
Received 28 December 2023, accepted 2 January 2024, date of publication 5 January 2024,
date of current version 11 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3350171

Deadline and Energy-Aware Application Module
Placement in Fog-Cloud Systems
ABDULELAH ALWABEL 1, (Member, IEEE), AND CHINMAYA KUMAR SWAIN 2
1Department of Computer Sciences, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 91152, Saudi Arabia
2Department of Computer Science and Engineering, SRM University, Amaravathi, Andhra Pradesh 522502, India

Corresponding author: Abdulelah Alwabel (a.alwabel@psau.edu.sa)

The authors extend their appreciation to Prince Sattam bin Abdulaziz University for funding this research work through the project
number (2023/01/26767).

ABSTRACT Fog computing has emerged as a promising augmentation of cloud computing, positioned at
the network’s edge, and it is poised to enhance a wide range of Internet of Things (IoT) driven applications.
Although fog computing promises to reduce the response time of applications, its omnipresence is subject to
the availability and capabilities of the resources in the fog infrastructure. Hence, there is a need of efficiently
harness fog infrastructure to execute different IoT applications while meeting their quality of service (QoS)
requirements. However, this objective becomes challenging when the applications are decomposed into
multiple modules with diverse latency sensitivities. The scatter placement of application modules over
distributed fog nodes further intensifies the problem by increasing the overall energy consumption of
the fog environment. Therefore, this study proposes a deadline and energy-aware modular application
placement policy for fog computing environments. The proposed policy simultaneously prioritizes the
placement of critical applications in the fog infrastructure and consolidates the number of active fog
nodes for energy management. The performance of the proposed policy was evaluated using iFogSim and
compared with several contemporary solutions. The experimental results demonstrate that the proposed
policy outperforms others in increasing the percentage of QoS-satisfied applications and reducing energy
usage in fog computing.

INDEX TERMS Application module placement, placement policy, latency-aware placement, energy-aware
placement, task scheduling, resource management, fog computing, cloud computing.

I. INTRODUCTION
Emerging technologies, such as the Internet of Things (IoT),
require computation services that are applicable to real-time
application processing [1]. Devices such as sensors and
mobile devices in IoT ecosystems can generate a large
volume of data that can ideally be processed in cloud systems
owing to the cost-efficiency and scalability features of cloud
computing [2]. However, cloud system may not be suitable
platform for processing requests for some IoT applications,
and latency sensitive application instances [3].

For handling latency sensitive applications, fog computing
model was proposed by Cisco in 2012 [4] and that aims
to bring cloud like services closer to end users and/or end
devices. This improves the quality of service (QoS) and/or

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Gupta .

reduce costs such as computational and communication
overheads [5]. As different applications have different
deadlines to finish their executions, so the applications should
be placed in such a manner that all the applications must
satisfy the deadline requirements. If any application misses
it’s deadline then the service provider must pay the violation
cost along with the cost incurred due to the execution of
applications and energy consumption cost.

Fog nodes are arranged in a network that is ideally placed
just one hop away from the data sources. These nodes are
placed in close proximity to the user, allowing for local data
processing in the nodes rather than transmitting data to distant
cloud servers. This reduces the communication overhead
and also the latency for communication. Fog computing is
considered to be a middle layer between IoT and cloud
computing as shown in Figure 1, which better suited for the
latency sensitive application placement. However most of the

5284

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-4718-5578
https://orcid.org/0000-0001-7827-7171
https://orcid.org/0000-0001-5067-858X

A. Alwabel, C. K. Swain: Deadline and Energy-Aware Application Module Placement in Fog-Cloud Systems

nodes in the fog computing environment are highly dispersed
geographically and limited resource capabilities compared to
the cloud environment. So all the application modules can
not be allocated to the fog nodes. This create challenges for
application placement in fog/ cloud environment.

The application placement problem further gets com-
plicated when we consider the micro-service applications.
Microservices applications are composed of interdependent
modules that can be executed through different computing
nodes [6]. The application module provides instructions to
generate the corresponding output. The output may be sent
to another module as an input, based on the data dependency
between the modules as shown in Figure 2. To process the
input within a deadline, each module requires a specific
amount of resources, such as CPU, memory, and bandwidth.
The application module placement policy for allocating an
application module to an appropriate resource in fog-cloud
systems to meet the application requirements with less
energy consumption is a challenging problem which needs
an efficient placement policy.

In this study we present a novel application placement
policy for the fog-cloud framework where an application
is divided into multiple interdependent modules. The appli-
cations are ordered and prioritized based on the deadline
i.e., earlier deadline of the application higher it’s priority
for execution. This approach would reduce the complexity
of running an entire application by processing the modules
in parallel manner whenever possible and load them to
various fog/ cloud servers based on the resource and deadline
constraints. The proposed approach reduces the latency by
placing the modules locally and/ or by processing parallelly
on those servers. As effective module placement policy
reduces the use of number of servers and that leads to less
energy consumption. The major contributions of this study
are as follows:

• Two IoT application placement policies are proposed
to improve the QoS and reduce the overall power
consumption in fog-cloud framework by placing the
modules effectively.

• Proposed approaches consider the dynamic arrival of
time sensitive applications and present that in the form
of Distributed Data Flow (DDF) model. Based on the
characteristics of modules the proposed policy decides
the order of execution by placing modules to fog-cloud
nodes so that the applications meet their deadline and
improve the QoS.

• The proposed approaches are evaluated through iFogSim
simulated fog environment. The experimental results
illustrate that the proposed approaches outperform other
approaches on various evaluating parameters.

The rest of the paper is organized as follows. Section II
summarizes the research work closely related to our work.
Section III describe the system model of this work. The
proposed mechanism used to solve the problem under con-
sideration is discussed in Section IV. Section V discusses the

FIGURE 1. IoT with fog-cloud environments.

FIGURE 2. Application modules in IoT.

evaluation mechanism used in this work. Finally Section VI
concludes our work with some future directions.

II. RELATED WORK
Task placement and resource management in fog computing
are new topics that combine several aspects of cloud
computing, mobile computing, and sensor networks [29].
In fog computing, the data generated by sensors, actuators,
and other devices must be processed using fog nodes and/or
clouds.

The authors of [7] proposed a framework for workload
allocation in a fog-cloud system that offers a tradeoff between
power consumption and delay issues. The problem of work-
load allocation can be divided into primary and subproblems.
The framework employed a Hungarian algorithm and a
Generalized Benders Decomposition (GBD) algorithm to
solve the problem, and the results demonstrated that a fog
system complements a cloud system. However, the complex
nature of the workload and resources was not thoroughly
investigated in this work [30].

The study by [8] presented a module-mapping policy for
placing IoT applications in fog-cloud environment. Their

VOLUME 12, 2024 5285

A. Alwabel, C. K. Swain: Deadline and Energy-Aware Application Module Placement in Fog-Cloud Systems

TABLE 1. Summary of related work.

work aimed to improve resource utilization. The policy
addresses network issues by sorting both network nodes and
application modules according to the available capacity and
requirements. Then, it maps the modules when the constraint
is satisfied. However, this work considered only computing
resources, such as the CPU and RAM, to find a proper node.
The proposed policy pays little attention to other important
factors in IoT ecosystem, such as the latency and availability
of specified resources.

In [9], the authors developed an algorithm that determines
the optimal solution for resource allocation in fog computing.
The allocation problem is presented as a bin-packing penalty-
aware problem, where the servers are bins and virtual
machines (VMs) are the packs. Each fog device is penalized
and rewarded based on the idle energy, maximum frequency,
and maximum energy parameters. This method calculates
how many VMs could be allocated in t time slots on a server.
The VMs were served based on their frequencies. Penalty
and reward mechanisms are applied to reduce the energy
consumption, which would otherwise increase exponentially.

The work in [10] investigated how user mobility influences
the performance of applications by analyzing scheduling
problems in fog computing. They studied three different
scheduling policies-concurrent, first come first serve (FCFS),
and delay priority-to improve the execution time based
on the application characteristics. The delay-priority policy
outperformed the other policies in terms of delay reduction.

The researchers [11] presented a Fog Service Placement
Problem (FSPP) to optimally share resources in fog nodes
among IoT services. The FSPP considers latency and
deadline requirements during the placement of application
modules on fog nodes. In this study, a fog node is

characterized by three attributes: CPU, RAM, and storage.
The FSPP placement strategy is performed periodically to
meet QoS requirements by prioritizing applications accord-
ing to the response time. The application with the shortest
response time was placed on a fog node with sufficient
resources.

The authors of [12] proposed a new policy for application
module management that aimed at optimizing the number
of working nodes. Reducing the number of working nodes
leads to reduced power consumption without violating QoS
constraints. The proposed management policy was evaluated
using iFogsim. This policy outperforms other latency-aware
policies by satisfying the latency in service delivery for
applications with strict deadlines.

A quality of experience (QoE) application placement pol-
icy was developed by [13] to prioritize different application
placement requests according to the expectations of users.
Furthermore, the policy calculates the capabilities of the fog
instances by considering their current status. The policy was
evaluated using iFogsim tool. A similar study on QoE
was presented in [31]. An optimized placement approach
was proposed in [14] for fog computing applications. This
approach is based on genetic algorithm (GA). The proposed
method minimizes the computational and communication
costs of real-time tasks while maintaining efficient resource
utilization. Another study that employed (GA)was conducted
in [15]. This work presents a cost-aware task scheduling using
GA for fog-cloud infrastructure, which improves the cost
efficiency of time-sensitive applications.

The authors of [16] presented a real-time task scheduler
that considered deadline and frequency constraints to map
and process incoming tasks to increase the number of

5286 VOLUME 12, 2024

A. Alwabel, C. K. Swain: Deadline and Energy-Aware Application Module Placement in Fog-Cloud Systems

executed tasks. The proposed approach considers a fog
network based on auctions, where tasks rejected by one fog
can be accepted at another fog. The proposed work showed
that the number of tasks executed increased as a result of
using the task-scheduling system.

In [17], the authors proposed throughput-aware application
placement in fog computing. The placement approach
factored in the computational and communication demands
of throughput-oriented applications. The aim of this study
is to allocate maximum application modules to one region
to reduce communication overhead and thus improve perfor-
mance. However, the proposed method lacked power-saving
capabilities.

A context-aware placement policy for applications in fog
environment was presented in [18]. This policy aims to
minimize the service delivery time for IoT applications by
coordinating IoT device-level contexts with the capacity of
the nodes. The context of IoT applications includes the
data size and sensing frequency of sensors, which can be
utilized to manage network congestion and computational
overhead. A novel scheduler was developed in [19] which
is a deadline-aware scheduler in a fog-cloud environment
that acts as a proxy for processing platforms in the cloud for
face recognition applications. The scheduler also focuses on
efficiently utilizing the resources.

In [20], the authors proposed an autonomous IoT service
placement mechanism based on gray wolf optimization
approach to optimize the execution costs in fog environment.
This method can improve system performance with regards
to service deadline. However, this work pays little attention
to energy consumption in fog environment.

PACK is a novel algorithm that can place tasks based
on location-allocation problem [21]. PACK can minimize
the distances between data sources and fog nodes while
considering the capacity constraints for load balancing.
Furthermore, PACK considers location and reliability as
parameters for ranking fog nodes to allocate tasks to the most
appropriate nodes.

The authors of [22] presented a load-balancing approach
between fog and cloud systems for IoT platforms. This study
is an extension of their previous work [32]. The aim of this
study is to improve the performance of IoT application in fog
environment. This approach load balanced tasks among fog
nodes which helps to fulfill the requirements of scalability
and latency, provided that no fog node was overloaded. Tasks
are assigned to the cloud nodes provided that all fog nodes
are busy processing other tasks or if the latency of tasks
allows them to be sent to the clouds. The proposed work
demonstrated that the response time decreased as a result of
this approach.

In [23], the authors proposed a new mechanism that
combines a mixed-integer linear programming formulation
with a static and dynamic heuristic. This mechanism is
designed to optimize the fairness of energy and bandwidth
usage in a fog environment. However, this mechanism does
not consider the makespan time required to execute the tasks.

Fog-Care is a prototype designed by [27] to evaluate latency
and throughput in a global-wide healthcare application in
fog-cloud environment based on blockchain technology. The
prototype demonstrated that throughput has increased and
maintained an acceptable level of latency.

A study by [33] proposed a novel approach that manages
the allocation of fog services as a service function chain [24].
This approach is based on a dynamic planning model that
aims to improve latency, resource utilization, and throughput
in a fog computing environment. The proposed approach
successfully improved the use of resources by creating
an SFC queue network. The authors in [25] proposed an
HR-Alloc algorithm for executing the big data applications
in hybrid infrastructure. They evaluated the algorithm based
on cost and load balancing without losing the performance.
In [26] authors proposed BurstFlow, a tool for enhancing
communication across data sources located at the edges of
the Internet and Big Data Stream Processing applications
located in cloud infrastructures. The BurstFlow improves
the resource utilization and reduces the execution time for
multi-cloud deployments. In [27], authors designed and
implemented a prototype of a healthcare software called Fog-
Care. This model reduces latency, throughput when adopted
in wide dispensed locations. Authors in [28] proposed a
method that mitigates non-iid data through a FedAvg-BE
algorithm that provides Federated Learning with the border
entropy evaluation to select quality data from each device.

Table 1 presents an overview of the related works and
highlights the difference between this study and present
works.

III. SYSTEM MODEL
A. COMPUTING ENVIRONMENT
Figure 1 depicts a three tier computing environment for the
proposed deadline and energy-aware modular application
placement policy. At the lower level of the computing
environment, IoT devices consistently sense data from the
external environment. Fog gateways help IoT devices forward
the sensed data to the fog infrastructure for further processing.
In this study, the fog infrastructure was organized in the form
of fog clusters. In a fog cluster, heterogeneous fog nodes
communicate with each other through a mesh network [34].

A fog gateway maintains a persistent connection with a
fog-cluster node that acts as a cluster introducer. Once an
IoT device is configured with a fog gateway and senses data,
it notifies its cluster introducer of the QoS requirements,
programming model, and data dependencies among the
modules of the corresponding IoT application. Later, the
cluster introducer perceives the context, such as the resource
availability, computational overhead, and energy profile of
other cluster nodes, using the mesh connection. Based on the
accumulated information, the cluster introducer of the fog
gateway executes the proposed policy of placing the modules
of the corresponding applications over the fog cluster.

A fog gateway can remain connected to multiple fog clus-
ters; however, each cluster has only one introducer at a time.

VOLUME 12, 2024 5287

A. Alwabel, C. K. Swain: Deadline and Energy-Aware Application Module Placement in Fog-Cloud Systems

Each fog gateway maintains a list of possible introducers
for all accessible fog clusters so that communication with
the fog infrastructure can be restored immediately after any
introducer node fails. As the cluster nodes share a mesh
network, a synchronization operation among introducers of
different fog gateways is instantly performed.

B. PROBLEM FORMULATION
At any instance, a fog cluster can receive requests to place a
set of η applications A = {a1, a2, a3,, aη}. As shown
in Figure 2, each candidate application ai is a collection
of M i modules, where M i

= {mi1,m
i
2,m

i
3,,m

i
k}. The

interactions between the modules within an application
follow a Distributed Data Flow (DDF) model. According
to this model, a module miq ∈ M i receives input from its
antecedent set of modules 9 i

q ⊂ M i in the data flow, and
after processing the input, the output is forwarded to the
subsequent set of modules 8i

q ⊂ M i as input. Additionally,
when receiving inputs from any module mip ∈ 9 i

q, m
i
q

imposes an expected data-dependency delay δipq such that its
data-driven interactions with the antecedent modules follow
the time certainty τ iq where

τ iq =< min δip′q,max δip≀q >; ∀p′, p≀ ∈ 9 i
q (1)

Applications deployed in the fog computing environment
are based on the DDF model presented by [35]. According
to [12], DDFmodel is the best suited for the applications with
multiple interdependent modules.

In this context applications a1, a2, can have various
requirements, such as computing resource requirements,
maximum response time, etc. An application ai contains
several tasks which are represented as application modules
mi1,m

i
2, . . . ,m

i
k , each of them can be executed on a fog node

independently from the others while maintaining the same
requirements across all modules of the application ai. In this
study, the tasks and modules share the same meaning and are
used interchangeably throughout the text. The requirements
of the application module mik are as follows:

Req(mik) = (CPUmik ,RAMmik
,Bandwidthmik) (2)

In addition to that, all applicationmodules of an application
ai ∈ A share the maximum delay 1ai the application
can tolerate. According to [36], the service delay (lai) for
application ai is given by:

lai =
k∑
i=1

δipq; ∀m
i
p,m

i
q ∈ M

i (3)

where M i denotes the set of modules for application ai. δipq
refers to the delay time between application modules mip and
miq because of the data dependency between them, which can
be tolerated; that is,

k∑
i=1

δipq ≤ 1ai (4)

where 1ai is the maximum delay time that application ai can
tolerate, i.e, the maximum delay time that application can
allow before a QoS violation occurs. Therefore, the equation
in (2) can be extended to

Req(mik) = (CPUmik ,RAMmik
,Bandwidthmik , lai) (5)

Node n ∈ N is a computing resource that can either be a
fog node or a cloud node:

n =

{
Cloud node, if n ∈ NC
Fog node, if n ∈ NF

(6)

where NC and NF refer to the subsets of the cloud and fog
nodes, respectively. Let MST denote makespan time, which
is the total time required to finish a task/module mik on node
n from start to end and can be presented as follows:

MST (mik , n) = lmik + wmik + pmik (7)

where wmik refers to the waiting time required for module mik
to begin the execution on node n. The term pmik refers to the
processing time required to execute the application module
mik . This is calculated as follows:

pmik =
len(mik)

µn
(8)

len(mik) refers to the length of module mik in terms of
millions of instructions, and µn is the CPU processing rate
of the node to which the module will be allocated. The
utilization of node n can be computed as follows.

u(n) =

∑η
i=1 CPU (mik)

CPUn
∗ 100 (9)

where CPU (mik) denotes the total CPU computing power
required for all application modules at node n.

Although latency is an important factor when it comes to
choosing a node to place a task, this work argues that the QoS
of fog computing environments can be improved by reducing
the total time required to submit, place, execute, and finish a
task rather than solely focusing on latency.

However, this assumption is not adequate for latency-
sensitive applications; therefore, it is vital to consider whether
the application allows a fog node to be placed according to
its requirements. This study proposes a policy to determine
the most suitable fog node to place a task/module mik . This
improves the performance of this task without violating the
following condition:

MST (mik , n) ≤ 1ai; ∀m
i
k ∈ M

i (10)

The violation cost of an application should be minimal
when different modules of an application are allocated to
different fog cloud nodes. The proposed policy first check
for the nodes where previous modules of an application
are placed. The priority of the node depends on the
communication latency among the modules. If two modules
are placed on different nodes then their expected data

5288 VOLUME 12, 2024

A. Alwabel, C. K. Swain: Deadline and Energy-Aware Application Module Placement in Fog-Cloud Systems

dependency delay increases. This causes deadline miss for
the application and degrades the QoS. So the modules with
their inter-dependency may be scheduled on the same node if
the resource constraints are satisfied. The violation cost of an
application (ai) is calculated as follows:

Vai =
max(0,Fai −1ai)

1ai
× 100 (11)

where Fai denotes the completion time for an application ai.
The violation cost is proportional to the delay incurred by the
application to complete execution. The violation cost is zero
if the application satisfies the deadline requirements.

Algorithm 1 Performance-Aware Placement Mechanism
(PEAPM)
1: get m, lmax
2: Queue(Q) <- Sorted by deadline of modules
3: MSTmin← maxMST
4: index = -1
5: while Q is not empty do
6: foreach n in nodeList do
7: if Req(m) ≤ Cap(n)&& n.delay ≤ lmax then
8: MSTtmp = MST(m, n)
9: if MSTtmp ≤ MSTmin then

10: MSTmin = MSTtmp
11: index = nodeList.getIndex(n)
12: end if
13: end if
14: end for
15: end while
16: if index == -1 then
17: return false
18: else
19: updateCap(n,m)
20: return true
21: end if

Algorithm 2 Power-Aware PlacementMechanism (POAPM)
1: get UtilThres
2: foreach n in nodeList do
3: if n.util < UtilThres then
4: sortedNodeList ← sortDecrUtil(nodeList)
5: i← 0
6: foreach m in n.mList do
7: cn← sortedNodeList[i]
8: if Req(m) ≤ Cap(cn) && cn.delay ≤ m.lmax then
9: updateCap(cn,m)

10: remove(n,m)
11: else
12: i++
13: end if
14: end for
15: end if
16: end for

IV. PROPOSED MECHANISM
This section proposes a novel placement mechanism for fog-
cloud systems. This mechanism focuses on performance and
power by placing an application module on a fog node to
reduce the makespan time (MST) of the application modules.
In addition, the mechanism was extended to reduce the
number of working fog nodes by stacking more application
modules onto fewer fog nodes.

Such a strategy can help improve utilization and therefore
reduce power consumption by fog nodes. Here, we also
consider that if any application can be executed through
cloud nodes without compromising the deadline, then we
place that application on the cloud node [37]. This improves
performance and reduces the number of fog nodes required
in the setting.

A. PERFORMANCE-AWARE PLACEMENT MECHANISM
The performance aware placement mechanism, referred to
as PEAPM, and is depicted in Algorithm 1. The algorithm
starts with sorting the modules of the application based on
their deadlines (Line 2). Then the modules are selected for
each application and taken in order of their dependency
constraints and start with the module without any dependency
constraint belong to that application. The way applications
are ordered based on their deadline (earliest deadline is
first considered), similarly modules of each application are
ordered based on their dependencies. The modules with
dependency are analyzed based on their data dependency
delay. The nodes are prioritized for a module which incurs
minimal data dependency delay. Nodes closer to each other
would be selected to reduce the data dependency delay.
However the processing speed of the node plays a vital
role for module placement. The node with the least MST
is selected to host the application module, provided that
the node can accommodate the module, i.e, the available
CPU and RAM of the node are equal to or larger than the
module’s CPU and RAM requirements, as shown in line 7.
It is important that the placement of the application module
on the selected node does not violate the delay requirement of
the application. Line 8 invokes a method for calculating the
estimated time required to complete the task, as mentioned
in Equation 7. After finding and placing the module on the
selected node, Line 19 updates the node that accommodates
the module. If no fog node can accommodate the module,
the algorithm returns false results. The module can then be
sent to cloud computing, depending on the resource and delay
requirements.
Time Complexity: The time complexity of the Algorithm 1

can be analysed as follows. Step-2 of the algorithm takes
O(nk × log(nk)) time, where n represents the number of
applications and k represents average number of modules per
application. However the the while loop and for loop (line 5
and 6) dominates the time complexity of the entire algorithm.
The maximum time complexity of the algorithm can be

VOLUME 12, 2024 5289

A. Alwabel, C. K. Swain: Deadline and Energy-Aware Application Module Placement in Fog-Cloud Systems

FIGURE 3. Makespan.

FIGURE 4. Task guaranteed ratio.

represented by O(nkm), where m represents the number of
fog and cloud nodes in total.

B. POWER-AWARE PLACEMENT POLICY
Power consumption plays a crucial role in the cloud and
fog computing environments by reducing the running and
maintenance costs for both service providers and consumers.
The utilization of computing resources has a positive
impact on power savings because it reduces the number
of computing nodes running in fog or cloud computing.
A recent study showed that the application of Dynamic
voltage and frequency scaling (DVFS) to CPUs can yield
an almost linear power-to-frequency relationship for com-
puting nodes [38]. Therefore, this section proposes a novel
mechanism that can reduce the power consumption in a fog
environment by reducing the total number of running fog
nodes. The idle nodes can be switched to the power-safe
mode.

The utilization of a fog node is given by 9. This
mechanism aims to reduce the number of fog devices hosting
the application modules. Here, we propose a power-aware
placement mechanism (POAPM) described in Algorithm 2.
The algorithm began by surveying the utility level of each
fog node. If the utility level is less than a particular threshold,
it triggers themigration process of all the applicationmodules
currently running on the node.

FIGURE 5. Power consumption.

FIGURE 6. Violation cost.

The utility threshold is provided in the algorithm as an
input to determine the optimal threshold that yields the
optimum power-saving results. Setting the threshold to a
small value such as 10% would result in only a small
proportion of application modules being migrated to another
node, thereby providing a limited improvement in power
savings. Similarly, setting the threshold to a large value can
lead to an unlimited number of modules that must be moved.
The choice of this threshold will be left to the trial and error
approach; i.e., this work will change the threshold values
during the experimental phase to find the most appropriate
value.

In line 4, the algorithm sorts the nodes in the fog layer
in ascending order according to their current utilization
levels. The node with the highest utilization level is selected
first. The algorithm attempts to stack maximum application
modules on the same node to improve utilization, thus
increasing power savings. Methods updateCap and remove
are used to migrate an application module m from the
underutilized node n to the candidate node nc by placing
the module in the candidate node and removing it from
the underutilized node. To comply with the performance of
fog environment line 8 in the algorithm, the latency of the
candidate node does not violate the latency requirement; i.e.,
the latency will increase if the module moves to the new
node. If so, this module will not be placed in this node, and
another candidate will be considered. The algorithm places

5290 VOLUME 12, 2024

A. Alwabel, C. K. Swain: Deadline and Energy-Aware Application Module Placement in Fog-Cloud Systems

TABLE 2. Simulation configuration.

modules to nodes such that each node will be as compact
as possible. The compactness will result in requirement of
less number of fog nodes and that leads to less energy
consumption.
Time Complexity: The time complexity of the Algorithm 2

can be analysed as follows. Step-2 of the algorithm takes
O(m) times and step-4 takes O(mlogm) times for sorting the
nodes based on their utilization. Combining step-2 and step-4
take O(m2logm) times. So the maximum time complexity of
the algorithm can be represented by O(nm2logm), where m
represents the number of fog and cloud nodes in total.

V. EVALUATION
To test the proposed mechanisms described in Section IV,
the iFogsim simulation tool [39] was used to run and
test the mechanisms under various workloads. In this
experiment, synthetic data were used as the input workload.
The simulation parameters within a specific range were
determined using a pseudo-random number generator. The
simulation configurations considered for this experiment is
reported in Table 2. The module configurations used in the
experiments are listed in Table 3.

The proposed algorithms were compared with two other
algorithms for evaluation purposes.
• Random: The modules of each application are ran-
domly allocated to the cloud or fog node considering the
resource constraints.

• BF-SA: This is the heuristic model to allocate the mod-
ules. The proposed approach considers the slack-aware
best fit approach to allocate the modules to nodes. Here,
we consider the resource and deadline constraints for the
module allocation [40].

A. EVALUATION CRITERIA
In this section, we evaluate the four approaches based on four
evaluation criteria. Here, we aim to minimize the makespan,
power consumption, and violation cost and maximize the
task guaranteed ratio (TGR). The TGR is calculated as
follows [41]:

TGR =

∑n
i=1Ui
n

× 100 (12)

where Ui = 1 if the application completes its execution
before the deadline; otherwise, Ui = 0.

B. IMPACT OF NUMBER OF APPLICATIONS
In this experiment, we compared our proposed approach
with other state-of-the-art approaches and evaluated the
performance of our approach by varying the number of tasks.
Figure 3, Figure 4, Figure 5, and Figure 6 illustrate the perfor-
mance in terms of different matrices, which were discussed in
the previous section. Figure 3 reports the makespan time for
the set of applications in our simulation, and it was found out
that PEAPMand POAPM took less time to complete the set of
applications.

Our proposed approach, PEAPM, attempts to allocate
the modules in a more distributed and compact manner
to the available fog-cloud nodes based on resource and
deadline constraints. Our proposed approaches (PEAPM and
POAPM) had better TGR (Figure 4) as compared to other two
approaches (Random and BF-SA); therefore, the violation
cost is minimal as compared to other approaches (as shown in
Figure 6). Because fewer servers are required for application
execution, our approach consumes less power than the other
approaches, as shown in Figure 5.

C. IMPACT OF NUMBER OF FOG SERVERS
In this experiment, we fixed the number of cloud nodes (10)
and reported the performance of the different approaches by
varying the number of fog nodes (20-60). As the fog nodes
are closer to the application request points, the performance
in terms of TGR and violation cost is better than those in
other experimental settings. Figure 7 illustrates the variation
in makespan time with the number of fog nodes. The results
demonstrate that as the number of fog nodes increases, the
makespan time decreases. This can be attributed to the fact
that when more computational resources are located near
the application generation point, the TGR increases, while
the violation costs decrease (as indicated in Figure 8 and
Figure 10).
Our proposed approach allocates more tasks to fog

nodes, which reduces deadline violations compared to
other approaches. POAPM is a power-aware approach that
considers the compact allocation of modules to servers to use
a minimum number of servers. Therefore, POAPM performs
better than the other three approaches in terms of power
consumption (Figure 9).

D. IMPACT OF NUMBER OF CLOUD SERVERS
The results of the experiment are shown in Figure 11 to
Figure 14. We considered a fixed number of fog nodes (10)
and varied the number of cloud nodes from 20 to 60. As the
number of cloud nodes increases, the makespan (Figure 11)
and TGR (Figure 12) for all approaches improve. However,
the power consumption and violation cost for this experiment
did not improve, because the modules sent to the cloud
servers required more time to complete their execution,
and each cloud server consumed more power than the fog
server.

VOLUME 12, 2024 5291

A. Alwabel, C. K. Swain: Deadline and Energy-Aware Application Module Placement in Fog-Cloud Systems

TABLE 3. Module configuration.

FIGURE 7. Makespan.

FIGURE 8. Task guaranteed ratio.

FIGURE 9. Power consumption.

PEAPM and POAPM performed better than the Random
andBF-SA approaches under these settings. The performance
improvement in our approach is owing to the segregation
of the latency-sensitive and latency-tolerant modules, with

FIGURE 10. Violation cost.

FIGURE 11. Makespan.

FIGURE 12. Task guaranteed ratio.

each type of module handled separately to achieve better
performance. The violation cost for random cases was
extremely poor, whereas PEAPMwas the best among the four
approaches.

5292 VOLUME 12, 2024

A. Alwabel, C. K. Swain: Deadline and Energy-Aware Application Module Placement in Fog-Cloud Systems

TABLE 4. ANOVA test results for PEAPM, POAPM, BF-SA, and Random for synthetic datasets.

FIGURE 13. Power consumption.

FIGURE 14. Violation cost.

E. ANALYSIS OF VARIANCE (ANOVA) RESULTS
Analysis of Variance (ANOVA) [42] is used to test the
difference in means in two or more cases. This statistical
method is being performed using SPSS software. The null
hypothesis assumed to be the means of four populations are
equal. Mathematically we can represent that as H0: µ1 =

µ2 = µ3. In the alternate hypothesis, we assume that at least
one of the means is different from other means.We conducted
ANOVA for synthetic data sets with the α = 0.05. The results
of the ANOVA are reported in Table 4. For the synthetic
dataset, the F value> F critical (Table 4), that means we reject
the null hypothesis. This implies the populationmeans of four
different datasets are not equal and it is due to p value is much
less than 0.5. Hence, we assert that the performance gain
achieved by PEAPM against POAPM, BF-SA, and Random
is not by chance.

VI. CONCLUSION AND FUTURE DIRECTION
This study presented a novel application-module placement
policy for a fog-cloud framework that focuses on plac-
ing application modules on nodes to reduce processing

time while maintaining an acceptable level of delay time.
We developed two heuristics, PEAPM and POAPM, and
evaluated their performances using simulations at different
settings. Based on the experimental results, it was determined
that our proposed algorithms outperformed others in terms
of TGR, makespan, power consumption, and violation cost.
The performance of the proposed approaches varied based on
different server settings in the fog-cloud environment.

There is a trade-off between the number of servers
deployed in the fog or cloud environment, and the pro-
portional number of server deployments at each layer can
improve the overall performance. However, it is necessary
to investigate the optimal number of servers that should
be deployed in each layer (fog and cloud) to enhance the
system’s performance. This aspect should be investigated in
future studies. Furthermore, the use of various meta-heuristic
optimization frameworks can be explored to enhance system
performance, providing a promising avenue for further
investigation in this area.

REFERENCES
[1] F. Bonomi, R.Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its role

in the Internet of Things,’’ in Proc. 1st, Ed., MCCWorkshop Mobile Cloud
Comput. (MCC), vol. 131. New York, NY, USA: ACM Press, Aug. 2012,
p. 13.

[2] R. Deng, R. Lu, C. Lai, and T. H. Luan, ‘‘Towards power
consumption-delay tradeoff by workload allocation in cloud-fog
computing,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015,
pp. 3909–3914.

[3] M. A. Al Faruque and K. Vatanparvar, ‘‘Energy management-as-a-service
over fog computing platform,’’ IEEE Internet Things J., vol. 3, no. 2,
pp. 161–169, Apr. 2016.

[4] S. P. Singh, A. Nayyar, R. Kumar, and A. Sharma, ‘‘Fog computing: From
architecture to edge computing and big data processing,’’ J. Supercomput.,
vol. 75, no. 4, pp. 2070–2105, Apr. 2019.

[5] P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini, and A. Zanni,
‘‘A survey on fog computing for the Internet of Things,’’ Pervasive Mobile
Comput., vol. 52, pp. 71–99, Jan. 2019.

[6] S. Jošilo and G. Dán, ‘‘Decentralized algorithm for randomized task
allocation in fog computing systems,’’ IEEE/ACM Trans. Netw., vol. 27,
no. 1, pp. 85–97, Feb. 2019.

[7] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, ‘‘Optimal workload
allocation in fog-cloud computing toward balanced delay and power
consumption,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 1171–1181,
Dec. 2016.

[8] M. Taneja and A. Davy, ‘‘Resource aware placement of IoT application
modules in fog-cloud computing paradigm,’’ in Proc. IFIP/IEEE Symp.
Integr. Netw. Service Manage. (IM), May 2017, pp. 1222–1228.

[9] Z. Pooranian, M. Shojafar, P. G. V. Naranjo, L. Chiaraviglio, and M. Conti,
‘‘A novel distributed fog-based networked architecture to preserve energy
in fog data centers,’’ in Proc. IEEE 14th Int. Conf. Mobile Ad Hoc Sensor
Syst. (MASS), Oct. 2017, pp. 604–609.

[10] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar,
‘‘Mobility-aware application scheduling in fog computing,’’ IEEE Cloud
Comput., vol. 4, no. 2, pp. 26–35, Mar. 2017.

[11] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, ‘‘Towards QoS-aware
fog service placement,’’ in Proc. IEEE 1st Int. Conf. Fog Edge Comput.
(ICFEC), May 2017, pp. 89–96.

VOLUME 12, 2024 5293

A. Alwabel, C. K. Swain: Deadline and Energy-Aware Application Module Placement in Fog-Cloud Systems

[12] R. Mahmud, K. Ramamohanarao, and R. Buyya, ‘‘Latency-aware applica-
tion module management for fog computing environments,’’ ACM Trans.
Internet Technol., vol. 19, no. 1, pp. 1–21, Feb. 2019.

[13] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, ‘‘Quality
of experience (QoE)-aware placement of applications in fog computing
environments,’’ J. Parallel Distrib. Comput., vol. 132, pp. 190–203,
Oct. 2019.

[14] A. Brogi, S. Forti, C. Guerrero, and I. Lera, ‘‘Meet genetic algorithms
in Monte Carlo: Optimised placement of multi-service applications in
the fog,’’ in Proc. IEEE Int. Conf. Edge Comput. (EDGE), Jul. 2019,
pp. 13–17.

[15] T. S. Nikoui, A. Balador, A. M. Rahmani, and Z. Bakhshi, ‘‘Cost-aware
task scheduling in fog-cloud environment,’’ in Proc. CSI/CPSSI Int. Symp.
Real-Time Embedded Syst. Technol. (RTEST), Jun. 2020, pp. 1–8.

[16] M. Louail, M. Esseghir, and L. Merghem-Boulahia, ‘‘Dynamic task
scheduling for fog nodes based on deadline constraints and task frequency
for smart factories,’’ inProc. 11th Int. Conf. Netw. Future (NoF), Oct. 2020,
pp. 16–22.

[17] F. Faticanti, F. De Pellegrini, D. Siracusa, D. Santoro, and S. Cretti,
‘‘Throughput-aware partitioning and placement of applications in fog
computing,’’ IEEE Trans. Netw. Service Manage., vol. 17, no. 4,
pp. 2436–2450, Dec. 2020.

[18] R. Mahmud, A. N. Toosi, K. Ramamohanarao, and R. Buyya,
‘‘Context-aware placement of Industry 4.0 applications in fog computing
environments,’’ IEEE Trans. Ind. Informat., vol. 16, no. 11, pp. 7004–7013,
Nov. 2020.

[19] A.-V. Postoaca, C. Negru, and F. Pop, ‘‘Deadline-aware scheduling in
cloud-fog-edge systems,’’ in Proc. 20th IEEE/ACM Int. Symp. Cluster,
Cloud Internet Comput. (CCGRID), May 2020, pp. 691–698.

[20] M. Salimian, M. Ghobaei-Arani, and A. Shahidinejad, ‘‘Toward an
autonomic approach for Internet of Things service placement using gray
wolf optimization in the fog computing environment,’’ Softw., Pract. Exp.,
vol. 51, no. 8, pp. 1745–1772, Aug. 2021.

[21] T. Lähderanta, T. Leppänen, L. Ruha, L. Lovén, E. Harjula, M. Ylianttila,
J. Riekki, and M. J. Sillanpää, ‘‘Edge computing server placement with
capacitated location allocation,’’ J. Parallel Distrib. Comput., vol. 153,
pp. 130–149, Jul. 2021.

[22] E. Batista, G. Figueiredo, and C. Prazeres, ‘‘Load balancing between
fog and cloud in fog of things based platforms through software-defined
networking,’’ J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 9,
pp. 7111–7125, Oct. 2022.

[23] N. Godinho, H. Silva, M. Curado, and L. Paquete, ‘‘A reconfigurable
resource management framework for fog environments,’’ Future Gener.
Comput. Syst., vol. 133, pp. 124–140, Aug. 2022.

[24] X. Gao, R. Liu, and A. Kaushik, ‘‘Virtual network function placement in
satellite edge computing with a potential game approach,’’ IEEE Trans.
Netw. Service Manage., vol. 19, no. 2, pp. 1243–1259, Jun. 2022.

[25] J. C. S. D. Anjos, K. J. Matteussi, P. R. R. De Souza, G. J. A. Grabher,
G. A. Borges, J. L. V. Barbosa, G. V. González, V. R. Q. Leithardt, and
C. F. R. Geyer, ‘‘Data processing model to perform big data analytics in
hybrid infrastructures,’’ IEEE Access, vol. 8, pp. 170281–170294, 2020.

[26] P. R. R. De Souza, K. J. Matteussi, A. D. S. Veith, B. F. Zanchetta,
V. R. Q. Leithardt, Á. L. Murciego, E. P. De Freitas, J. C. S. D. Anjos, and
C. F. R. Geyer, ‘‘Boosting big data streaming applications in clouds with
BurstFlow,’’ IEEE Access, vol. 8, pp. 219124–219136, 2020.

[27] H. J. D. M. Costa, C. A. D. Costa, R. D. R. Righi, R. S. Antunes,
J. F. D. P. Santana, and V. R. Q. Leithardt, ‘‘A fog and blockchain software
architecture for a global scale vaccination strategy,’’ IEEE Access, vol. 10,
pp. 44290–44304, 2022.

[28] F. C. Orlandi, J. C. S. D. Anjos, V. R. Q. Leithardt, J. F. D. P. Santana, and
C. F. R. Geyer, ‘‘Entropy to mitigate non-IID data problem on federated
learning for the edge intelligence environment,’’ IEEE Access, vol. 11,
pp. 78845–78857, 2023.

[29] C.-H. Hong and B. Varghese, ‘‘Resource management in fog/edge
computing,’’ ACM Comput. Surv., vol. 52, no. 5, pp. 1–37, Sep. 2020.

[30] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao,
Y. Xiang, and R. Ranjan, ‘‘Fog computing: Survey of trends, archi-
tectures, requirements, and research directions,’’ IEEE Access, vol. 6,
pp. 47980–48009, 2018.

[31] H. Nashaat, E. Ahmed, and R. Rizk, ‘‘IoT application placement algorithm
based on multi-dimensional QoE prioritization model in fog computing
environment,’’ IEEE Access, vol. 8, pp. 111253–111264, 2020.

[32] E. Batista, G. Figueiredo, M. Peixoto, M. Serrano, and C. Prazeres,
‘‘Load balancing in the fog of things platforms through software-defined
networking,’’ in Proc. IEEE Int. Conf. Internet Things (iThings), IEEE
Green Comput. Commun. (GreenCom), IEEE Cyber, Phys. Social Comput.
(CPSCom), IEEE Smart Data (SmartData), Jul. 2018, pp. 1785–1791.

[33] Y. Zhang, F. Zhang, S. Tong, and A. Rezaeipanah, ‘‘A dynamic planning
model for deploying service functions chain in fog-cloud computing,’’
J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 10, pp. 7948–7960,
Nov. 2022.

[34] M. Veeramanikandan and S. Sankaranarayanan, ‘‘Publish/subscribe based
multi-tier edge computational model in Internet of Things for latency
reduction,’’ J. Parallel Distrib. Comput., vol. 127, pp. 18–27, May 2019.

[35] N. K. Giang, M. Blackstock, R. Lea, and V. C. M. Leung, ‘‘Developing IoT
applications in the fog: A distributed dataflow approach,’’ in Proc. 5th Int.
Conf. Internet Things (IoT), Oct. 2015, pp. 155–162.

[36] R. Mahmud, K. Ramamohanarao, and R. Buyya, ‘‘Application manage-
ment in fog computing environments,’’ ACM Comput. Surv., vol. 53, no. 4,
pp. 1–43, Jul. 2021.

[37] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, ‘‘Fog
computing for the Internet of Things: A survey,’’ ACM Trans. Internet
Technol., vol. 19, no. 2, pp. 1–41, 2019.

[38] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, andG. Jiang, ‘‘Power
and performance management of virtualized computing environments via
lookahead control,’’ in Proc. Int. Conf. Autonomic Comput., Jun. 2008,
pp. 3–12.

[39] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, ‘‘IFogSim: A toolkit
for modeling and simulation of resource management techniques in the
Internet of Things, edge and fog computing environments,’’ Softw., Pract.
Exp., vol. 47, no. 9, pp. 1275–1296, Sep. 2017.

[40] C. K. Swain, P. Routray, S. K. Mishra, and A. Alwabel, ‘‘Predictive VM
consolidation for latency sensitive tasks in heterogeneous cloud,’’ in Proc.
4th Int. Conf. Adv. Distrib. Comput. Mach. Learn. (ICADCML). Singapore:
Springer, 2023, pp. 135–150.

[41] C. K. Swain and A. Sahu, ‘‘Interference aware workload scheduling for
latency sensitive tasks in cloud environment,’’ Computing, vol. 104, no. 4,
pp. 925–950, Apr. 2022.

[42] K. E. Müller and B. A. Fetterman, Regression and ANOVA: An Integrated
Approach Using SAS Software. Hoboken, NJ, USA: Wiley, 2003.

ABDULELAH ALWABEL (Member, IEEE)
received the B.Sc. degree in computer science
fromKing Saud University, Saudi Arabia, in 2006,
theM.Sc. degree in advanced computing—internet
technologies with security from the University
of Bristol, U.K., in 2010, and the Ph.D. degree
in computer science from the University of
Southampton, U.K., in 2015. He is currently
an Assistant Professor with Prince Sattam bin
Abdulaziz University. His research interests

include fault–tolerance mechanisms and resource management in cloud
computing, fog computing, and the IoT. He has published several articles
investigating the impact of failures in cloud computing.

CHINMAYA KUMAR SWAIN received the
M.Tech. degree in computer science and engi-
neering from the Indian Institute of Technology
Bombay, Mumbai, and the Ph.D. degree from the
Indian Institute of Technology Guwahati, India.
He is currently an Assistant Professor with SRM
University, Andhra Pradesh, India. His research
interests include real time scheduling, resource
management in cloud systems, and distributed
computing systems.

5294 VOLUME 12, 2024

