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ABSTRACT To accelerate the training speed of massive DNN models on large-scale datasets, distributed
training techniques, including data parallelism and model parallelism, have been extensively studied.
In particular, pipeline parallelism, which is derived from model parallelism, has been attracting attention.
It splits the model parameters across multiple computing nodes and executes multiple mini-batches
simultaneously. However, naive pipeline parallelism suffers from the issues of weight inconsistency and
delayed gradients, as the model parameters used in the forward and backward passes do not match, causing
unstable training and low performance. In this study, we propose a novel pipeline parallelism technique
called EA-Pipe to address the weight inconsistency and delayed gradient problems. EA-Pipe applies an
elastic averaging method, which has been studied in the context of data parallelism, to pipeline parallelism.
The proposed method maintains multiple model replicas to solve the weight inconsistency problem, and
synchronizes the model replicas using an elasticity-based moving average method to mitigate the delayed
gradient problem. To verify the efficacy of the proposed method, we conducted three image classification
experiments on the CIFAR-10/100 and ImageNet datasets. The experimental results show that EA-Pipe not
only accelerates training speed but also demonstrates more stable learning property compared to existing
pipeline parallelism techniques. Especially, in the experiments using the CIFAR-100 and ImageNet datasets,
EA-Pipe recorded error rates that were 2.58% and 2.19% lower, respectively, than the baseline pipeline
parallelization method.

INDEX TERMS Deep learning, stochastic gradient descent (SGD), parallel processing, pipeline processing.

I. INTRODUCTION
In recent years, the increasing availability of advanced
hardware support and large-scale datasets have led to
the widespread adoption of massive deep neural network
(DNN) models as the primary machine learning approaches.
However, training massive DNN models on large-scale
datasets takes a considerable amount of time, leading to an
increasing demand for efficient model training. To efficiently
train massive DNN models, for example, VGG [16] and
ResNet [31] in an image processing task, or large language
models [3], [4], distributed training has been extensively
studied [5], [6], [7]. In general, distributed training is divided
into two types: data parallelism and model parallelism.
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Data parallelism partitions and distributes the training
datasets across multiple computing nodes. In the most
common data parallelism architecture, each computing node
has a local copy of the master DNN model, and the
synchronization between the local model and the master
model takes place in the parameter server where the master
model resides. Depending on the synchronization method,
data parallelism is divided into two types: synchronous
data parallelism [8], [9] (SDP) and asynchronous data
parallelism [10], [11] (ADP). In SDP, the parameter server
waits for all computing nodes to complete their works. Then,
it synchronizes the master model with the local models in the
computing nodes. Because all computing nodes wait for the
synchronization to be completed, the training time of SDP is
determined by the slowest computing node. In ADP, however,
the parameter server does not wait for all computing nodes to
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FIGURE 1. (a) An example of pipeline parallelism scheduling timeline [15] having the weight inconsistency and delayed gradient problems. (b) An
example of pipeline parallelism scheduling timeline [15] utilizing the weight stashing and vertical sync methods. F

tf
n and B

tb
n represent the forward and

backward passes, respectively, at computing node n for mini-batch index tf and tb, respectively. In (a), xn represents the partitioned model parameters at
computing node n. In (b), xi

n and xn represent the i -th replica of the partitioned local model parameters and the partitioned master model parameters,

respectively, at computing node n. We can calculate the index i for the local model used in F
tf
n and B

tb
n by i = mod(tf − 1, N) + 1 and

i = mod(tb − 1, N) + 1, respectively, where N is the number of computing nodes. The blue arrows represent the value propagated through the forward
pass, while the red arrows represent the error propagated through the backward pass. g(x) represents the gradient computed using model parameter x.
Though the weight inconsistency problem is resolved by using the weight stashing and vertical sync methods, the delayed gradient problem still remains
in updating the master model.

finish their works. It synchronizes with the computing node
that completes the computation first. Therefore, ADP can
accelerate training speed more than SDP. However, since the
parameter server accepts the gradients from the computing
nodes in the order of their arrival and applies them to the
master model, the late-arriving gradients cannot be correctly
applied to the exact version of the master model parameters
used to compute the gradients. Instead, they will be applied to
the master model parameters that have already been updated
by the early arrived gradients. These late-arriving gradients
are called the delayed gradients (or stale gradients), and it is
the major cause of the negative effect on training performance
in ADP [12].

Model parallelism partitions the model parameters and
distributes them across multiple computing nodes [11].
In naive model parallelism, the hardware utilization is low
since only one computing node may be active at a time [13].
To mitigate this problem, pipeline parallelism has been
proposed [13], [14], [15]. Pipeline parallelism can process
multiplemini-batches simultaneously in all computing nodes,
resulting in a significant acceleration in computation. Though
pipeline parallelism can train DNN models efficiently in
terms of training time, it suffers from two problems: the
weight inconsistency and delayed gradient problems. The
model parameters used in the forward pass and backward pass
are different in naive pipeline parallelism, which is called the
weight inconsistency problem. In addition, since the model
parameters used during forward pass are not maintained until
applying the gradients, it results in the delayed gradient
problem as in ADP. These problems deteriorate model
convergence, causing longer training time and higher error
rates.

Fig. 1(a) illustrates an example of pipeline parallelism
scheduling timeline [15] having the weight inconsistency
and delayed gradient problems. Let x2 indicate the model

parameters used in the forward pass of the 2nd mini-batch
in the 2nd computing node (denoted as F2

2 ). x2 is updated
first in the backward pass of the 1st mini-batch in the 2nd
computing node (denoted as B12). Let x

′

2 indicate the updated
model parameters after B12. Then, x

′

2 is updated to x′′2 in the
backward pass of the 2nd mini-batch in the 2nd computing
node (denoted asB22). Since themodel parameters used during
B22, that is, x′2, differ from the one used in F2

2 , that is,
x2, the weight inconsistency problem occurs. Furthermore,
the model parameters used for gradient computation are
x2, whereas the parameters to which the gradients are
applied are x′2. This causes the delayed gradient problem
because the model parameters x2, which are used during the
forward pass F2

2 , are not preserved until the gradients are
applied.

Existing studies on pipeline parallelism have proposed
various methods to address these problems by synchronously
updating model parameters [13], [16], predicting correct
model parameters [17], [18], or generating multiple model
replicas [15]. However, these methods have drawbacks such
as becoming less accurate as the number of computing nodes
increases, or underutilizing hardware efficiency. For example,
generating multiple model replicas is an approach to mitigate
the weight inconsistency problem. However, delayed gradient
problem may arise depending on the synchronization method
(e.g., Applying ADP to synchronize multiple model replicas,
as seen in [15], may result in the delayed gradient problem,
which will be explained further in Section II).

In this paper, we propose a novel pipeline parallelism
method, called EA-Pipe, that aims to address the delayed
gradient problem when generating multiple model replicas
to mitigate the weight inconsistency problem. To this end,
we view the delayed gradient problem from a data parallelism
perspective, and apply an optimization method previously
studied in the area of data parallelism. Especially, EA-Pipe

5478 VOLUME 12, 2024



B. Jang et al.: Pipeline Parallelism With Elastic Averaging

utilizes the moving average based elastic force called elastic
averaging [19]. The elastic averaging algorithm showed
comparable performance with prior ADP synchronization
methods, while alleviating the delayed gradient problem and
achieving more stable learning property. Therefore, it can be
expected that similar effects can be achieved when applying
the algorithm to the pipeline parallelism. The contributions of
this paper are as follows:
• Unlike existing methods, we approach the problems
in pipeline parallelism through a data parallelism
perspective. Thereby, we can utilize the advantages of
the existing ADP optimization methods such as the
elastic averaging algorithm for pipeline parallelism.

• We proposed a novel round-robin parallel training
algorithm by combining the pipeline parallelism and
asynchronous data parallelism to solve the weight
inconsistency and delayed gradient problems.

• We analyzed the convergence property of the proposed
method and found that the error bound is the same
as the synchronous elastic averaging case. To the best
of the author’s knowledge, this is the first theoretical
convergence analysis of the round-robin asynchronous
data parallelism through the elastic averaging pipeline
parallelism.

• The experimental results indicate that EA-Pipe not only
enhances training speed but also trains DNN models
as stably as SGD. In particular, in the experiments
using the CIFAR-100 and ImageNet datasets, EA-Pipe
demonstrated error rates that were 2.58% and 2.19%
lower, respectively, compared to the baseline pipeline
parallelization method, PipeDream.

The rest of the paper is organized as follows: In Section II,
we review related works concerning EA-Pipe. In Section III,
the work scheduling, algorithm, and convergence property of
EA-Pipe are explained. In Section IV, we verify the proposed
method through three image classification experiments using
three different models and datasets. The conclusion of this
study and suggestions for future research are discussed in
Section V, followed by the Appendix including the detail
proof of the convergence analysis.

II. RELATED WORK
A. PIPEDREAM
PipeDream [15] follows a scheduling strategy in which
each computing node executes the forward and backward
passes alternatively for different mini-batches, ensuring high
hardware utilization. Fig. 1(a) shows the pipeline scheduling
of PipeDream. However, this pipeline scheduling leads to the
weight inconsistency and delayed gradient problems, since
the versions of the model parameters used in the forward and
backward passes are inconsistent. Tomitigate these problems,
PipeDream proposed the weight stashing and vertical sync
methods. The weight stashing method generates as many
model replicas as the number of active mini-batches for each
computing node. Thereby each mini-batch ends up using the
same model parameters in both the forward and backward

passes. The vertical sync method generates as many model
replicas as the maximum number of active mini-batches
in the pipeline, ensuring the time synchronous weight
versions are available throughout all computing nodes.
The maximum number of active mini-batches is always
equal to the number of computing nodes. Fig.1(b) shows
PipeDream utilizing the weight stashing and vertical sync
methods.

With these two methods, PipeDream can solve the
weight inconsistency problem effectively. However, during
the backward pass, the computed gradients are applied
to the model parameters that have already been updated
by the earlier gradients. Therefore, the delayed gradient
problem still remains. For example, F2

2 uses the local model
parameters x22, which are initialized to x̄2. However, x̄2 is
updated at B12. Therefore, the gradients calculated at B22 are
applied to the master model parameters which have already
been updated at B12. As a result, the delayed gradient problem
still remains unresolved.

EA-Pipe addresses the persistent delayed gradient problem
remained even after resolving the weight inconsistency
problem by generatingmultiplemodel replicas in PipeDream.
To tackle this problem, EA-Pipe approaches the delayed
gradient problem from the perspective of data parallelism and
applies the elastic averaging algorithm previously studied in
the context of data parallelism.

B. ELASTIC AVERAGING ALGORITHM
The elastic averaging algorithm [19] was proposed to reduce
the communication cost in data parallelism, by enabling each
computing node to conduct more local training computations
and explore more extensively away from the master model
before synchronization. Each local model is maintained as
if it is connected with the master model by an elastic
force, which constrains the distance between the local and
master model parameters. The stronger the elastic force is,
the more the distance between the local and master model
parameters is constrained. While training, each local model
fluctuates around the master model. Therefore, the risk of the
master model falling into local optima may be reduced. The
synchronization equation of the elastic averaging algorithm
in data parallelism is as follows:

x← xn
xn← xn − α(x− x̄)

x̄← x̄+ α(x− x̄), (1)

where xn and x̄ denote the n-th local and master model
parameters, respectively. α indicates the strength of the elastic
force between the local and master models.

EA-Pipe incorporates the elastic averaging algorithm
into pipeline parallelism. As a result, the synchronization
of model parameters occurs partially, unlike the elastic
averaging algorithm in data parallelism. Further details on
parameter synchronization in EA-Pipe will be discussed in
Section III.
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FIGURE 2. An example workflow of EA-Pipe with two computing nodes
when synchronization period is set to 2. In (a), the highlighted boxes
represent the backward passes and synchronization with the master
model. In (b), ⟨F tf , B

tb
2 ⟩ = ⟨F

tf
1 , F

tf
2 , B

tb
2 ⟩.

III. PROPOSED METHOD
In this section, we propose a novel pipeline parallelism
method, called EA-Pipe, which mitigates the weight incon-
sistency and delayed gradient problems at the same time. This
section is divided into four subsections. Firstly, we introduce
the pipeline scheduling of EA-Pipe. Secondly, we present the
algorithm of EA-Pipe in pseudo-code. Thirdly, we analyze
the convergence property of EA-Pipe. Lastly, we com-
pare EA-Pipe with a recent work that uses similar
approaches.

A. PIPELINE SCHEDULING OF EA-PIPE
EA-Pipe follows the same structure as PipeDream in
Fig. 1(b). However, unlike PipeDream, the local models in
EA-Pipe update their parameters locally without synchro-
nizing with the master model parameters until a specific
synchronization period is reached. Fig. 2 shows an example
workflow of EA-Pipe with two computing nodes when
synchronization period is set to 2. In Fig. 2(a), the local model
parameters are updated locally without synchronization with
the master model parameters. For example, at the backward
pass B12, the computed gradients cause the local model
parameters to be updated from x12 to x12

′
. However, once the

synchronization period is reached, the backward pass (e.g.,
B32) not only updates the local model parameters but also
synchronizes them with the master model parameters based
on Eq. (1).

Algorithm 1 EA-Pipe: Executed by Computing Node n in
Parallel With All Other Computing Nodes
Initialize partitioned master model x̄n.
Copy x̄n to the replicas of the partitioned local models
x1n,x

2
n,· · · ,x

N
n .

Set tf and tb to 1.
repeat
if not final phase then // forward pass

if (1 < n) then
Wait for F tfn−1 to be finished.

end if
i← mod(tf − 1,N )+ 1
Execute F tfn using xin.
if (n < N ) then
Send the result of F tfn to node n+ 1.

end if
tf← tf + 1

end if
if not initial phase then // backward pass

if (n < N ) then
Wait for Btbn+1 to be finished

end if
Execute Btbn as follows:
i← mod(tb − 1,N )+ 1
x← xin
xin← xin − ηg(x)
if τ divides ⌈tb/N⌉

xin← xin − α(x− x̄n)
x̄n← x̄n + α(x− x̄n)

end if
if (n > 1) then
Backpropagate the error to node n− 1 using x.

end if
tb← tb + 1

end if
until (tf and tb equal T )

Fig. 2(b) shows how the parameters are updated in the
second computing node by EA-Pipe in a virtual parameter
space. For example, the second computing node updates the
local model parameters x22 during B

2
2. As the synchronization

period of 2 has not been reached yet, synchronization
with the master model does not occur. Then, the second
computing node updates x22 again during B42. At this point,
as the synchronization period of 2 has been reached, the
second computing node synchronizes x22 with the master
model parameters x̄2. The highlighted arrow lines indicate
the backward passes for each local model when it reaches
the synchronization period, while the dashed arrow lines
represent the synchronization process where the local model
and master model pull each other.

B. ALGORITHM
A pseudo-code of EA-Pipe is shown in Algorithm 1, which
is executed by all computing nodes simultaneously. τ and
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T indicate the synchronization period and the total number
of mini-batches, respectively. N represents the total number
of computing nodes, hence the number of partitioned master
models. The size of each partitioned model is, therefore, one
1/N of the original model size, if it is divided evenly. The
term initial phase refers to the beginning of the pipeline
scheduling timeline when only forward passes are executed
to fill the pipeline. Similarly, the term final phase refers
to the ends of the pipeline scheduling timeline when only
backward passes are left to be executed to flush the pipeline.
The forward pass F tfn is executed followed by the backward
pass Btbn at each iteration. The model parameters x̄n and xin
are synchronized at the end of the backward pass whenever
⌈tb/N⌉ is divided by τ . g(x) represents the gradient computed
using model parameter x.

C. CONVERGENCE ANALYSIS
In this section, we will discuss the convergence property
of EA-Pipe. Previous studies have limited analysis on
the elastic averaging algorithm. For example, the analysis
in [19] covered only one local update for quadratic objective
functions. The convergence analysis presented in [20] is
only for a synchronous elastic averaging algorithm. There-
fore, the convergence analysis of an asynchronous elastic
averaging algorithm remains an open question. In EA-Pipe,
the local models are synchronized with the master model
sequentially, which can be considered as a round-robin data
parallelism [21]. As shown in Fig. 2(b), we can observe
that the synchronization order between the master model
x̄ and the set of local models {x1, x2} is always round-
robin (i.e., x1→x2→x1→· · · ). Based on this observation,
we will discuss the convergence property of EA-Pipe from
the perspective of asynchronous elastic averaging algorithm
in round-robin data parallelism.

The objective function F(x) that we are interested in is
defined as follows:

F(x) :=
1
N

N∑
i=1

Es∼Di [L(x, s)], (2)

which is commonly used for convergence analysis in the
synchronous or asynchronous data parallelism [20], [22],
[23]. Here x∈Rd ,N , andDi denote the model parameters, the
number of local models, and the local data distribution for the
i-th local model, respectively. L denotes the loss function.

Based on the analysis in [20] and [22] which proves
the convergence rate of distributed SGD algorithms with
local updates on non-convex objectives, we can derive the
following theorem, which guarantees that EA-Pipe converges
to stationary points of non-convex objective functions with
the same error bound as a synchronous elastic averaging
algorithm.
Theorem 1: Let L, η, τ , σ 2, ζ , and K be the Lipschitz

constant, learning rate, synchronization period, bound of
gradient variance, magnitude of the second largest eigen-
value (see Appendix A), and the total number of iterations,

respectively. Then, the convergence rate of EA-Pipe is as
follows:

1
K

K−1∑
k=0

E[∥∇F(yk )∥2]

≤
2(F(y0)− Finf)

ηeffK
+

ηeffLσ 2

N

+ η2effL
2σ 2

(
1+ ζ 2

1− ζ 2 τ − 1
) (

1+
1
N

)2

, (3)

where yk , Finf, and ηeff denote the average of local and
master model parameters at k-th time-step, the lower bound
of the objective function, and an effective learning rate N

N+1η,
respectively.

Theorem 1 demonstrates that if the learning rate η is chosen
properly and the total number of iterations K is large enough,
the error bound of the EA-Pipe algorithm is equal to that
of the synchronous elastic averaging algorithm in [20]. The
detailed proof of the theorem is provided in Appendix A.

D. COMPARISON TO SIMILAR WORKS
Recently, AvgPipe is proposed to enhance the throughput
of pipeline parallelism by combining elastic averaging
algorithm into pipeline parallelism [24]. Although AvgPipe
and EA-Pipe shares similarities, we highlight some distinc-
tions between their approach and ours. First, while AvgPipe
is designed to operate at micro-batch level which has a
constraint on the size of mini-batch, EA-Pipe is devised
to operate at the mini-batch level without any size con-
straint. Second, while AvgPipe introduced elastic averaging
algorithm to increase the throughput of pipeline parallelism,
our approach proposes integrating the elastic averaging
algorithm to address the delayed gradient problems. Last but
not least, in contrast to [24], we conducted an analysis of the
convergence property of pipeline parallelism with the elastic
averaging algorithm.

IV. EXPERIMENTS
In this section, we explain three types of experiments
conducted to verify the performance of the proposed method:
small-scale, mid-scale, and large-scale experiments. The
small-scale experiment evaluates EA-Pipe for an image
classification task using CIFAR-10 dataset with VGG-16
[16] as the DNN model. The CIFAR-10 dataset has 60,000
32 × 32 color images in 10 classes, with 6,000 images
per class. There are 50,000 training images and 10,000
test images. To prevent overfitting during model training,
we employed an image augmentation technique. VGG-16 is
a convolutional neural network architecture with 16 layers,
including 13 convolutional layers and 3 fully connected
layers.

We compared four training methods: the conventional
sequential SGD (denoted as SGD in the Tables and Figures),
PipeDream [15], SpecTrain [17], and the proposed EA-Pipe.
Since SGD with momentum is commonly employed in
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TABLE 1. Image classification error rates (%) and 95% confidence
interval of the four training methods using the CIFAR-10 dataset and the
VGG-16 model with varying number of GPUs (small-scale experiment).

TABLE 2. Computational overhead of the four training methods in the
small-scale experiment, measured by the average training time (in
seconds) per epoch.

TABLE 3. Statistical efficiency of the four training methods in the
small-scale experiment, measured by the total training time (in hours) to
reach the lowest error rates.

computer vision tasks, we chose SGD as the baseline of
the sequential training method [25]. We included SpecTrain,
which addresses the weight inconsistency and delayed
gradient problems through model parameter prediction. All
methods were implemented in CUDA/C++. The performance
of each training method was measured on a server with an
Intel Xeon Silver 4110 CPU and eight NVIDIA GeForce
RTX 2080 Ti GPUs.

The performances of the models trained with each
algorithm were measured by the ratio of the misclassified
images in the test data. We ran three repetitions of the
experiments each with different random initial weights, and
the average performance with 95% confidence interval for
eachmethod is reported here. The best case results of the three
repetitions can be found in Appendices B, C, andD. The same
evaluation protocol was consistently maintained throughout
the subsequent experiments.

In the second experiment (mid-scale experiment),
we scaled up from the first experiment, assessing EA-Pipe
for an image classification task usingCIFAR-100 dataset with
ResNet-34 [31] as the DNN models. The CIFAR-100 dataset
closely resembles CIFAR-10, except that it has 100 classes
containing 600 images each. ResNet-34 is a variant of the
residual network architecture with 34 layers, utilizing skip
connections to address training challenges in deep neural
networks. We compared four training methods, as in the
previous experiment.

The third experiment compares EA-Pipe and PipeDream to
further verify the effect of the delayed gradients on a larger

scale of parallelism. We conducted the experiment using
the ResNet-50 model and the ImageNet dataset, simulating
PipeDream and EA-Pipe on a virtual 50-GPU environment.
The ImageNet dataset contains 1,281,167 training images,
50,000 validation images and 100,000 test images in 1,000
classes. The main objective of the third experiment is to
evaluate the effectiveness of EA-Pipe in addressing the
delayed gradient problem for large-scale environments. The
simulation experiment was conducted on a server with an
Intel i5-10600K CPU and an NVIDIA RTX 2080 Ti GPU.

A. EXPERIMENTAL RESULTS ON CIFAR-10 WITH VGG-16
(SMALL-SCALE EXPERIMENT)
We conducted small-scale experiments using the CIFAR-10
dataset and the VGG-16 model with varying number of
GPUs (one, two, four, and eight). For all four methods,
we tried batch sizes of 128, 64, 32, and 16, and learning
rates of 0.1 and 0.01. The number of training epochs was
set to 100. Learning rates were reduced to one tenth after
every 30 epochs. For SpecTrain training, however, it did not
converge with the previously chosen learning rate candidates.
Thus, we conducted additional SpecTrain training using
learning rates of 0.001, 0.0005, 0.0003, 0.0001, paired with
the batch sizes of 128, 64, 32, and 16, respectively. For
EA-Pipe, we set the communication period to 1 andmeasured
the best performance by varying the elastic force (0.1, 0.3, and
0.5).

Table 1 summarizes the results of the small-scale experi-
ment. It was found that a batch size of 16 and a learning rate of
0.01 were the optimal hyperparameters for SGD, PipeDream,
and EA-Pipe, while a batch size of 32 and a learning rate
of 0.0003 were the optimal hyperparameters for SpecTrain.
EA-Pipe showed the best performance at an elastic force of
0.3. SGD showed the lowest error rate of 7.36%. SpecTrain
succeeded in training only when the learning rate was
set to a small value (0.0005), while reaching higher error
rates compared to PipeDream and EA-Pipe. PipeDream and
the proposed method, EA-Pipe, did not exhibit significant
differences. Therefore, additional validation of the proposed
method was necessary through larger scale experiments,
which will be discussed shortly.

Table 2 shows the computational overhead for the four
training methods in the small-scale experiment. The com-
putational overhead was calculated by dividing the total
training time (in seconds) by the total number of epochs.
SpecTrain showed a lower computational overhead compared
to PipeDream and EA-Pipe since it used a batch size of
32, while PipeDream and EA-Pipe used a batch size of 16.
These were the optimal values for each training method.
Though SpecTrain was the fastest, it showed the worst
image classification accuracy. Both PipeDream and EA-Pipe
showed a reduction in computational overhead as the number
of GPUs increased. EA-Pipe exhibited a slightly higher
computational overhead compared to PipeDream.

Table 3 shows the statistical efficiency of the four training
methods measured by the total training time to reach the
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TABLE 4. Image classification performance (average error rates in % and 95% confidence interval) of the four training methods using the CIFAR-100
dataset and the ResNet-34 model on 8 GPUs (mid-scale experiment).

TABLE 5. Computational overhead of the four training methods in the
mid-scale experiment, measured by the average training time (in
seconds) per epoch.

TABLE 6. Statistical efficiency of the four training methods in the
mid-scale experiment, measured by the total training time (in hours) to
reach the lowest error rates.

lowest error rates. As can be seen in Tables 2 and 3, we doubt
that EA-Pipe is appropriate for small scale parallelism.

B. EXPERIMENTAL RESULTS ON CIFAR-100 WITH
RESNET-34 (MID-SCALE EXPERIMENT)
We conducted a mid-scale experiment using the CIFAR-
100 dataset and the ResNet-34 model on 8 GPUs. For all
four methods, we employed batch sizes of 64, 32, and 16,
and learning rates of 0.1 and 0.01. The number of training
epochs was set to 100. Learning rates were reduced to
one tenth after every 30 epochs. For SpecTrain, however, it
did not converge with the previously chosen learning rate
candidates. Thus, we conducted additional SpecTrain training
using learning rates of 0.001, 0.0005, 0.0003, paired with
the batch sizes of 64, 32, and 16, respectively. For EA-Pipe,
we set the communication period to 1 and measured the best
performance by varying the elastic force (0.1, 0.3, and 0.5).

Table 4 presents the results of the mid-scale experiment.
Both PipeDream and EA-Pipe reached at the lowest error
rates at a batch size of 16 and a learning rate of 0.01. Except
for when using a batch size of 16 and a learning rate of
0.1, EA-Pipe achieved lower error rates than PipeDream
in all cases. SpecTrain failed to be trained at batch sizes
of 64, 32, and 16, and learning rates of 0.1 and 0.01.
Similar to the first experiment (Section IV-A), SpecTrain
only succeeded in training when the learning rate was set
to a smaller value (0.0003), while reaching higher error
rates compared to PipeDream and EA-Pipe. We can suspect

that using the weight prediction of SpecTrain to address the
weight inconsistency and delayed gradient problems might
not be effective.

Fig. 3 depicts the error rate curves for the three methods
(SGD, PipeDream, and EA-Pipe). We did not include
SpecTrain, since it showed the worst error rates. The
robustness of EA-Pipe can be observed in the error rate
graphs. At high learning rates (e.g., between 0 and 30 epochs),
PipeDream exhibits slow convergence speed and unstable
model training trends. On the other hand, EA-Pipe shows
stable model training trends similar to SGD.

In Table 5, we compare the computational overhead of the
four training methods in the mid-scale experiment. Similar
to the small-scale experiment, EA-Pipe exhibited a slightly
higher computational overhead compared to PipeDream.
However, as can be seen in Table 6, in terms of the total
training time taken to reach the lowest error rate, EA-Pipe
is the most efficient one among the four training methods.
We suspect that the effciency of EA-Pipe will be more evident
as the size of parallelism gets larger, which is discussed in the
next section.

C. EXPERIMENTAL RESULTS OF LARGE-SCALE
PARALLELISM
In the previous section, we observed statistical efficiency
and stability in training for EA-Pipe. However, it was not
enough to confirm the adverse effect of the delayed gradient
problem. Therefore, a large-scale experiment was conducted.
Due to the lack of available computing accelerators, we con-
ducted a large-scale parallelism experiment of EA-Pipe and
PipeDream running in a 50-GPU simulated environment.
To carry out the evaluation, we chose an image classification
task on the ImageNet dataset using the ResNet-50 model.

Since an ImageNet experiment requires a significant
amount of time for a training method to complete the whole
training process, we selected a batch size of 64, which is
the maximum size that the GPU memory can accommodate.
To determine the optimal learning rate, we first evaluated
10% of the ImageNet dataset and found out that 0.06 was the
best learning rate among the candidates of 0.1, 0.06, 0.03,
and 0.01. Then, we evaluated the entire ImageNet dataset
using the learning rate of 0.06, as well as two adjacent
values (0.08 and 0.04). As a result, we identified 0.04 as the
optimal learning rate. For the sake of fairness, PipeDream and
EA-Pipe utilizes the same batch size and learning rate values.
The number of training epochs was set to 100. Learning rates
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FIGURE 3. Training curves for the three training methods using the CIFAR-100 dataset with the ResNet-34 model on 8 GPUs.

TABLE 7. Image classification error rates (%) and 95% confidence
intervals of the three training methods using the ImageNet dataset and
the ResNet-50 model on 50 GPUs (large-scale experiment).

FIGURE 4. Training curves of the three training methods using the
ImageNet dataset and the ResNet-50 model on 50 GPUs.

were reduced to one tenth after every 30 epochs. For EA-Pipe,
we set the communication period to 1 and the elastic force
to 0.1.

Table 7 shows the results of the three training methods
using the ImageNet dataset and the ResNet-50 model
on 50 GPUs. In the large-scale setting, EA-Pipe achieved

lower error rate than PipeDream. As we suspected ear-
lier, the delayed gradients become more problematic in
large-scale parallelism, validating the need for a method
solving the delayed gradient problem efficiently, such as
EA-Pipe.

Fig. 4 depicts the error rate curves for these methods.
We can observe that EA-Pipe shows a more stable learning
property compared to PipeDream at large learning rates
as observed in the previous section. This is due to the
following fact. Since the effective weight change (i.e.
gradients multiplied by the learning rate) is relatively large
compared to small learning rate cases, the delayed gradients
become more problematic in PipeDream.

V. CONCLUSION AND FUTURE WORK
In this study, a novel pipelined parallel SGD algorithm, EA-
Pipe, has been proposed to mitigate the delayed gradient
problem that occurs in pipeline parallelism. It utilizes the
multiple model replicas and synchronizes them based on
an elastic averaging scheme. Some conventional approaches
reduce the batch size and learning rate to alleviate the delayed
gradient problem to some extent, which can reduce the
GPU hardware utilization and/or increase the training time.
Our proposed method does not need to adjust the batch
size and learning rate, thereby reducing the hyperparameter
optimization time. The experimental results confirmed that
the proposed method can achieve comparable error rates to
SGD and show the efficacy of parallel training in large-
scale environments. In addition, we analyzed the convergence
property of EA-Pipe, and confirmed that the error bound
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is the same as the synchronous elastic averaging algorithm.
However, the proposed method could have a disadvantage in
terms of memory utilization because it creates multiple model
replicas. This disadvantage could constrain the training
of very large models, which can be left to a future
work.

APPENDIX A
PROOF OF THEOREM 1
In EA-Pipe, the local models are synchronized with the
master model in round-robin manner, which makes the model
parallelism of EA-Pipe as the round-robin data parallelism.
At each time step k , all local computing nodes update their
model parameters, and at every synchronization period, they
are synchronized with the master model in a round-robin
manner. The typical round-robin elastic averaging algorithms
for the local models and the master model are Algorithm 2
and Algorithm 3, respectively.
K , η, α and τ denote the total number of time steps

(iterations), learning rate, elastic force value, and syn-
chronization period, respectively. g(xi,k , si,k ) indicates the
stochastic gradients computed on a randomly sampled mini-
batch si,k ∼ Di, where i and k indicate the indices
for the local model and time-step, respectively. Note that
the EA-Pipe in Algorithm 1 is a special case of these
algorithms, which effectively implement the round-robin
elastic averaging through the pipeline parallelism.

These algorithms optimize the following objective func-
tion.

F(x) :=
1
N

N∑
i=1

Es∼Di [L(x, s)]+ ρ∥xi − x̄∥2 (4)

The equivalence of Eq. (4) and the following objective
function that we are interested in is studied in the lit-
erature and it is known as the global variable consensus
problem [26].

F(x) :=
1
N

N∑
i=1

Es∼Di [L(x, s)] (5)

Therefore, we will be focusing on the convergence analysis
of Eq. (5).

In order to analyze the convergence property of the
round-robin elastic averaging algorithms, we utilize the
Theorem 1 in [20], which is based on the following
assumptions.
Assumption 1 (L-Smoothness): We assume that each local

objective function Fi(x) := Es∼Di [L(x, s)] is L-smooth such
that

∥∇Fi(x)−∇Fi(y)∥ ≤ L∥x− y∥, (6)

where i ∈ {1, 2, · · · ,N } and x, y ∈ Rd .
Assumption 2 (Lower Bound): We assume that F(x) has a

lower bound Finf such that:

F(x) ≥ Finf. (7)

Algorithm 2 Round-Robin Elastic Averaging Algorithm for
Local Model Parameter xi

1: Initialize xi

2: k = 0
3: repeat
4: if k mod τ = 0 then
5: Wait until x̄k is synchronized with xi−1,k .
6: xi,k+1← xi,k − ηg(xi,k , si,k )− α(xi,k − x̄k )
7: else
8: xi,k+1← xi,k − ηg(xi,k , si,k )
9: end if
10: k ← k + 1
11: until k equals K

Algorithm 3 Round-Robin Elastic Averaging Algorithm for
Master Model Parameter x̄
1: Initialize x̄
2: k = 0
3: repeat
4: if k mod τ = 0 then // round-robin elastic averaging
5: for i = 1 to N do
6: Wait until xi,k is ready.
7: x̄k ← x̄k + α(xi,k − x̄k )
8: end for
9: x̄k+1← x̄k

10: end if
11: k ← k + 1
12: until k equals K

Assumption 3 (Unbiased Gradients): We assume that the
stochastic gradients are unbiased estimators of local objec-
tives gradients such that

Es∼Di [g(x, s)] = ∇F(x), g(x, s) = ∇L(x, s). (8)

Assumption 4 (Bounded Variance): We assume that the
variance of stochastic gradients is bounded by some con-
stants β, σ ≥ 0 such that

Es∼Di [∥∇F(x)− g(x, s)∥
2] ≤ β∥∇F(x)∥2 + σ 2. (9)

Assumption 5 (Mixing Matrix): We assume that the mix-
ing matrix W satisfies W1 = 1, W⊤ = W. Besides,
the magnitudes of all eigenvalues except the largest one are
strictly less than 1 such that

max{|λ2(W)|, · · · } < λ1(W) = 1. (10)

In order to utilize the proof techniques in [20] and [22],
we build a matrix-form update rule. Let matrices Xk and
Gk ∈ R(d×(N+1)) be the stacks of all model parameters and
stochastic gradients respectively, as follows:

Xk = [x1,k , · · · , xN ,k , x̄k ], (11)

Gk = [g(x1,k , s1,k ), · · · , g(xN ,k , sN ,k ), 0]. (12)

Then, we can write the update rule of EA-Pipe as follows:

Xk+1 = (Xk − η ·Gk ) · Sk , (13)
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where Sk ∈ R(N+1)×(N+1) is the synchronization matrix
which represents the mixing pattern between the local models
and the master model. Sk is defined as follows:

Sk =

{
W k mod τ = 0
I Otherwise

. (14)

The identity matrix I means that synchronization does not
occur between the local models and the master model.
On the other hand,W is called amixingmatrixwhich includes
the synchronization operation between the local models and
the master model based on the round-robin elastic averaging
algorithm.
Remark 1: Instead of Eq. (13), one can use an alternative

rule: Xk+1 = Xk · Sk − η ·Gk . However, according to [20],
the convergence analysis on Eq. (13) can be extended to the
alternative rule. Therefore, we will choose the update rule
Eq. (13) to prove Theorem 1.

The mixing matrix W of the EA-Pipe algorithm does not
satisfy Assumption 5. Nonetheless, in order to apply the proof
in [20] without Assumption 5, we will first verify whether
the mixing matrix W in the round-robin elastic averaging
algorithm satisfies the following conditions.
1) W is a doubly-stochastic matrix.
2) W is a primitive and irreducible matrix.
3) W⊤W is a positive matrix.

A. PROOF OF CONDITION 1
Lemma 1: Let Ml

∈R(N+1)×(N+1) denote the linear map
between the l-th local model and the master model. For
instance, when N = 2, we haveM1 andM2 given by:

M1
=

1− α 0 α

0 1 0
α 0 1− α

 , M2
=

1 0 0
0 1− α α

0 α 1− α

 ,

where 0 < α < 1. Then, the mixing matrixW =M1
× · · · ×

MN becomes a doubly-stochastic matrix.
Proof: SinceMl satisfies the following conditions,Ml is a

doubly-stochastic matrix.

N+1∑
i=1

Ml
ij =

N+1∑
j=1

Ml
ij = 1,

where l ∈ {1, 2, · · · ,N }, Mij ≥ 0, and i, j ∈
{1, 2, · · · ,N +1}. According to Lemma 2, the product of two
doubly-stochastic matrix is also a doubly-stochastic matrix.
Therefore, the mixingmatrixW =M1

×· · ·×MN is a doubly-
stochastic matrix. □
Lemma 2: Let A,B ∈ Rn×n be doubly-stochastic matri-

ces. Then C = AB is also a doubly-stochastic matrix.
Proof: Let aij, bij, and cij denote the element in the i-th row

and j-th column of matricesA, B, andC, respectively. We can

see that the sum of the element in each row of C is 1.

n∑
i=1

cij =
n∑
i=1

(
n∑

k=1

aikbkj)

=

n∑
k=1

(bkj
n∑
i=1

aik )

=

n∑
k=1

bkj ∵
n∑
i=1

aik = 1

= 1

Similarly, we can see that the sum of the element in each
column of C is 1. Therefore, C = AB is also a doubly
stochastic matrix. Moreover, because aij, bij ≥ 0 for all
1 ≤ i, j ≤ n, one can ensure cij ≥ 0. □

B. PROOF OF CONDITION 2
According to Lemma 3, we can see thatW is a primitive and
irreducible matrix.
Lemma 3: The mixing matrix W ∈ R(N+1)×(N+1) in the

round-robin elastic averaging algorithm can be written as
follows:

W =


w1(N+1)

...A
wN (N+1)

w(N+1)1 · · · w(N+1)N w(N+1)(N+1)

 , (15)

where A denotes the non-negative matrix with size of RN×N

and wij is the entry ofW at i-th row and j-th column.
Since all the local models are synchronized with the master

model, the elements in the last row and the last column ofW
are always positive. Therefore, no matter what A is, W2

=

WW always becomes a positive matrix. Consequently, W is
a primitive and irreducible matrix.

C. PROOF OF CONDITION 3
According to Eq. (15), the entries in the last row and the last
column of W is always positive, which means the entries in
the last row and the last column ofW⊤ is also always positive.
Therefore, W⊤W becomes a positive matrix.

D. PROOF OF THEOREM 1
Now that we have confirmed that the mixing matrix W sat-
isfies the required conditions, we can apply the convergence
proof technique used in [20] and [22] without Assumption 5.
Recall the update rule of the round-robin elastic averaging
algorithm.

Xk+1 = (Xk − η ·Gk ) · Sk

Sk =

{
W k mod τ = 0
Ik Otherwise

Let v = [ 1
N+1 , · · · ,

1
N+1 ] ∈ RN+1. Then, since W is a

doubly-stochastic matrix, Wv = v and hence Skv = v.
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By multiplying v on both sides of the update rule, we have:

Xk+1v = Xkv− η ·Gkv (16)

= Xkv−
η

N + 1

N∑
i=1

g(xi,k , si,k ). (17)

To simplify the equation, we define an averaged variable
yk := Xkv = 1

N+1

∑N
i=1 x

i,k
+

1
N+1 x̄

k and an effective
learning rate ηeff :=

N
N+1η. Using these definitions, the

update rule (17) becomes

yk+1 = yk −
ηeff

N

N∑
i=1

g(xi,k , si,k ). (18)

Following [27], [28], and [29], we analyze the convergence
property of the round-robin elastic averaging algorithm with
respect to yk .

By utilizing the intermediate result from the proof of
Lemma 2 in [20] (specifically, Eq. (61) in [20]), we get the
following equation (when ηeffL

(
1+ β

N

)
≤ 1):

1
K

K−1∑
k=0

E[∥∇F(yk )∥2]

≤
2[F(y0)− Finf]

ηeffK
+

ηeffLσ 2

N

+
L2

KN

K−1∑
k=0

N∑
i=1

E[∥yk − xi,k∥2]

−

[
1− ηeffL

(
β

N
+ 1

)]
1
KN

K−1∑
k=0

N∑
i=1

E[∥∇F(xi,k )∥2].

(19)

We can derive an upper bound for the third term of the right
hand side of Eq. (19) as follows:

N∑
i=1

∥yk − xi,k∥2 ≤
N∑
i=1

∥yk − xi,k∥2 + ∥yk − x̄k∥2 (20)

= ∥Xk (I− v1⊤)∥2F, (21)

where ∥·∥F is the Frobenius matrix norm.
According to the update rule (13) and repeatedly using the

fact Wv = v, 1⊤W = 1⊤ and v⊤1 = 1, we have:

Xk (I− v1⊤) = (Xk−1 − ηGk−1)Sk−1(I− v1⊤) (22)

= −η

k−1∑
j=0

Gj

k−1∏
s=j

Ss − v1⊤

 . (23)

Therefore,

N∑
i=1

∥yk − xi,k∥2 ≤ η2

∥∥∥∥∥∥
k−1∑
j=0

Gj

k−1∏
s=j

Ss − v1⊤

∥∥∥∥∥∥
2

F

, (24)

where ∏
k

Sk =
∏
k

Wk . (25)

In order to keep utilizing the proof sequence of [20],
we need to ensure that ∥Wn

− v1⊤∥op must be strictly less
than 1, where ∥·∥op is the operator norm. The following
lemmas guarantees that ∥Wn

− v1⊤∥op < 1.
Lemma 4: Let W and J ∈ Rn×n be a asymmetric doubly

stochastic matrix with non-negative element and 11⊤/1⊤1,
respectively. Then, the operator norm on W − J is always
less than 1.

∥W− J∥op = ζ < 1 (26)

Proof: The operator norm ofA is defined as
√

λmax(A⊤A),
where λmax(A⊤A) is the maximum eigenvalue of A⊤A. That
is, ∥W− J∥op is the square root on the maximum eigenvalue
of (W− J)⊤(W− J). (W− J)⊤(W− J) can be expanded as
follows:

(W− J)⊤(W− J) = (W⊤ − J⊤)(W− J)

=W⊤W− J⊤W−W⊤J+ J⊤J

=W⊤W− J− J+ J

=W⊤W− J. (27)

Here, we can observe the followings:
1) BothW andW⊤ are doubly stochastic matrices.
2) W⊤W is a symmetric real matrix, which is diagonaliz-

able [30]. Also, according to Lemma 3, it is a positive
matrix.

3) According to Lemma 2, W⊤W is a doubly stochastic
matrix.

4) LetW⊤W = Z, then ZJ = JZ.
5) Since all elements of W are non-negative, all elements

of Z are also non-negative.
Based on the above observations, we can diagonalize Z and
J simultaneously. We decompose Z as follows:

Z = Q3Q⊤, where 3 = diag{λ1(Z), λ2(Z), · · · , λn(Z)}.

(28)

Since Z is a doubly stochastic matrix, the maximum
eigenvalue of Z, λ1(Z), is 1. Similarly, the matrix J can be
decomposed as Q30Q⊤ where 30 = diag{1, 0, · · · , 0}.
Then, we have:

Z− J = Q(3−30)Q⊤. (29)

Now, themaximum eigenvalue ofZ− J is max{0, λ2(Z ), · · · ,
λn(Z )}. Here, we consider two cases:
• If all λ2(Z), · · · , λn(Z) are negative, the maximum
eigenvalue of Z− J is 0.

• If one of λ2(Z), · · · , λn(Z) is positive, the maximum
eigenvalue of Z− J is positive. Furthermore, according
to Perron-Frobenius theorem [31], [32], since Z is a
positive primitive stochastic matrix, there is only one
eigenvalue 1. All other eigenvalues are smaller than 1.
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TABLE 8. Image classification error rates (%) of the four training methods
using the CIFAR-10 dataset and the VGG-16 model with varying number of
GPUs.

As a result, ∥W− J∥op = ζ is non-negative and strictly less
than 1. □
Lemma 5: LetW and J ∈ Rn×n be an asymmetric doubly

stochastic matrix with non-negative element and 11⊤/1⊤1,
respectively. Then, the operator norm on Wn

− J is always
less than or equal to ζ n, where ζ is the operator norm on
W− J.

∥Wn
− J∥op ≤ ζ n, where ∥W− J∥op = ζ (30)

Proof: We can prove it by induction on n.
Base case (n = 1): We have ∥W1

− J∥op = ζ 1
≤ ζ .

Inductive hypothesis: Assume that the equation holds for
n = k.
Inductive step: Let n = k + 1, then

∥Wk+1
− J∥op = ∥(W− J)(Wk

− J)∥op
≤ ∥W− J∥op∥Wk

− J∥op
≤ ζ · ζ k ∵ Inductive hypothesis

= ζ k+1.

Now we complete the proof on Lemma 5. □
By Lemma 5, we do not need Assumption 5 in [20], and

we can apply the same procedure of Appendix D.2 in [20] to
get the following final result:

1
K

K−1∑
k=0

E[∥∇F(yk )∥2]

≤
2[F(y0)− Finf]

ηeffK
+

ηeffLσ 2

N

+ η2effL
2σ 2

(
1+ ζ 2

1− ζ 2 τ − 1
) (

1+
1
N

)2

. (31)

APPENDIX B
BEST CASE RESULTS OF THE SMALL-SCALE EXPERIMENT
Table 8 shows the best case results of the four training
methods on the CIFAR-10 dataset using the VGG-16 model
with varying number of GPUs.We observed the similar trends
as in Table 1.

APPENDIX C
BEST CASE RESULTS OF THE MID-SCALE EXPERIMENT
Table 9 shows the best case results of the four training
methods using the CIFAR-100 dataset and the ResNet-34
model on 8 GPUs. We observed the similar trends as in
Table 4.

TABLE 9. Image classification error rates (%) of the four training methods
using the CIFAR-100 dataset and the ResNet-34 model on 8 GPUs.

TABLE 10. Image classification error rates (%) of the three training
methods using the ImageNet dataset and the ResNet-50 model
on 50 GPUs.

APPENDIX D
BEST CASE RESULTS OF THE LARGE-SCALE EXPERIMENT
Table 10 shows the best case results of the three training
methods using the ImageNet dataset and the ResNet-50
model on 50 GPUs. We observed the similar trends as in
Table 7.
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