[8] C. Wang and A. Musaev, ‘‘Preliminary research on vehicle speed
detection using traffic cameras,’’ in Proc. IEEE Int. Conf. Big Data,
Los Angeles, CA, USA, Dec. 2019, pp. 3820–3823, doi: 10.1109/Big-
Data47090.2019.9006233.

[9] W.-P. Wu, Y.-C. Wu, C.-C. Hsu, J.-S. Leu, and J.-T. Wang, ‘‘Design
and implementation of vehicle speed estimation using road marking-
based perspective transformation,’’ in Proc. IEEE 93rd Veh. Technol.
Conf., Helsinki, Finland, Apr. 2021, pp. 1–5, doi: 10.1109/VTC2021-
Spring51267.2021.9448813.

[10] S. S. Wardha, S. M. Deokar, S. S. Patankar, and J. V. Kulkarni,
‘‘Development of automated technique for vehicle speed estimation and
tracking in video stream,’’ in Proc. 2nd IEEE Int. Conf. Recent Trends
Electron., Inf. Commun. Technol. (RTEICT), Bangalore, India, May 2017,
pp. 940–944, doi: 10.1109/RTEICT.2017.8256736.

[11] G. Cheng, Y. Guo, X. Cheng, D. Wang, and J. Zhao, ‘‘Real-time detection
of vehicle speed based on video image,’’ in Proc. 12th Int. Conf. Measuring
Technol. Mechatronics Autom. (ICMTMA), Phuket, Thailand, Feb. 2020,
pp. 313–317, doi: 10.1109/ICMTMA50254.2020.00076.

[12] B. Krishnakumar, K. Kousalya, R. S. Mohana, E. K. Vellingiriraj,
K. Maniprasanth, and E. Krishnakumar, ‘‘Detection of vehicle speeding
violation using video processing techniques,’’ in Proc. Int. Conf. Comput.
Commun. Informat. (ICCCI), Coimbatore, India, Jan. 2022, pp. 1–7, doi:
10.1109/ICCCI54379.2022.9740909.

[13] W.Wu, V. Kozitsky,M. E. Hoover, R. Loce, andD.M. T. Jackson, ‘‘Vehicle
speed estimation using a monocular camera,’’ Proc. SPIE, vol. 9407,
pp. 17–30, Mar. 2015, doi: 10.1117/12.2083394.

[14] A. E. Bouziady, R. O. H. Thami, M. Ghogho, O. Bourja, and
S. E. Fkihi, ‘‘Vehicle speed estimation using extracted SURF features
from stereo images,’’ in Proc. Int. Conf. Intell. Syst. Comput. Vis.
(ISCV), Fez, Morocco, Apr. 2018, pp. 1–6, doi: 10.1109/ISACV.2018.
8354040.

[15] C. Liu, D. Q. Huynh, Y. Sun, M. Reynolds, and S. Atkinson, ‘‘A vision-
based pipeline for vehicle counting, speed estimation, and classification,’’
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 12, pp. 7547–7560,
Dec. 2021, doi: 10.1109/TITS.2020.3004066.

[16] J. Sochor, R. Juránek, and A. Herout, ‘‘Traffic surveillance camera cali-
bration by 3D model bounding box alignment for accurate vehicle speed
measurement,’’ Comput. Vis. Image Understand., vol. 161, pp. 87–98,
Aug. 2017, doi: 10.1016/J.CVIU.2017.05.015.

[17] D. Bell, W. Xiao, and P. James, ‘‘Accurate vehicle speed estimation from
monocular camera footage,’’ ISPRS Ann. Photogramm., Remote Sens.
Spatial Inf. Sci., vol. 2020, pp. 419–426, Aug. 2020, doi: 10.5194/isprs-
annals-V-2-2020-419-2020.

[18] H. Rodríguez-Rangel, L. A. Morales-Rosales, R. Imperial-Rojo,
M. A. Roman-Garay, G. E. Peralta-Peñuñuri, and M. Lobato-Báez,
‘‘Analysis of statistical and artificial intelligence algorithms for real-time
speed estimation based on vehicle detection with YOLO,’’ Appl. Sci.,
vol. 12, no. 6, p. 2907, Mar. 2022, doi: 10.3390/APP12062907.

[19] A. Cvijetic, S. Djukanovic, and A. Perunicic, ‘‘Deep learning-based
vehicle speed estimation using the YOLO detector and 1D-CNN,’’ in Proc.
27th Int. Conf. Inf. Technol. (IT), Zabljak, Montenegro, Feb. 2023, pp. 1–4,
doi: 10.1109/IT57431.2023.10078518.

[20] A. Perunicic, S. Djukanovic, and A. Cvijetic, ‘‘Vision-based vehicle
speed estimation using the YOLO detector and RNN,’’ in Proc. 27th Int.
Conf. Inf. Technol. (IT), Zabljak, Montenegro, Feb. 2023, pp. 1–4, doi:
10.1109/IT57431.2023.10078639.

[21] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’
2018, arXiv:1804.02767.

[22] N. Wojke, A. Bewley, and D. Paulus, ‘‘Simple online and realtime
tracking with a deep association metric,’’ in Proc. IEEE Int. Conf.
Image Process. (ICIP), Beijing, China, Sep. 2017, pp. 3645–3649, doi:
10.1109/ICIP.2017.8296962.

[23] J. Shi, ‘‘Good features to track,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Seattle, WA, USA, Jun. 1994, pp. 593–600, doi:
10.1109/CVPR.1994.323794.

[24] J. Y. Bouguet, ‘‘Pyramidal implementation of the Lucas Kanade feature
tracker description of the algorithm,’’ Microprocessor Res. Lab., Intel
Corp., Santa Clara, CA, USA, Tech. Rep., 2000. [Online]. Available:
http://robots.stanford.edu/cs223b04/algo_affine_tracking.pdf

[25] H. Bay, T. Tuytelaars, and L. V. Gool, ‘‘SURF: Speeded up robust
features,’’ in Proc. Conf. Eur. Conf. Comput. Vis. (ECCV), Berlin,
Germany, 2006, pp. 404–417.

[26] M. Muja and D. G. Lowe, ‘‘Fast approximate nearest neighbors with
automatic algorithm configuration,’’ in Proc. Int. Conf. Comput. Vis.
Theory Appl. (VISSAPP), Lisboa, Portugal, Feb. 2009, pp. 331–340.

[27] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[28] S. Javadi, M. Dahl, and M. I. Pettersson, ‘‘Vehicle speed measure-
ment model for video-based systems,’’ Comput. Electr. Eng., vol. 76,
pp. 238–248, Jun. 2019, doi: 10.1016/j.compeleceng.2019.04.001.

[29] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu,
‘‘A survey of deep learning-based object detection,’’ IEEE Access, vol. 7,
pp. 128837–128868, 2019, doi: 10.1109/ACCESS.2019.2939201.

[30] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for dense
object detection,’’ 2017, arXiv:1708.02002.

[31] J. Xie, Y. Zheng, R. Du, W. Xiong, Y. Cao, Z. Ma, D. Cao, and J. Guo,
‘‘Deep learning-based computer vision for surveillance in ITS: Evaluation
of state-of-the-art methods,’’ IEEE Trans. Veh. Technol., vol. 70, no. 4,
pp. 3027–3042, Apr. 2021, doi: 10.1109/TVT.2021.3065250.

[32] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ 2015, arXiv:1506.01497.

[33] A. Kumar, P. Khorramshahi, W.-A. Lin, P. Dhar, J.-C. Chen, and
R. Chellappa, ‘‘A semi-automatic 2D solution for vehicle speed estimation
from monocular videos,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Salt Lake City, UT, USA, Jun. 2018,
pp. 137–1377, doi: 10.1109/CVPRW.2018.00026.

[34] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, ‘‘Simple
online and realtime tracking,’’ in Proc. IEEE Int. Conf. Image Pro-
cess. (ICIP), Phoenix, AZ, USA, Sep. 2016, pp. 3464–3468, doi:
10.1109/ICIP.2016.7533003.

[35] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ 2017,
arXiv:1703.06870.

[36] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 779–788,
doi: 10.1109/CVPR.2016.91.

[37] G. Jocher. (2022). YOLOv5 by Ultralytics. [Online]. Available:
https://github.com/ultralytics/yolov5/releases

[38] K.-J. Kim, P.-K. Kim, Y.-S. Chung, and D.-H. Choi, ‘‘Multi-scale
detector for accurate vehicle detection in traffic surveillance data,’’ IEEE
Access, vol. 7, pp. 78311–78319, 2019, doi: 10.1109/ACCESS.2019.
2922479.

[39] A. Horzyk and E. Ergun, ‘‘YOLOv3 precision improvement by
the weighted centers of confidence selection,’’ in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Glasgow, U.K., Jul. 2020, pp. 1–8, doi:
10.1109/IJCNN48605.2020.9206848.

VOLUME 12, 2024 4857

http://dx.doi.org/10.5121/IJCSIT.2014.6216
http://dx.doi.org/10.5121/IJCSIT.2014.6216
http://dx.doi.org/10.1049/ITR2.12079
http://dx.doi.org/10.1049/ITR2.12079
http://dx.doi.org/10.1109/TITS.2016.2606369
http://dx.doi.org/10.1109/BigData47090.2019.9006233
http://dx.doi.org/10.1109/BigData47090.2019.9006233
http://dx.doi.org/10.1109/VTC2021-Spring51267.2021.9448813
http://dx.doi.org/10.1109/VTC2021-Spring51267.2021.9448813
http://dx.doi.org/10.1109/RTEICT.2017.8256736
http://dx.doi.org/10.1109/ICMTMA50254.2020.00076
http://dx.doi.org/10.1109/ICCCI54379.2022.9740909
http://dx.doi.org/10.1117/12.2083394
http://dx.doi.org/10.1109/ISACV.2018.8354040
http://dx.doi.org/10.1109/ISACV.2018.8354040
http://dx.doi.org/10.1109/TITS.2020.3004066
http://dx.doi.org/10.1016/J.CVIU.2017.05.015
http://dx.doi.org/10.5194/isprs-annals-V-2-2020-419-2020
http://dx.doi.org/10.5194/isprs-annals-V-2-2020-419-2020
http://dx.doi.org/10.3390/APP12062907
http://dx.doi.org/10.1109/IT57431.2023.10078518
http://dx.doi.org/10.1109/IT57431.2023.10078639
http://dx.doi.org/10.1109/ICIP.2017.8296962
http://dx.doi.org/10.1109/CVPR.1994.323794
http://dx.doi.org/10.1016/j.compeleceng.2019.04.001
http://dx.doi.org/10.1109/ACCESS.2019.2939201
http://dx.doi.org/10.1109/TVT.2021.3065250
http://dx.doi.org/10.1109/CVPRW.2018.00026
http://dx.doi.org/10.1109/ICIP.2016.7533003
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/ACCESS.2019.2922479
http://dx.doi.org/10.1109/ACCESS.2019.2922479
http://dx.doi.org/10.1109/IJCNN48605.2020.9206848

K. Sangsuwan, M. Ekpanyapong: Video-Based Vehicle Speed Estimation

[40] M. A. B. Zuraimi and F. H. K. Zaman, ‘‘Vehicle detection and tracking
using YOLO and DeepSORT,’’ in Proc. IEEE 11th IEEE Symp. Comput.
Appl. Ind. Electron. (ISCAIE), Penang, Malaysia, Apr. 2021, pp. 23–29,
doi: 10.1109/ISCAIE51753.2021.9431784.

[41] T. Diwan, G. Anirudh, and J. V. Tembhurne, ‘‘Object detection using
YOLO: Challenges, architectural successors, datasets and applications,’’
Multimedia Tools Appl., vol. 82, no. 6, pp. 9243–9275, Aug. 2022, doi:
10.1007/s11042-022-13644-y.

[42] U. Sirisha, S. P. Praveen, P. N. Srinivasu, P. Barsocchi, and A. K. Bhoi,
‘‘Statistical analysis of design aspects of various YOLO-based deep
learning models for object detection,’’ Int. J. Comput. Intell. Syst., vol. 16,
no. 1, Aug. 2023, Art. no. 126, doi: 10.1007/s44196-023-00302-w.

[43] C.-Y. Wang, A. Bochkovskiy, and H.-Y.-M. Liao, ‘‘YOLOv7: Train-
able bag-of-freebies sets new state-of-the-art for real-time object
detectors,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Vancouver, BC, Canada, Jun. 2023, pp. 7464–7475, doi:
10.1109/CVPR52729.2023.00721.

[44] H. Dong, M. Wen, and Z. Yang, ‘‘Vehicle speed estimation based on 3D
ConvNets and non-local blocks,’’ Future Internet, vol. 11, no. 6, p. 123,
May 2019, doi: 10.3390/fi11060123.

KEATTISAK SANGSUWAN received the B.Eng.
and M.Eng. degrees in electronics engineering
from the King Mongkut’s Institute of Technology
Ladkrabang, Bangkok, Thailand, in 2003 and
2005, respectively, the M.B.A. degree from
Sukhothai Thammathirat Open University, Thai-
land, in 2009, and theM.Sc. degree in aeronautical
and space systems (embedded systems) from Insti-
tut Supérieur de l’Aéronautique et de l’Espace,
Toulouse, France, in 2014. He is currently pur-

suing the Ph.D. degree in microelectronics and embedded systems with
the School of Engineering and Technology, Asian Institute of Technology,
Thailand. His research interests include image processing, machine learning,
and embedded systems.

MONGKOL EKPANYAPONG received the
B.Eng. degree in computer engineering from
Chulalongkorn Univerisity, Bangkok, Thailand,
in 1997, the M.Eng. degree in computer science
from the Asian Institute of Technology, Thailand,
in 2000, and the M.Sc. and Ph.D. degrees
in electrical and computer engineering from
the Georgia Institute of Technology, Atlanta,
GA, USA, in 2003 and 2006, respectively.
From 1997 to 1998, hewas a SystemEngineer with

United Communication Network, Thailand. From 2006 to 2009, he was a
Senior Computer Architect with the Core 2 Architecture Design Team, Intel
Corporation, USA. He joined the School of Engineering and Technology,
Asian Institute of Technology, in 2009, where he is currently an Associate
Professor. His research interests include VLSI design, physical design
automation, microarchitecture, compilers, and embedded systems.

4858 VOLUME 12, 2024

http://dx.doi.org/10.1109/ISCAIE51753.2021.9431784
http://dx.doi.org/10.1007/s11042-022-13644-y
http://dx.doi.org/10.1007/s44196-023-00302-w
http://dx.doi.org/10.1109/CVPR52729.2023.00721
http://dx.doi.org/10.3390/fi11060123

