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ABSTRACT Whale optimization algorithm (WOA) is a swarm-based optimization algorithm with excep-
tional performance and significant originality. In this study, a novel variant ofWOA called nonlinear adaptive
weight-based mutated WOA (NAWMWOA) is proposed to overcome the shortcomings of original WOA
such as easily falling into local optimum and slow convergence speed. In detail, the proposed NAWMWOA
includes three novel strategies as comparing with original WOA. Firstly, a nonlinear convergence factor is
embedded into the original WOA to balance exploration and exploitation ability. The second improvement
is an adaptive weight strategy, which can enhance the exploratory searching trends and improve the solution
accuracy.Moreover, the thirdly proposed hybridmutation strategy has the function of increasing the accuracy
and jumping out of the local optimum. The combination of the three strategies significantly improve
convergence efficiency and search accuracy of original WOA. To verify the remarkable performance of
the proposed NAWMWOA, a series of illustrious WOA variants and state-of-the-art intelligent algorithms
is compared with the NAWMWOA on 37 benchmark functions and three typical engineering problems. The
details of experimental and statistics results illustrate that the presentedNAWMWOAhas higher convergence
efficiency and better solution accuracy. As a conclusion, the proposed NAWMWOA is a competitive and
outstanding algorithm that can effectively solve optimization problems in practical engineering.

INDEX TERMS Whale optimization algorithm, swarm intelligence, adaptive weight, engineering design.

I. INTRODUCTION
With the rapid development of various engineering applica-
tions, traditional methods such as gradient descent, which
have the disadvantages of low efficiency and narrow applica-
tion scope, are no longer applicable to engineering problems
with increasingly high complexity and quality standards.
Therefore, meta-heuristic algorithms with the advantages
of high optimization efficiency and simple principle have
rapidly developed and widely used in various fields including
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feature selection [1], convolutional neural networks [2], col-
laborative robots [3], deep learning [4], extreme learning
machines [5], optimization of design [6], multi-threshold
color image segmentation [7], and Job-Shop scheduling
problem [8]. As meta-heuristic algorithms are required in
more and more scenarios, various novel optimization algo-
rithms have been exploited. One of the most remarkable is
swarm-based algorithms that mimic the social behavior of
natural organisms, such as horse herd optimization algorithm
(HOA) [9], marine predators algorithm (MPA) [10] slime
mould algorithm (SMA) [11], monarch butterfly optimization
(MBO) [12], binary dragonfly algorithm (BDA) [13], harris
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TABLE 1. Several famous meta-heuristic algorithms.

hawks optimization (HHO) [14] salp swarm algorithm (SSA)
[15], tunicate swarm algorithm (TSA) [16], chimp optimiza-
tion algorithm (COA) [17], butterfly optimization algorithm
(BOA) [18], flower pollination algorithm (FPA) [19], pity
beetle algorithm (PBA) [20], ant colony optimization (ACO)
[21], and chameleon swarm algorithm (CSA) [22]. In addi-
tion, evolutionary algorithms, physics-based algorithms, and
human-based algorithms are three meta-heuristic algorithms,
and some well-known algorithms among them are shown in
Table 1.
The whale optimization algorithm (WOA) [38] is a novel

swam-based algorithm proposed by Mirjalili et al. in 2016,
which mimics the unique spiral bubble net of humpback
whales during hunting to optimize engineering problems.
Compared with other algorithms, WOA has advantages of
simple structure, few setting parameters, and pure principle.
Therefore, WOA is widely applied in various fields including
function optimization [39], reservoir optimal operation [40],
structure optimization [41], sizing optimization [42] and tar-
get assignment [43]. In addition, Brodzicki et al. applied
WOA for the optimization task of hyperparameters. Sim-
ulations show that the WOA can be successfully used
for hyperparameters optimization, achieving an accuracy of
80.60% for Reuters datasets [44]. In order to ensure the safety
and reliability of the underwater vehicle, Yan et al. usedWOA
to plan the three-dimensional path of the underwater vehicle.

The results illustrate that the method has the advantages of
fast execution speed and high calculation accuracy [45].

However, the simple structure of WOA makes it easy to
fall into local optimization and lacks global search ability
when solving complex high-dimensional problems. There-
fore, some researchers have devoted themselves to devel-
oping improvement strategies for the defects of WOA and
proposed more advanced WOA, which are applied to solve
various complex problems. For example, Niu et al. proposed
a combination of oppositely adaptive whale optimization
algorithm (AWOA) to predict heat consumption rate of steam
turbines. The prediction results show that the prediction
model based on AWOA had higher prediction accuracy and
stronger generalization ability [46]. Cosine adapted modified
whale optimization algorithm (CamWOA), in which cosine
function is embedded for the selection of parameters was
proposed by Saha et al. to solve a multi-objective engineering
problem pertaining to control of switched reluctance motor
[47]. Strumberger proposed a hybridized WOA by combin-
ing with some other meta-heuristics and applied to perform
the resource scheduling problem in cloud environments.
Achieved results in all simulations illustrate that the pro-
posed hybrid WOA outperforms other meta-heuristics [48].
An improved WOA (SCA-WOA) combined with the cosine
form nonlinear convergence factor was proposed by Yue et al.
to obtain the wireless sensor network optimal coverage
scheme. The experimental results show that the method
has a significant effect in improving the network cover-
age effect [49]. Lei et al. proposed an improved WOA
(IWOA) that embeds Levy flight, opposition-based learn-
ing, and nonlinear convergence factor to optimize the mine
water optimization scheduling model. The results show that
the reuse efficiency of the multi-level scheduling method
of mine water reuse is increased by 30.2% and 31.9%,
respectively [50]. Jiao and Xiaoqing mutated WOA by intro-
ducing the crazy operator and the golden sine algorithm,
which improved the global search ability of the WOA, and
its outstanding performance was also verified in simulation
results [51]. Li et al. proposed DWOA, which embedded
the existing discretization methods into WOA, showing an
excellent performance in the knapsack problems [52]. Li et al.
gaveWOA the advantages of the DE, called DE-WOA, which
further improves the convergence speed of the model [53].
Zhou et al. introduced a teaching learning-based algorithm
and simplex method into the original WOA to achieves a bet-
ter balance between exploration and exploitation ofWOA and
successfully applied it to the multi-layer perceptron neural
network training [54]. Cai and Du proposed a novel variant of
WOA called balanced WOA by combining the dynamic bal-
ance strategy and the population reconstruction mechanism,
and the feasibility and effectiveness were verified in path
planning [55]. A variant of WOA combined with evolution
operators named IMOWOA was proposed by Qian et al., and
its effectiveness was proved in the deterministic optimization
of vehicle structure crashworthiness [56]. In order to perform
parameter optimization and feature selection simultaneously
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for SVM, Wang and Chen proposed a variant of WOA
(CMWOA), which combines chaotic and multi-swarm. The
experimental results demonstrate that CMWOA-based model
significantly outperformed all the other competitors in terms
of classification performance and feature subset size [57].
Zhang et al. proposed a novel optimization scheme called
EWOA which combined the search updating strategy and
the gray correlation mechanism, and it was applied to opti-
mize the SVM random parameters. The experimental results
prove that the EWOA-SVM model is superior to other
existing methods in terms of fast convergence speed and
high prediction accuracy [58]. In order to reasonably allo-
cate mobile conventional missile battle positions, Li et al.
optimized the original WOA using the convergence fac-
tor and the diversity mutation operation, which provides
a reference for the deployment mode of mobile missile
positions [59].
Actually, although the cosine function parameters are

utilized in CamWOA to improve convergence accuracy,
the effect is limited. The strategies such as Levy flight,
opposition-based learning, and nonlinear convergence fac-
tor are employed in IWOA to improve population diversity
of WOA, which reduces the convergence speed of the
algorithm. The communication learning mechanism pro-
posed by CMWOA improves the exploration performance
of WOA, however, the exploitation ability of population
decreases. Moreover, the dominance population used in the
WOA variants, have improved convergence speed but greatly
reduced population diversity. Thus, the current variants of
WOA proposed by researchers always have limitations and
drawbacks, and one algorithm cannot always perform as
the best on most optimization problems, and there is still
some space to improve the overall performance of the
algorithm. Therefore, a variant of WOA called nonlinear
adaptive weight-based mutated whale optimization algorithm
(NAWMWOA) has been proposed in this study, which
includes three improvement strategies: nonlinear conver-
gence factor, adaptive weight, and hybrid mutation strategy.
The nonlinear convergence factor changes nonlinearly with
the iteration time. The global search ability and local devel-
opment ability are effectively balanced with the aid of the
nonlinear convergence factor. The adaptive weight is used
to overcome the defect of easily falling into local optimum.
Inspired by the SMA and SSA, a hybrid mutation strategy
was proposed to increase population diversity and help search
agents jump out of local optimum, which can effectively
improve the search accuracy.

To verify the performance of proposed NAWMWOA,
it is compared with variants of WOA and state-of-the-art
algorithms on the basis of CEC2015 [60], CEC2021 [61],
and CEC2022 benchmark functions. Moreover, three con-
straint problems are employed to test the feasibility of
NAWMWOA for solving engineering problems. In short, the
experimental results of NAWMWOA are better than other
comparison algorithms, indicating the superiority of the pro-
posed algorithm.

The content of this study is designed as follows: Section II
will introduce the basic principle and composition of the
original WOA in detail. Section III will explain the principles
and functions of the three improvement strategies. Section IV
will conduct a full range of experiments on the proposed
NAWMWOA, including comparison with other variant of
WOA and advanced algorithms. The application effect of
the NAWMWOA in various engineering problems will be
shown in Section V. Section VI will summarize this study
and discuss the research direction in the next stage.

II. OVERVIEW OF ORIGINAL WOA
In this section, the principles and structure of the WOA will
be introduced in detail. WOA is an advanced meta-heuristic
algorithm proposed by Australian scientist Mirjalili in 2016,
which imitates the unique hunting process of humpback
whales. According to the principle of whale hunting, WOA is
divided into three stages: encircling prey, bubble-net attack-
ing method, and search for prey. Among them, the bubble net
attaching method is also called the exploitation phase, which
is mainly applied for depth searches to obtain more accurate
solutions. The search for prey is also called the exploration
phase, which has the function of widening the search scope
and improving the population diversity. Specific details of the
WOA are described in the following subsections.

A. ENCIRCLING PREY
Humpback whales can identify and surround their prey. The
location of the optimal solution in the search space is uncer-
tain. However, the location of the current optimal individual
is known. The whale updates its position to approach the
current optimal individual and encircle prey. This behavior
is represented by the following equations:

D =

∣∣∣C · X∗

(t) − X(t)

∣∣∣ (1)

where t indicates the current iteration X∗

(t) is the optimal
solution so far, X(t) represents the whale individual in the
current iteration, C is a coefficient vector, || is the absolute
value.

The process that individual updates position to the current
optimal solution is described as following:

X(t+1) = X∗

(t) − A · D (2)

where A represents a vector described by Eq. (3), (·) repre-
sents an element-by-element multiplication.

A = 2ar1 − a (3)

C = 2r2 (4)

where r1 and r2 are random vectors in the interval of [0,1].
a is a convergence factor determined by the iteration time.
As iteration time increases, a linearly decreases from 2 to 0.

B. BUBBLE-NET ATTACKING METHOD
At this stage, whales spiral upward from beneath the shoal,
creating bubbles to form bubble nets, and then surround
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Algorithm 1 Pseudocode of NAWMWOA.
Set population sizeN , maximum iteration times Tmax , and dimen-
sion number D
Initialize random position of whale Xi(i = 1, 2, . . . ,N )
Calculate the fitness values of each search agent
Get the best search agent X∗

while (t < T ) do
Update h by Eq. (11)
for each whale

Update a1, a2, w, A, C , nnR and p
Update g by Eq. (16)
if(i < N/2)

Update B by Eq. (17)
else if (i ≥ N/2) then

Update B by Eq. (18)
if (|A| ≥ 1) then

Select a random search agent Xrand
Update the position of current search agent by Eq. (15)

else if (|A| < 1) then
Update the position of current search agent by Eq. (14)

end if
else if (p ≥ 0.03) then
Update s, v by Eq. (19) and Eq. (20)
for j =1 : dim do

Select a random search agent (Xrand1, Xrand2)
if(r4 < s)
Update the position of current search by Eq. (22)

else if (r4 ≥ s) then
Update c1 by Eq. (21)
if c2 ≥ 0

Update the position of current search by Eq. (23)
else if (c2 < 0) then

Update the position of current search by Eq. (24)
end if

end if
end for

end if
end for
Check the space limits
Calculate the fitness of each search agent
Update X∗ if there is a better solution
t = t + 1

end while
return X∗

their prey with bubble nets. The mathematical model of this
process can be expressed as:

D′
=

∣∣∣X∗

(t) − X(t)

∣∣∣ (5)

X(t+1) = D′
· ebl · cos(2π l) + X∗

(t) (6)

where D′ represents the gap between the current whale and
the current optimal solution, b is a constant for defining the
shape of the logarithmic spiral, and l is a random value in the
interval of [0,1].

The two hunting methods mentioned above have a 50%
probability of being applied respectively. The mathematical
model is presented as follows:

X(t+1) =

{
X∗

(t) − A · D f p < 0.5
D′

· ebl · cos(2π l) + X∗

(t) f p ≥ 0.5
(7)

where p is a random value in the interval of [0, 1].

C. SEARCH FOR PREY
In addition, the whale will change the hunting method based
on the change of vector A. When |A| > 1, the whale will
randomly select another individual as the target to update the
position. The mathematical model is as follows:

D = |C · Xrand − X | (8)

X(t+1) = Xrand − A · D (9)

where Xrand is a random individual. When |A| > 1, global
exploration is performed, and when |A| < 1, local exploita-
tion is performed.

III. PROPOSED NAWMWOA
Various variants of WOA have been proposed and widely
used in various fields. However, with the rapid development
of expert systems with applications, the original WOA and
some variants of WOA present a tendency to fall into local
optimum easily and imprecise convergence results. There-
fore, to overcome these shortcomings, three novel improve-
ment mechanisms were embedded into WOA and generated
an improved WOA called nonlinear adaptive weight-based
mutated whale optimization algorithm (NAWMWOA). The
three improvement mechanisms are nonlinear convergence
factor, adaptive weight and hybrid mutation strategy.

A. NONLINEAR CONVERGENCE FACTOR
The balance of algorithm between the two main phases
(exploration phase and development phase) significantly
affects the quality of convergence results, and the decision of
which phases to execute made by convergence factor a. How-
ever, the convergence factor a decreases linearly from 1 to 0 as
the iterations increase, resulting in one type of exploration
and exploitation phases overly executed and the other type of
exploration and exploitation phases diluted. Then the undesir-
able result of falling into local optimum or failing to converge
will appear. Therefore, the nonlinear convergence factor a2
is proposed to improve the balance between the two stages,
and thus improve the convergence speed and accuracy of the
algorithm. Moreover, the a2 is derived by a formula similar
to chaotic random principle. Therefore, the randomness of a2
improves the possibility of achieving dynamic equilibrium.
The mathematical expression of the Nonlinear convergence
factor proposed is as follows:

R =
t

Tmax
(10)

h = 1 − 2 · h2 (11)

a2 = 2
(
1 + (|h| − 1) · R

1
4 − |h| · R2

)
(12)

where R represents rate of iteration. Tmax is maximum itera-
tions. h is a chaotic parameter that controls the fluctuation of
a2. In detail, to make the value of chaos parameter h satisfy
the requirement of more uniform random value with chaos
mapping, the value range of h is set to [0,1]. Moreover, the
randomness of chaotic mapping becomes worse when the
value of h is 0.25 according to the rule of chaotic mapping.
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FIGURE 1. Flowchart of NAWMWOA.

Thus, the initial value of h satisfies the following conditions:
1 > h > 0 and h ̸= 0.25.

B. ADAPTIVE WEIGHT
To overcome the defect of the original WOA that it is easy to
fall into local optimum and not reduce the convergence speed
of the algorithm, an adaptive weight strategy that dynamically
changes with the number of iterations is proposed.

The adaptive weight is determined by two parts: the first
half of the weight plays a major role in regulating the slow
convergence rate, and the second half of the weight plays
a major role in overcoming the population to fall into the
local optimal. The principle is as follows: at the early stage
of the iteration, assuming that the whale population falls into
small search area, and the difference between the optimal
solution and the worst solution is not significant, the value
p2 · (ub− lb)/t is not affected by the population distribution
and a large weight value w can still be obtained, thus allevi-
ating the defect of the algorithm falling into the local optimal
solution at the early stage of the iteration. With the increase
of the iterations, the value p2 · (ub − lb)/t will gradually
decrease, and its influence on the weight w will decrease.
If the algorithm does not get the optimal solution at this time,
p1 ·

(
X∗

(t) − X∗

(t)bad

)
can play a leading role in the adaptive

weight, which can enable the algorithm to optimize with a
larger step size and thus improve the convergence speed. The
detailed descriptions are as follows:

w = p1 ·

(
X∗

(t) − X∗

(t)bad

)
+ p2 · (ub− lb)/t (13)

X(t+1) = w · X∗

(t) − A · D (14)

X(t+1) = w · Xrand − A · D (15)

where w indicates the adaptive weight. p1 and p2 are two dif-
ferent constants. ub and lb represent upper and lower bounds
of the search space, respectively. X∗

(t)bad is the worst solution
in the current iteration.

C. HYBRID MUTATION STRATEGY
The structure of the original WOA exploration phase is
relatively simple and the form is single, which limits the
diversity of individuals and further leads to the imprecision
of the algorithm convergence results. Therefore, the hybrid
mutation strategy was embedded into WOA to overcome the
above defects.

The hybrid mutation strategy is mainly divided into two
parts: diffusion mutation mimicking slime mold looking for
nutrients (Mutation 1) and chain mutation mimicking salps
hunting (Mutation 2). Mutation 1 is based on the globally
optimal individual and two random individuals. Mutation 2 is
only performed based on globally optimal individuals. The
two categories ofmutations combinedwith each other to form
a hybrid mutation strategy. Under the action of this strategy,
the diversity of individual is further improved, and finally,
more accurate and mature convergence results are obtained.
The mathematical model of the hybrid mutation strategy is
displayed as follows:

g = X∗

(t) − X∗

(t)bad (16)
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TABLE 2. Descriptions of the 37 benchmark functions.

Bi = 1 + r3 · log(
f
(
X∗

(t)

)
− f (Xi)

g
+ 1) (17)

Bi = 1 − r3 · log(
f
(
X∗

(t)

)
− f (Xi)

g
+ 1) (18)

s = tanh
∣∣∣f (Xi) − f

(
X∗

(t)

)∣∣∣ (19)

vj = [−a2, a2] (20)

c1 = 2 · e−(4·R)2 (21)

X(t+1),j = X∗

(t)g,j + vj · (Bi,j · (Xranda,j − Xrandb,j)) (22)
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TABLE 3. Various variants of WOA combined with different strategies.

X(t+1),j = X∗

(t)g,j + c1 · ((ub− lb) · r5 + lb) (23)

X(t+1),j = X∗

(t),j − c1 · ((ub− lb) · r5 + lb) (24)

The pseudo-code of the NAWMWOA is displayed
in Algorithm 1. A readily comprehensible NAWMWOA
flowchart is indicated in Fig.1.

D. TIME COMPLEXITY ANALYSIS
Time complexity is one of the important indexes to eval-
uate the efficiency of algorithm. It can be seen from the
pseudo-code of NAWMWOA that the time complexity of the
proposed NAWMWOAmainly includes initialization, fitness
evaluation, sorting mechanism, adaptive weight update, the
hybrid mutation strategy, and position update.

The time complexity of NAWMWOA is determined by
the size of the population (N ), the dimension of individual
whales (D), the number of algorithm iterations (Tmax). The
time complexity of NRMWOA is O (NAWMWOA) = O
(Initialize) + O (Fitness evaluation) + T × (O (Update
adaptive weight) + O (Perform hybrid mutation strategy) +

O (Update the positions of whales)). The time complexity
of population initialization is O(N×D). The time complexity
which evaluating the fitness of the initial whale is O(N ). The
time complexity of the update adaptive weight is O(D). The
time complexity which hybrid mutation strategy is O(N×D).
The time complexity of executing the random reuse strategy
is O(N×D). Updating the positions of whales needs a level
of O(N ). Therefore, the total time complexity is as follows:

O (NAWMWOA)

= O (N × D) + O (N ) + O (D)

+ T × (O (N × D) + O (N × D) + O(N )) (25)

IV. EXPERIMENTAL RESULTS AND ANALYSES
In this section, to further demonstrate the superiority and
competitiveness of the proposed NAWMWOA, an experi-
ment based on 37 benchmark functions including CEC2015,
CEC2021 and CEC2022 was designed and executed.
It includes the following parts: In the first place, the effect
of each improved strategy is tested separately. Secondly, five
variants of WOA are compared with NAWMWOA in perfor-
mance. Thirdly, five state-of-the-art algorithms are compared
with NAWMWOA in performance. Fourthly, the improve-
ment effects of the three strategies on population diversity

and the balance between the two stages (exploitation and
exploration) are tested.
In order to ensure the fairness of the experiment, all algo-

rithms are executed under the same experimental conditions.
Among them, the population size N is 30, the individual
dimension D is 30, and the maximum iterations Tmax is
300,000. At the same time, to reduce experimental errors
as much as possible, each algorithm is executed 30 times,
and the average value ‘‘Mean’’, standard deviation ‘‘Std.’’,
maximum value ‘‘Max.’’, and minimum value ‘‘Min.’’ of the
experiment are counted.

A. BENCHMARK FUNCTION
In this study, 37 benchmark functions from CEC2015,
CEC2021, and CEC2022 are utilized to test the performance
of the algorithm such as convergence speed and result accu-
racy. These benchmark functions are mainly divided into
five categories: Basic functions, Unimodal function, Simple
multimodal functions, Hybrid functions, and Composition
functions. The upper bounds ub and lower bounds lb of the
algorithm’s search for 37 benchmark functions are 100 and
-100 respectively. The source code for all benchmark func-
tions is from the GitHub home page of P-N Suganthan.
A detailed description of the 37 benchmark functions is
shown in Table 2. Among them, the third and fourth columns
represent the theoretical optimal solution and type of corre-
sponding benchmark function, respectively.

B. EFFECT OF THREE STRATEGIES FOR THE WOA
This subsection, variants of single strategy and NAWMWOA
are analyzed to investigate the effects of each strategy and
their interactions. First of all, different strategy combinations
are listed in Table 3, where NWOA, AWWOA and MWOA
represent the variant of single strategy that respectively com-
bining WOA with nonlinear convergence factor, adaptive
weights, hybrid mutation strategy. 1 and 0 indicate whether
the corresponding strategy is embedded, respectively.
According to the experimental requirements in 4.1, the

five variants independently perform 30 times experimental
for 37 benchmark functions, and the experimental results
are displayed in Table 4. At the same time, the ‘‘+/=/-’’ in
Table 5 indicates that NAWMWOA is better, worse, or equal
compared to other variants of single strategy, respectively.
Moreover, the Friedman test [62] is utilized to quantify the
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TABLE 4. Comparison results of different variants of WOA.
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TABLE 4. (Continued.) Comparison results of different variants of WOA.
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TABLE 4. (Continued.) Comparison results of different variants of WOA.
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TABLE 4. (Continued.) Comparison results of different variants of WOA.

TABLE 5. Statistic and ARV of NAWMWOA and other variants of WOA.

average ranking values (ARV) of algorithm and the ARVs are
indicated in the last row of Table 5. Smaller ARV represents
superior performance. Finally, to quantitatively study the
differences between variants and test whether each strategy
was statistically significant, Wilcoxon signed-rank test [63]
is performed for five variants and the statistical results were
shown in Table 6.

Firstly, it can be seen from the ARVs that the ARV of
the original WOA is the largest, indicating that each strat-
egy improves the WOA. Secondly, the ARV of MWOA
is the smallest among the three variants of single strat-
egy, demonstrating that the improvement effect of hybrid
mutation strategy is the most obvious. At the same time,
from the Wilkerson test results in Table 5, it can be seen
that the difference between MWOA and NAWMWOA is
smaller, thus demonstrating that the hybrid mutation strategy
plays a dominant role in NAWMWOA. Thirdly, the ARV
of NAWMWOA is 1.4189, which is the smallest among
all rankings, illustrating that the combination of the three
strategies will generate more significant effects than single
strategy. In addition, from Table 4 and ‘‘+/=/-’’ in Table 5,
it can be seen that NAWMWOA is better thanWOA, NWOA,
AWWOA and MWOA on 36 (except F34), 37, 34 (except
F16, F23, F24) and 24 (except F2, F6, F7, F10, F13, F16,
F22, F23, F24, F26, F27, F31, F35, F37) of the 37 benchmark
functions, respectively. In conclusion, three strategies com-
plement each other and the most competitive NAWMWOA is
proposed.

C. COMPARISON WITH OTHER VARIANTS OF WOA
In order to demonstrate the outstanding competitiveness of
NAWMWOA in numerous variants of WOA, five advanced
variants of WOA including the enhanced whale optimization
algorithm (EWOA) [64], the improved whale optimization
algorithm based on nonlinear adaptive weight and golden
sine operator (NGS-WOA) [65], the enhanced Whale Opti-
mization Algorithm integrated with salp swarm algorithm
(ESSAWOA) [66], the enhanced WOA (WOAAmM) [67],
and the chaotic whale optimization algorithm (CWOA) [68]
are compared with NAWMWOA for 37 benchmark func-
tions. The main parameters setting of NAWMWOA and other
improved WOAs are same as literatures and displayed in
Table 7. All experimental conditions were set according to
the instructions in 4.1. ‘‘Mean.’’, ‘‘Std.’’, ‘‘Min.’’,‘‘Max.’’ of
the 30 experimental results are displayed in Table 8. At the
same time, the ARVs of six algorithms are shown in Table 9
to intuitively illustrate the performance rankings.

Firstly, it can be seen from Table 9 that NAWMWOA
obtained the best ‘‘Mean.’’ for 36 benchmark functions
except F37 when comparing with five variants of WOA.
Secondly, 36 smallest ‘‘Min.’’ except F37 and 35 smallest
‘‘Max.’’ except F34, F37 are obtained by NAWMWOA for
37 benchmark functions. The above analysis demonstrates
that the convergence accuracy of NAWMWOA is the most
exceptional among the six algorithms. Thirdly, NAWMWOA
generates 28 best ‘‘Std.’’ except F3, F6, F7, F9, F15, F18, F25,
F29, F35 when solving 37 benchmark functions. It can be
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TABLE 6. P-value of Wilcoxon test between NAWMWOA and other variants of WOA.

seen that the stability of NAWMWOA is the most significant
among the six algorithms.

The results in Table 9 further illustrate the significant
competitiveness of NAWMWOA. According to detailed sta-
tistical results of ‘‘Mean.’’, the NAWMWOA is superior to
EWOA, NGS-WOA, ESSAWOA, WOAAmM, and CWOA

on 36, 37, 37, 37, 36 out of 37 benchmark functions.
In terms of ‘‘Min.’’, the NAWMWOA is more outstanding
than the above five algorithms on 36, 37, 37, 37, 37 out of
37 benchmark functions. It can be seen from the statistics
in row ‘‘Max.’’ that the NAWMWOA is superior to 36, 37,
37, 37, 36 out of 37 benchmark functions. At the same
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FIGURE 2. Convergence curves of NAWMWOA and other improved WOAs.
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FIGURE 2. (Continued.) Convergence curves of NAWMWOA and other improved WOAs.

TABLE 7. Main parameters of NAWMWOA and other improved WOAs.

time, the NAWMWOA is better than EWOA, NGS-WOA,
ESSAWOA, WOAAmM, and CWOA on 36, 37, 37, 37,
36 out of 37 benchmark functions for ‘‘Std.’’. Moreover, from
the ARVs shown in Table 9, the ARV of NAWMWOA is
1.0541 which is significantly lower than the other five vari-
ants ofWOA. The above statistics show that theNAWMWOA
has a significant advantage compared with other variants
of WOA.

In order to intuitively exhibit the convergence charac-
teristics for variants of WOA, the convergence curves of
10 benchmark functions (F1, F3, F4, F5, F6, F9, F11, F15,
F18, F30) are displayed in Fig. 2. Firstly, it can be seen from
Fig. 2 that the convergence results of NAWMWOA are the
most accurate among the 10 benchmark functions, and the
advantages of NAWMWOA’s results on F3, F4, F9 and F15
are particularly significant. Secondly, it can be seen from
Fig. 2 that the convergence speed of NAWMWOA in the early
stage is relatively fast except in F5 and F9.

As a conclusion, both experimental statistics and con-
vergence curves demonstrate that the NAWMWOA is
the best choice among all the compared variants of
WOA.

D. COMPARISON WITH OTHER STATE-OF-THE-ART
ALGORITHMS
In order to further demonstrate that the proposed NAWM-
WOA is superior to other algorithms, five state-of-the-art
algorithms (nonlinear based chaotic harris hawks optimiza-
tion (NCHHO) [69], grey wolf optimizer algorithm with
a two-phase mutation (TMGWO) [70], dispersed foraging
slime mould algorithm (DFSMA) [71], incremental grey
wolf optimizer (I-GWO) [72], enhanced arithmetic optimiza-
tion algorithm (EAOA) [73]) are adapted to compare with
NAWMWOA, which are variants of the corresponding orig-
inal algorithm and have better performance than the original
algorithm. Therefore, it is a difficult challenge for NAWM-
WOA. The configuration of the experiment is the same as
the settings in the previous section, in which the number of
iterations is set to 300000, the individual dimension is set to
30, and the number of populations is set to 30. The experi-
ment is performed 30 times with the above configuration and
calculated ‘‘Mean’’, ‘‘Std.’’, ‘‘Min.’’ and ‘‘Max.’’. The details
of the experimental results are presented in Table 10, Table 11
and Fig.3.

The NCHHO is a variant based on HHO proposed in
2021, which performs excellently among many novel algo-
rithms in the field of meta-heuristics. Experimental data in
Table 10 indicate that the proposed NAWMWOA generates
36 better ‘‘Mean’’, 32 better ‘‘Std.’’, 36 better ‘‘Min.’’ and
36 better ‘‘Max.’’ for all the 37 functions as compared with
NCHHO. Compared with TMGWO and I-GWO, the better
performance of NAWMWOA can be verified by the obtained
37 better ‘‘Mean’’, 27 better ‘‘Std.’’, 37 better ‘‘Min.’’ and
36 better ‘‘Max.’’ out of the 37 functions. DFSMA is an
advanced algorithm for improving SMA proposed in 2021,
which has an excellent ability to solve multimodal and hybrid
functions. In terms of the comparison results between the
proposed NAWMWOA and DFSMA, 25 better ‘‘Mean’’,
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TABLE 8. Comparison results of NAWMWOA with other improved WOAs.
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TABLE 8. (Continued.) Comparison results of NAWMWOA with other improved WOAs.
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TABLE 8. (Continued.) Comparison results of NAWMWOA with other improved WOAs.
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TABLE 8. (Continued.) Comparison results of NAWMWOA with other improved WOAs.

TABLE 9. Statistical results of NAWMWOA and other improved WOAs.

24 better ‘‘Std.’’, 25 better ‘‘Min.’’ and 23 better ‘‘Max.’’ out
of the 37 functions are obtained by NAWMWOA. Moreover,
the EAOA is a famous state-of-the-art algorithm. Compared
with the EAOA, the proposed NAWMWOA products 37 bet-
ter ‘‘Mean’’, 34 better ‘‘Std.’’, 37 better ‘‘Min.’’ and 37 better
‘‘Max.’’ out of the 37 functions. The results displayed in
Table 10 verify the excellent performance of NAWMWOA.

The outstanding performance of NAWMWOA is further
demonstrated by the statistics in Table 11. According to
detailed statistical results of ‘‘Mean.’’, the NAWMWOA
is superior to NCHHO, TMGWO, DFSMA, I-GWO, and
EAOA on 36, 37, 24, 37, 37 out of 37 benchmark functions.
It can be seen from the statistics in row ‘‘Min.’’ that the
NAWMWOA is superior to 36, 37, 25, 37, 37 out of 37 bench-
mark functions. In terms of ‘‘Max.’’, the NAWMWOA is
more outstanding than the above five algorithms on 36, 36,
23, 37, 37 out of 37 benchmark functions. At the same time,
theNAWMWOA is better thanNCHHO, TMGWO,DFSMA,
I-GWO, and EAOA on 31, 27, 24, 35, 34 out of 37 benchmark
functions for ‘‘Std.’’. Moreover, the ARV of NAWMWOA
shown in Table 11 is 1.3243, which is the smallest ARV
among all state-of-the-art algorithms. The above statistics
demonstrate that the NAWMWOA has a significant advan-
tage compared with other state-of-the-art algorithms.

The convergence characteristics of six algorithms for
10 benchmark functions (F4, F5, F6, F8, F17, F24, F29, F30,
F32, F36) are visually displayed in the form of curves in
Fig. 3. Firstly, it can be seen from Fig. 3 that the conver-
gence results of NAWMWOA are the smallest among the six

state-of-the-art algorithms and its advantages are particularly
significant on F4, F9 and F30. Secondly, in all convergence
curves except F8, the NAWMWOA is distinctly faster than
the other five competitive algorithms in terms of the con-
vergence speed. The mature convergence results and faster
convergence speed of NAWMWOA are mainly due to three
improvement strategies. The nonlinear convergence factor
has the function of improving the balance between the two
phases (exploration phase and development phase), thereby
improving the convergence speed of the algorithm. The adap-
tive weight and the hybrid mutation strategy can improve
population diversity and avoid falling into local optimum,
Therefore, the accuracy of the algorithm convergence results
is improved.

In summary, based on the experimental results and conver-
gence curves, the NAWMWOA is the best choice compared
with other five state-of-the-art algorithms.

E. ANALYSIS OF BALANCE AND DIVERSITY
To further examine the improvement effect of the pro-
posed strategies for NAWMWOA, the balance and population
diversity of two algorithms are experimented with out of
4 categories of benchmark functions including Unimodal
functions (F26), Basic functions (F27, F28), Hybrid functions
(F31, F32), and Composition functions (F35, F36, F37). The
experimental results are visually displayed in Fig. 4. The
(a), (b) and (c) in Fig. 4 represent the balance analysis of
WOA, the balance analysis of NAWMWOA and the diversity
comparison of the two algorithms, respectively. In (a), (b),
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FIGURE 3. Convergence curves of NAWMWOA and other variants of WOA.
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FIGURE 3. (Continued.) Convergence curves of NAWMWOA and other variants of WOA.

the exploration curve and the exploitation curve are used to
measure the balance of the algorithm.

First of all, it can be seen from (a) and (b) that both WOA
and NAWMWOA have more exploration than exploitation
in the early stage of iteration. NAWMWOA has improved
its exploration ability on F26 and F28. However, the propor-
tion of development is large in NAWMWOA out of Hybrid
functions (F31, F32) and Composition functions (F35,
F36, F37).

As can be seen from Fig.4 (c), the population diversity
of both WOA and NAWMWOA showed a declining trend.
However, compared with WOA, the population diversity
of NAWMWOA is higher in the early iteration, which is
conducive to improving the accuracy of the solution. In addi-
tion, the population diversity of NAWMWOA declines faster
than that of WOA, indicating that NAWMWOA has a faster
convergence rate than WOA, which further indicates that
NAWMWOA considers both convergence rate and conver-
gence accuracy.

V. NAWMWOA FOR SOLVING
ENGINEERING BENCHMARKS
In this section, three classical engineering benchmarks are
adopted to test the feasibility of the proposed NAWM-
WOA in engineering problems, which include three-bar truss
design [74] tension-compression spring design (TCSD) [75],
and welded beam design (WBD) [76]. Penalty functions for
solving constraint problems mainly include static, dynamic,
annealing, adaptive, co-evolutionary, and death penalty [77].
Although the death penalty abandons infeasible solutions,
it has the characteristics of a small amount of calcula-
tion and simple method. Therefore, under the premise of
ensuring the experimental requirements, the death penalty
is used to deal with the three constraint problems in this
study.

A. THREE-BAR TRUSS DESIGN PROBLEM
In this engineering problem, the design objective is to achieve
the minimum weight of the three-bar truss design based on
three constraints. The design parameters include the length of
the rods on both sides (A1 = A3) and the length of the middle
rod (A2). The three-dimensional diagram of the three-bar
truss design is shown in Fig. 5. The constraints and formula
are explained as follows:

Consider :

Minimize : x⃗ = [x1x2] = [A1A2]

Subject to : f (x1, x2) = (2
√
2x1 + x2) × l

g1 =

√
2 x1 + x2

√
2 x21 + 2x1x2

P− σ ≤ 0

g2 =
x2

√
2 x21 + 2x1x2

P− σ ≤ 0

g3 =
1

x1 +
√
2 x2

P− σ ≤ 0

0 ≤ A1 ≤ 1 and 0 ≤ A2 ≤ 1

l=100cm,P=2KN/cm2, and σ = 2KN/cm2

In order to ensure the accuracy of the experiment, the
results of all the compared algorithms are based on the
death penalty function. Then, the proposed NAWMWOA and
seven advanced meta-heuristics including African vultures
optimization algorithm (AVOA) [78], arithmetic optimization
algorithm (AOA) [79], SSA, moth flame optimization (MFO)
[80]. wild horse optimizer (WHO) [81], HHO, and grasshop-
per optimization algorithm (GOA) [82] are utilized to
experiment with three-bar truss design problem. The results
obtained by NAWMWOA and other algorithms are provided
in Table 12. FromTable 12, it can be observed that the optimal
solution obtained by NAWMWOA is 263.895833, which is
superior to generated results of all the other approaches.
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TABLE 10. (Continued.) Comparison results of NAWMWOA and other improved algorithms.

VOLUME 12, 2024 40245



Z. Wang et al.: NAWMWOA and Its Application for Solving Engineering Problems

TABLE 10. (Continued.) Comparison results of NAWMWOA and other improved algorithms.
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TABLE 10. (Continued.) Comparison results of NAWMWOA and other improved algorithms.
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TABLE 10. (Continued.) Comparison results of NAWMWOA and other improved algorithms.

TABLE 11. Comparison results of NAWMWOA and other improved algorithms in terms of ‘‘Mean.’’

TABLE 12. Comparison results for three-bar truss design problem.

TABLE 13. Comparison results for the tension-compression spring design problem.

The NAWMWOA ultimately provides the most effective
design arrangement. Therefore, the proposed NAWMWOA

is highly competitive in solving the three-bar truss design
problem.
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FIGURE 4. Balance analysis and diversity analysis performed by NAWMWOA and WOA.
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FIGURE 4. (Continued.) Balance analysis and diversity analysis performed by NAWMWOA and WOA.

TABLE 14. Comparison results for welded beam design problem.

B. TENSION-COMPRESSION SPRING DESIGN
Tension-compression spring design is a classical engineering
design problem. The purpose of the spring design is to mini-
mize theweight of the spring under the premise of constraints.
The three design variables are wire diameter (d), mean coil
diameter (D), and number of active coils (N ). The three con-
straints are shear stress, surge frequency and deflection. Fig. 6
illustrates the 3D diagram of the spring. The formulation of
the Tension/compression spring design problem is explained
as follows:

Consider :

Minimize : x⃗ = [x1 x2 x3] = [d D N ]

Subject to : f (x⃗) = (x3 + 2) x2x21

g1(x⃗) = 1 −
x32x3

71785x41
≤ 0

g2(x⃗) =
4x22 − x1x2

12566(x2x31 − x41 )
+

1

5108x21
≤ 0

g3(x⃗) = 1 −
140.45x1
x22x3

≤ 0

g4(x⃗) =
x1 + x2
1.5

− 1 ≤ 0

In order to verify the superiority of the proposed NAWM-
WOA in the tension-compression spring design problem,
eight advanced meta-heuristics are employed to solve the
problem and the experimental results are displayed in
Table 13, which includes AVOA, AOA, TSA, SSA, MFO,
emperor penguin optimizer (EPO) [83], multi-verse opti-
mizer (MVO) [84], and GWO. As can be seen in Table 13,
In order to ensure fairness, all the algorithms employ sim-
ilar penalty functions and the tension-compression spring
design problem is executed 10 times. It can be seen from
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FIGURE 5. 3D model diagram and structural parameters of three-bar
truss design problem.

FIGURE 6. 3D model diagram and structural parameters of
tension-compression spring design problem.

FIGURE 7. 3D model diagram and structural parameters of welded beam
design problem.

Table 13, that the optimal objective function value obtained
byNAWMWOA is 0.0121181, which is better than the results
of other 8 algorithms. The enhanced efficacy of the proposed
NAWMWOA is verified by the tension-compression spring

design problem compared with other well-established meth-
ods, which indicates that NAWMWOA has an excellent
performance in solving problem Tension-compression spring
design problem.

C. WELDED BEAM DESIGN PROBLEM
In order to further prove the feasibility and superiority of
the proposed NAWMWOA in engineering design problems,
WBD problems are adopted for experiments. The design
objective of the WBD is to minimize the cost of the welded
beam while satisfying the more conditions. the engineering
benchmark constraints are thickness of the weld (h), length
of the clamped bar (l), height of the bar (t), and thickness of
the bar (b). The schematic diagram is shown in Fig. 7. The
mathematical model is explained as follows:

Consider :

Minimize : x⃗ = [x1 x2 x3 x4] = [h l t b]

Subject to : f (x⃗) = 1.10471x21 + 0.04811x3x4 (14.0 + x4)

g1(x⃗) = τ (x⃗) − τmax ≤ 0

g2 (x⃗) = σ (x⃗) − σmax ≤ 0

g3 (x⃗) = δ (x⃗) − δmax ≤ 0

g4 (x⃗) = x1 − x4 ≤ 0

g5 (x⃗) = P− PC (x⃗) ≤ 0

g6 (x⃗) = 0.125 − x1 ≤ 0

g7 (x⃗) = 1.10471x21 + 0.04811x3x4 (14.0 + x2)

− 5.0 ≤ 0

Variable range:

0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2

where

τ (x⃗) =

√
(τ ′)2 + 2τ ′τ

′′ x2
2R

+ (τ ′′ )2τ ′
=

P
√
2 x1x2

τ
′′

τ (x⃗) =

√
(τ ′)2 + 2τ ′τ

′′ x2
2R

+
(
τ

′′
)2

τ ′

=
P

√
2 x1x2

τ
′′

=
MR
J
M = P(L +

x2
2
)

R =

√
x22
4

+ (
x1 + x3

2
)
2

J = 2

{
√
2 x1x2

[
x22
4

+

(
x1 + x3

2

)2
]}

σ (x⃗) =
6PL

x4x23
, δ(x⃗) =

6PL3

Ex23x4

PC (x⃗) =
4.013E

√
x23x

6
4

36

L2
(1 −

x3
2L

√
E
4G

)

P = 60001b, L = 14in . . .max = 0.25in..

E = 30 × 16psi, G = 12 × 106psi

τmax = 13600psi, σmax = 30000psi
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In this experiment, the NAWMWOA and eight meta-
heuristic algorithms including WOA, double adaptive
weights for stabilization of moth flame optimizer (WEMFO)
[85], MFO, mine blast algorithm (MBA) [86], GSA, spotted
hyena optimizer (SHO) [87], GWO and particle swarm opti-
mization (PSO) [88] are utilized to solve the welded beam
design problem with certain constraints. The experimental
results are listed in Table 14, in which the NAWMWOA
obtains the optimization results with a minimum value of
1.724852, indicating the best performance among all the
comparison algorithms. It can be seen from the experimental
results in Table 14 that NAWMWOA has the smallest experi-
mental results, indicating that NAWMWOA has a prominent
ability in solving welded beam design problem.

VI. CONCLUSION AND FUTURE DIRECTIONS
In this study, the nonlinear convergence factor, adaptive
weight and hybrid mutation strategy are introduced into
the original WOA and a novel variant of WOA called
NAWMWOA is proposed. The nonlinear convergence fac-
tor improves the balance between exploration phase and
development phase of the WOA. The adaptive weight has
the function of overcoming the defect of original WOA
that is easy to fall into local optimum in the early stage
of iteration. The hybrid mutation strategy is introduced to
improve the convergence accuracy of the algorithm. Two sets
of advanced meta-heuristics are adopted to perform exper-
iments with the proposed NAWMWOA on 37 benchmark
functions (CEC2015, CEC2021, CEC2022), which includes
five variants of WOA (EWOA, NGS-WOA, ESSAWOA,
WOAAmM, CWOA), and five state-of-the-art algorithms
(NCHHO, TMGWO, DFSMA, I-GWO, EAOA). The exper-
imental results composed of ‘‘Mean’’, ‘‘Std.’’, ‘‘Max.’’,
and ‘‘Min.’’ conclude that the NAWMWOA performed sig-
nificantly better than the other algorithms. In detail, the
NAWMWOAoutperforms EWOA, NGS-WOA, ESSAWOA,
WOAAmM, and CWOA on 36, 37, 37, 37, and 36 out of
37 functions, respectively. In addition, the overall perfor-
mance of NAWMWOA is generally superior to NCHHO,
TMGWO, DFSMA, I-GWO, and EAOA on 36, 37, 24,
37, and 37 out of 37 functions. In order to demon-
strate the effectiveness of the proposed NAWMWOA to
solve practical problems, three kinds of classical engineer-
ing benchmarks including three-bar truss design problem,
tension-compression spring design problem, and welded
beam design problem are used for experiments. The exper-
imental results show that NAWMWOA has a better ability to
solve practical problems than other algorithms in three kinds
of engineering design problems.

The research and application of intelligent algorithms
should have great improvement room. Since the intro-
duction of new mechanisms increases the complexity of
algorithms and reduces the convergence efficiency of algo-
rithms, improving the convergence speed of algorithms is the
main direction of future research. Besides, it may be applied
to intelligent medical and health protection systems [89],

sustainable transport systems [90] and sustainable supplier
selection [91] by combining machine learning algorithms
and decision models. Since the introduction of algorithm
models increases the complexity of algorithms and reduces
the convergence efficiency, improving the convergence speed
of algorithms is the main direction of future research.
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