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ABSTRACT Private Fifth Generation (5G) Networks can quickly scale coverage and capacity for diverse
industry verticals by using the standardized 3rd Generation Partnership Project (3GPP) and Open Radio
Access Network (O-RAN) interfaces that enable disaggregation, network function virtualization, and
hardware accelerators. These private network architectures often rely on multi-cell deployments to meet
the stringent reliability and latency requirements of industrial applications. One of the main challenges
in these dense multi-cell deployments is the interference to/from adjacent cells, which causes packet
errors due to the rapid variations from air-interface transmissions. One approach towards this problem
would be to use conservative modulation and coding schemes (MCS) for enhanced reliability, but it would
reduce spectral efficiency and network capacity. To unlock the utilization of higher efficiency schemes,
in this paper, we present our proposed machine-learning (ML) based interference prediction technique that
exploits channel state information (CSI) reported by 5G User Equipments (UEs). This method is integrated
into an in-house developed Next Generation RAN (NG-RAN) research platform, enabling it to schedule
transmissions over the dynamic air-interface in an intelligent way. By achieving higher spectral efficiency
and reducing latency with fewer retransmissions, this allows the network to serve more devices efficiently
for demanding use cases such as mission critical Internet-of-Things (IoT) and extended reality applications.
In this work, we also demonstrate our over-the-air (OTA) testbed with 8 cells and 16 5G UEs in an Industrial
IoT (IIoT) Factory Automation layout, where 5G UEs are connected to various industrial components like
automatic guided vehicles (AGVs), supply units, robotics arms, cameras, etc. Our experimental results show
that our proposed Interference-aware Intelligent Scheduling (IAIS) method can achieve up to 39% and
70% throughput gains in low and high interference scenarios, respectively, compared to a widely adopted
link-adaptation scheduling approach.

INDEX TERMS 5G, private network, industrial Internet of Things, machine learning, intelligent scheduling,
open RAN, RAN virtualization.

I. INTRODUCTION
Industrial operators are seeking flexible manufacturing solu-
tions and agile logistics operations so that their businesses
can be more responsive to shifts in customer and supply
chain issues, and reduce downtime. To achieve that, network
infrastructure in industrial ecosystems needs to migrate from
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wired to wireless, but without compromising on the quality of
connectivity that industries have come to expect from wired
systems. Fifth Generation (5G) New Radio (NR) emerges as
a reliable alternative, not only bringing ultra-reliable wireless
connectivity to help industrial operators achieve untethered
and flexible processes, but it also does so with a global
ecosystem and without proprietary solutions.

5G NR supports industrial operators with a broad choice
of spectrum options so they can deploy their own private
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5G NR networks for the optimized reliability and data
security that a private network can provide. 5G NR also
brings ultra-reliability and supports deterministic delay with
variety of novel techniques such as Coordinated Multipoint
(CoMP), Packet Data Convergence Protocol (PDCP) packet
duplication, and time-sensitive networking [1], [2], which are
not readily available in other wireless technologies like WiFi.
This helps industrial systems maintain synchronization and
avoid disruption in mission-critical applications.

Traditional RAN architectures, which are widely adopted
in earlier generations of wireless networks starting with 2G,
have relied on monolithic solutions. Now, Open RAN (O-
RAN), Virtualized RAN (vRAN), and Cloud RAN (C-RAN)
revolutionize the wireless networks by turning the traditional
proprietary baseband units at the base of radio towers
into a fully flexible, scalable, intelligent, and cost-efficient
solution. Earlier efforts such as C-RAN helped consolidate
the baseband functions on a smaller number of sites across
the mobile network. Such a network implementation where
radio signals from geographically distributed antennas are
collected by remote radio heads and transmitted to the cloud
platform through an optimal transmission system has been
discussed in [3] and [4]. In this paper, we focus on O-RAN
functional split architecture where various network functions
run as virtual instances deployed on off-the-shelf components
and can be effectively utilized to address challenging 5G/6G
problems. In particular, we highlight the network capabilities
that we developed to help industries build flexible, scalable,
and intelligent high performance 5G NR networks for
industrial and enterprise requirements. Towards this goal,
we developed the Next Generation Radio Access Network
(NG-RAN) research platform, based on the disaggregated
O-RAN framework which promotes a broad connectivity
ecosystem with standardized interfaces among network
functions [5], [6], [7], [8]. This NG-RAN research platform is
disaggregated and enables dense network deployments with
open, intelligent, virtualized, and interoperable architecture
which accelerates technology innovation and showcases
leading-edge end-to-end wireless technology solutions of
Qualcomm Technologies.

Note that developing intelligent NG-RAN systems with
Machine Learning (ML) based solutions is considerably
complex, technically challenging, and open to different
interpretations. For these reasons, 3GPP focuses on use cases
with relatively simpler ML solutions that can still deliver
tangible gains while being fully interoperable across multi-
vendor networks [9], [10]. With this in mind, in this paper,
we propose an ML-based interference prediction technique
and demonstrate how to integrate such a technique into
NG-RAN research platform. First, we developed a Real-Time
RAN Intelligent Controller (RIC) component which resides
in the Distributed Unit (DU) and runs the ML inference
application for predicting over-the-air interference. This
machine learning based algorithm utilizes relevant RAN
measurements to determine the best Modulation and Coding
Scheme (MCS) while maintaining the required target block

error rate (BLER). We developed the real-time closed loop
control operation between the Real-Time RIC and DU
scheduler towards achieving the end-to-end Interference-
aware Intelligent Scheduling (IAIS) operation. With this
scheme, we aim at addressing challenging dense private
network deployments in which network traffic increases
with diverse service demands, including quasi-periodic
traffic profiles. Such profiles include Extended Reality (XR)
applications with periodic file arrivals and Industrial Internet-
of-Things (IoT) applications where IoT devices are deployed
to perform the same tasks continuously and generate the same
amount of data periodically. This causes periodic and intense
interference to and from neighboring cells, reducing the
network performance.With the flexible configuration options
of 5G NR and with Channel State Information Reference
Signal (CSI-RS) based Downlink (DL) scheduling, this
problem can be mitigated up to some extent [11]. However,
these methods often result in conservative or aggressive
scheduling especially under the presence of quasi-periodic
and bursty interference. On the other hand, IAIS technique
that we developed utilizes the channel more efficiently in
dynamic environments.

To show that, we established an indoor over-the-air
(OTA) testbed with a realistic Industrial IoT (IIoT) Factory
Automation layout. Our end-to-end OTA private network
deployment comprises of 8 FR1 radio cells realized using the
NG-RAN research platform and 16 UEs that provide 5G NR
radio link connectivity to a variety of end industrial devices
such as a conveyor belt system, a Qualcomm® Robotics
RB5 Development Kit with an integrated camera [12], [13],
Automated Guided Vehicles (AGV), and programmable logic
controller (PLC) components. In this network, we show
performance gains of up to 70% in terms of effective
throughput. Also, our experimental evaluation indicates that
deviation of user-experienced Signal to Interference and
Noise Ratio (SINR) is limited compared to a baseline
solution, leading to more efficient channel utilization.

The main contributions of this study are as follows:
• We demonstrate our advanced scheduling method,
called IAIS, that exploits ML-based interference predic-
tion in a private network environment and significantly
enhances system capacity.

• We showcase a realistic factory automation use case in
an indoor OTA testbed with Qualcomm Technologies’
next generation disaggregated and virtualized RAN
research platform, satisfying the connectivity require-
ments of the IIoT applications that run on our factory
automation environment.

• Through empirical analysis by utilizing our OTA testbed
at sub-6 GHz frequency, we verify the efficiency of
IAIS in terms of effective throughput and deviation in
user experienced SINR. Our experiments show that IAIS
can improve the throughput by up to 70%, compared to
CSI-RS based DL Link Adaptation (LA) scheduling.

The rest of the paper is organized as follows. Section II
provides an overview on RAN disaggregation. In Section III,
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FIGURE 1. Functional split options between the central and distributed units [14].

we present the in-house developed NG-RAN research
platform. IAIS algorithm is formulated and analyzed in
Section IV-C with a comparison to the baseline model.
Section V describes our private 5G network OTA testbed.
We share our OTA performance evaluation in Section VI. The
paper is concluded in Section VII.

II. RAN DISAGGREGATION OVERVIEW
RAN disaggregation, as the name implies, refers to parti-
tioning conventional monolithic or all-in-one base station
solutions into modular network functions (NF) that interoper-
ate through open and standardized interfaces. Disaggregating
RAN into modular network functions, in conjunction with
software-defined networking (SDN) principles (e.g., with
control plane and user plane separation), enables creation of
flexible, scalable, and cost-effective radio networks which
diversifies RAN vendor ecosystem and promotes innovation.

Network function virtualization (NFV) is another impor-
tant paradigm in the context of evolving 5G RANs, as it
decouples the NF from the underlying hardware and lever-
ages standard virtualization technologies for deployment of
theseNFs on the commercial off-the-shelf (COTS) equipment
(e.g., x86 based hardware servers). NFV enables flexibility in
network deployment, efficient utilization of hardware infras-
tructure resources with adaptation to dynamically changing
NF workloads, and faster new service deployment cycle
with reduced capital expenditure (CAPEX) and operational
expenses (OPEX).

RAN disaggregation, coupled with virtualization, enables
cloud-native based flexible, resilient, and highly recon-
figurable deployments that can support diverse use-cases
and different traffic profiles with integration of data-driven
AI/ML optimized closed-loop control for RAN.

3GPP technical report (TR) 38.801 [14] identified various
functional splits for partitioning or disaggregating the RAN
protocol functions into Central Units (CU) and DU. Fig. 1
(reproduced from [14]) highlights these functional splits,
each of which have varying implications on deployment
complexity in terms of transport bandwidth, latency, and
network performance.

3GPP technical specification (TS) 38.401 [8] for 5G NR
defined overall architecture of NG-RAN, which consists
of set of gNB’s connected to the 5GC through the NG

interface. In addition to supporting conventional monolithic
architecture, each gNB is logically disaggregated into CU and
one or more DUs at the Option 2 functional split (i.e., at the
PDCP). Option 2 split is also referred to as high-layer split
(HLS) with CU and DU connected via F1 interface [15], [16].

CU is further logically disaggregated into CU-CP (CU-
Control Plane) and CU-UP (CU-User plane) entities. This
logical split decouples the control plane and user plane in
accordance with the SDN principles and enables deploy-
ment flexibility and independent scaling. CU-CP hosts the
RRC [17] and the control plane part of PDCP [18] and
is responsible for mobility management, radio bearer, and
admission control. CU-UP hosts the user plane part of PDCP
protocol and Service Data Adaptation Protocol (SDAP) [19]
and is responsible for user plane packet processing operations
(e.g., packet re-ordering, duplicate detection, ciphering, etc.)
and traffic flow Quality of Service (QoS) management.

DU hosts Radio Link Control (RLC) [20], Medium Access
Control (MAC) [21], and PHY layers and can support
multiple cells. DU is responsible for lower layer func-
tions such as cell radio resource management, scheduling,
HARQ retransmissions, ARQ, and PHY-layer operations
(e.g., baseband encoding, modulation, FFT operations, etc.).
RF functions such as Digital-to-Analog Conversion (DAC),
signal conditioning, and OTA transmission/reception of radio
signals are also implemented as part of the DU.

O-RAN Alliance [22] and Small Cell Forum (SCF)
[23] further extended the functional disaggregation with
specification of lower layer split (LLS) option 7-2 and
option 6, respectively, which relocates one or more PHY layer
functions along with RF functions to a separate entity, namely
Radio Unit (RU). O-RAN WG4 [6] provides the fronthaul
specification for LLS option 7-2, and SCF FAPI provides
the MAC-PHY interface specification for LLS option 6
[24], [25]. Fig. 2 shows comparative view of the functional
disaggregation architectures as specified in 3GPP, O-RAN
Alliance, and SCF.

Separation of certain PHY-layer and RF-layer functions
in RU enables potential cost reduction with low complexity
radio units and pooling gains with centralized manage-
ment of remote radio units. However, LLS introduces
increased fronthaul transport bandwidth and relatively more
latency-stringent requirements compared to HLS alone.
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FIGURE 2. RAN split architectures for 3GPP, O-RAN, and SCF. (a) Conventional monolithic RAN architecture, (b) 3GPP defined 5G NR RAN HLS split
architecture, (c) SCF defined 5G NR RAN HLS-LLS split architecture, (d) O-RAN defined 5G NR RAN HLS-LLS split architecture.

Optimal choice of LLS is dependent on deployment sce-
narios, requirements for supported end-to-end user traffic
services, and feature requirements (e.g., multi-TRP joint
transmission and reception that benefit from joint PHY
baseband operations with Option 7-2 LLS).

O-RAN Alliance introduced RIC function which rep-
resents programmable components hosting AI/ML aided
algorithms. This enables closed-loop control and optimiza-
tion of various functions in the RAN. RIC processes
measurement data provided by the RAN nodes and leverages
AI/ML algorithms to optimize various aspects of RAN, e.g.,
handovers, scheduling policies, RAN slicing, etc. O-RAN
Alliance specifies non-real-time (non-RT) RIC [26], which
is a component of Service and Management Orchestration
(SMO) framework and aids the near-real-time (near-RT)
RIC for RAN optimization on a time scale larger than
1 second. The near-RT RIC [27] is typically deployed
at the edge of the network and interacts with DU’s and
CU’s for RAN optimization control loops on a time scale
between 10 msec and 1 sec. The near-RT RIC hosts multiple
applications or microservices (xApps) that encapsulate cus-
tomized RAN optimization logic, and communicates through
standardized interfaces and service models. Fig. 3 shows
high-level O-RAN component architecture and the various

RIC control loops associated with non-RT and near-RT RIC
components.

CU and DU functions can be deployed as virtualized
network functions (VNF) on COTS servers at the network
edge (with hardware acceleration for some of the PHY-layer
functions). RU functions, being RF centric, are typically
considered as physical network functions (PNF) and are
generally implemented on FPGAs (Field Programmable Gate
Arrays) or ASICs (Application Specific Integrated Circuits)
and are deployed close to RF antennas.

III. NEXT GENERATION RAN (NG-RAN) RESEARCH
PLATFORM
Fig. 4 shows the various components along with the
interfaces that comprise the NG-RAN research platform. The
NG-RAN research platform is disaggregated, 3GPP interface
compliant, virtualized, and implements Option 2 HLS (i.e.,
the mid-haul between CU and DU) and Option 6 LLS
(i.e., the front-haul between DU and RU). NG-RAN CU,
NG-RAN DU, andNG-RANRU refer to the CU,DU, andRU
components of the NG-RAN research platform, respectively,
for the rest of this paper.

NG-RAN CU realizes 3GPP-defined CU-CP and CU-UP
functions as a virtualized NF and is deployed as containerized
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FIGURE 3. O-RAN architecture and RIC control loops [5].

FIGURE 4. Next Generation RAN (NG-RAN) research platform.

workloads that run on on-premises COTS x86-based Linux
servers. CU-CP and CU-UP communicate with each other
using 3GPP-defined E1 protocol [28]. CU is connected to
on-premises Microsoft Azure Private 5G Core platform over

high-speed ethernet network and communicates using 3GPP-
compliant NG-C / NG-U protocols [29], [30].

NG-RAN DU is further disaggregated into DU-Control
Plane (DU-CP) and DU-User Plane (DU-UP) functions.
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FIGURE 5. Qualcomm Cloud AI 100 PCIe card for high efficiency AI
inference in Real-Time RIC.

DU-CP is responsible for cell-level radio resource manage-
ment and communicates with CU-CP using 3GPP-compliant
F1-C protocol [15]. It acts as a controller for DU-UP function.
DU-UP is responsible for RLC and MAC protocols and
user plane data path over 3GPP-defined F1-U interface
with CU-UP [16]. DU-CP and DU-UP are realized as
virtualized NF and deployed as containerized workloads that
run on the on-premises COTS x86-based Linux servers. They
communicate with each other using Qualcomm® proprietary
Q-D1 protocol. DU supports the FSM FAPI protocol (i.e.,
API for the Qualcomm® FSM100xx small cell modem
platform product [31]) over high-speed ethernet that provides
the fronthaul transport to the RU.

NG-RAN DU implements our proprietary Real-Time
RIC component that can host multiple applications, called
as qApps. These applications contain customized AI/ML
algorithms and provide closed-loop control for optimizing
RAN functions on a time scale of less than 10 msec. The
Real-Time RIC is embedded within the DU and interacts with
the DU-UP component via our proprietary Q-E2 interface
(O-RAN E2-like interface). In particular, it receives the
necessary RAN measurements to perform optimization and
communicates the results to DU-UP. Real-Time RIC utilizes
the Qualcomm® Cloud AI 100 PCIe (Peripheral Component
Interconnect Express) card [32] for performing AI/ML
inference required for RAN optimization. Please refer to
Fig. 5.

NG-RAN RU realizes HIGH-PHY function [5] using
Qualcomm FSM100xx based PHY baseband PCIe card,
which hosts up to four 5G FSM 100xx SoC’s [31]. This
card can provide HIGH-PHY baseband service for up to four
FR1 radio cells. The HIGH-PHY baseband PCIe card (please
refer to Fig. 6) is hosted in the on-premises COTS x86-based
Linux server and serves as the endpoint for fronthaul (high-
speed ethernet) termination with DU. NG-RAN RU utilizes
in-house developed FPGA-based components for LOW-PHY
and RF functions that are connected to the HIGH-PHY over
high-speed ethernet links.

The deployment of VNF containerized workloads for the
NG-RAN research platform is performed using Kubernetes
orchestrator. Lifecycle management of all the network

FIGURE 6. Qualcomm FSM100xx based PHY baseband PCIe card.

functions along with the configuration management is per-
formed using in-house developed NG-RAN research OAM
framework.

IV. INTERFERENCE-AWARE INTELLIGENT SCHEDULING
A. PROBLEM STATEMENT
5G network traffic increases with diverse service demands
that have periodic traffic profiles. In dense private network
deployments, this causes periodic and intense interference
to and from neighboring cells. Such examples include
bursty XR-like traffic and IIoT applications. For instance,
a common XR traffic profile consists of file arrivals every
16.66 milliseconds, corresponding to roughly 60 frames per
second (fps) video-like traffic and the total offered load
would be in the order of 100 Mbps [33]. Furthermore,
most use cases in IoT environments are periodic transmis-
sions of messages containing sensor measurements, status,
or simple commands. Various IIoT traffic examples were
discussed in [34] and [35]. Some common deterministic and
periodic traffic scenarios include a pressure sensor sending
values to a machine PLC, emergency stop signals from
hand-held controllers being sent to another PLC, or periodic
controller-to-actuator messages. Besides, there could be
non-deterministic but still periodic traffic patterns such
as client-server messages between non-synchronized, non-
latency-critical applications, e.g., high-resolution cameras
sending images to a pattern recognition server.

Let us consider a scenario where a gNB-to-UE link (DL
or UL) experiences bursts of interference inline with the
aforementioned traffic patterns that is (a) quasi-periodic
(learnable), (b) low duty-cycle (occasional), and (c) intense
(catastrophic). For simplicity, let us say that the interference
levels fall into two categories (High and Low). The sketch
in Fig. 7(b) depicts an example where the interference
strength is varying over time. A common solution adopted
by various cellular wireless technologies (e.g., 4G LTE,
5G NR, etc.) to resolve the issues arising from these
scenarios is the DL link adaptation (LA) technique. Briefly,
a DL reference signal called CSI-RS is transmitted by a
DU, and UEs perform channel and interference estimation
based on this signal. These estimations are later reported as
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FIGURE 7. (a) Periodic CSI-RS measurements and (c) MCS scheduling under bursty interference
where the sketch in (b) represents the interference signal strength. Two suboptimal scenarios arise
due to quasi-periodic, low duty-cycle, and intense interference, causing packet decoding errors or
under-utilization of the resources.

channel quality information (CQI) reports over a feedback
channel to the scheduler residing on DU, which utilizes it to
adapt attributes such as MCS, Rank, etc. when scheduling
over-the-air transmissions. In Fig. 7, we consider periodic
CSI-RS resources and periodic feedback messages, and they
are shown with colored boxes and arrows, respectively,
in Fig. 7(a). Note that processing and reporting delays are not
shown in these figures.

We focus on Enhanced Mobile Broadband (eMBB) like
interference patterns with the quasi-periodic arrivals of fixed
size files. We focus on two scenarios. First, the interference
periodicity is considered to have periodicities larger than
the CQI reporting period in order to elicit conditions
where interference arrival is a surprise. Second, we consider
scenarios with interference periodicities smaller than the
CQI reporting period in order to elicit conditions where
interference arrival and departure makes the interference
conditions change rapidly within a CQI reporting period.
Under such bursty interference, the following suboptimal
scenarios will be observed when performing baseline LA
technique based on periodic CSI-RS measurements.

• Aggressive scheduling: A scheduler that uses CSI mea-
surements that are obtained during low interference will
be aggressive when scheduling during high interference
bursts. This leads to packet decoding failures and HARQ
retransmissions. In Fig. 7, this scenario is depicted
with the red cross-marks on MCS curve (Fig. 7(c)),
representing packet decoding errors. This happens
since the first and second channel measurements are
performed under low interference, and the scheduler
assigns a high MCS for the subsequent transmissions.

• Conservative scheduling: A scheduler that uses CSI
measurements that are obtained during high interference
will be conservative when scheduling even after inter-
ference has reduced. This leads to inefficient utilization
of the channel. In Fig. 7, this scenario is shown with
the excess capacity region in MCS curve. Basically,
in the third CSI-RS measurement occasion, the channel
measurement is performed under high interference,

FIGURE 8. Downlink link adaptation operation with outerloop
adjustments.

and the scheduler sets a low MCS for all subsequent
transmissions.

B. BASELINE SOLUTION
To address these suboptimal scenarios, the CQI report
processing in 5G NR is augmented with the link adaptation
outerloop mechanism, where MCS is adjusted based on
widely-adopted Hybrid Automatic Repeat Request (HARQ)
feedback, which is a special physical layer message that
indicates the success or failure of a DL transmission. Briefly,
for each DL packet, UE sends an acknowledgement message:
ACK if the packet is successfully decoded or NACK if the
packet decoding is failed. In the case of a NACK, gNB
retransmits the same packet, increasing the reliability of the
system. In HARQ feedback, the exponential backoff method
is utilized to multiplicatively decrease the scheduled MCS
with each corresponding NACK and to gradually increase the
MCS with each ACK. Please refer to the following equation,
where bler denotes the BLER target, where 0 ≤ bler < 1.
Also, let 1down and 1up denote the backoff adjustment step
sizes for each ACK and NACK, respectively. Then,

boffSE =

{
boffSE − 1down, if HARQ feedback: ACK
boffSE + 1up, if HARQ feedback: NACK

(1)

where boffSE denotes the backoff element in terms of spectral
efficiency (please refer to [11] and [36] for the details).
This backoff element is then utilized by the scheduler to
adjust the MCS. Briefly, this value is subtracted from the
spectral efficiency reported by the UE, which is calculated
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FIGURE 9. Issues with link adaptation outerloop mechanism under bursty
interference. (a) With the absence of interference, the backoff parameter
ideally remains around 0. (b) Under a quasi-periodic and bursty
interference, we observe a sharp increase in backoff due to successive
NACKs.

based on CSI-RS measurements. Let CQIreported (tcsi) denote
the Channel Quality Indicator (CQI) reported by the UE
corresponding to CSI-RS at time tcsi. The spectral efficiency
SEreported (tcsi) is then calculated via a look-up table. Let
fcqi2se(x) represent this conversion where x is the reported
CQI. Then, SEreported (tcsi) = fcqi2se(CQIreported (tcsi))
and SEscheduled (tcsi) = SEreported (tcsi) − boffSE , where
SEscheduled (tcsi) is the adjusted/scheduled spectral efficiency
that is later converted to the largest MCS supported by
SEscheduled (tcsi). Please refer to Fig. 8 for the high-level block
diagram of the DL LA procedure.

1down in (1) is also referred to as recovery step-size
where 1down

≥ 0 and 1up
= 1down

× (1 − bler)/bler.
In the absence of a bursty interference, boffSE ideally remains
around 0. Please refer to Fig. 9(a) where ACKs gradually
reduce the backoff with a step-size of 1down until a NACK
multiplicatively increases it. On the other hand, under a
bursty interference, i.e., Fig. 9(b), multiple packet decoding
failures happen, causing multiple NACKs. This results in
a sharp increase in boffSE . The resources are inefficiently
utilized until the system recovers to its ideal operating
point where boffSE is around 0. That is, even after the
interference is not present anymore, the backoff remains
very high, eventually leading to low MCS and hence low
throughput. In addition to that, under quasi-periodic patterns,
another burst of interference may hit again before the system

comes back to its ideal operating point. This causes another
sharp increase in boffSE . This process repeats itself due to
quasi-periodic nature of the interference, eventually leading
to a suboptimal and non-zero equilibrium point for boffSE and
causing inefficient utilization of the resources.

C. PROPOSED APPROACH: IAIS
In this section, we explain our proposed Interference-
aware Intelligent Scheduling, IAIS, technique that addresses
performance degradation issues caused by a quasi-periodic,
low-duty cycle, and catastrophic interference. Since such an
interference pattern is somewhat learnable due to its periodic
nature, we study the performance of different machine
learning methods to predict various types of interference
and to avoid the two suboptimal scenarios mentioned in
the previous section. Due to its superior performance in
sequence prediction and in learning long-term dependencies
in datasets, Long Short-Term Memory (LSTM) based
neural networks are considered in this study to predict the
interference patterns and proactively utilize this information
during MCS adjustment during scheduling. Therefore, the
idea that we explore in this paper is to predict interference
patterns with an LSTM network and proactively make this
information utilized by the scheduler duringMCS adjustment
step. Note that although the principle can be applied to DL
and uplink (UL), we only cover DL here to focus on the key
concepts.

Fig. 10 highlights the interactions between the various
entities and relevant inputs - outputs for the key functional
blocks. Briefly, we implement the LSTM-based neural
network (NN) model on the Qualcomm Cloud AI 100 that
is hosted in NG-RAN DU. This NN model is executed as
part of the qApp which resides within the Real-Time RIC
component (refer to Section III) and communicates with the
DU DL scheduler over the Q-E2 interface. The overall IAIS
technique has the following salient functional blocks:

• SINR predictor: This functional block is essentially the
NN model within the Real-Time RIC that takes as an
input the sequence of relative timestamped sequence of
PDSCH SINR values measured by the UE and outputs
a predicted SINR sequence for a consecutive range of
future timestamps. Note that the length of the input
SINR sequence and the length of the output SINR
sequence is denoted by T andN , respectively, in Fig. 10.

• MCS adjustment computation: This functional block
resides within the DL scheduler link adaptation module
and takes as an input the predicted SINR values from
SINR predictor and computes the scheduled MCS
(taking into consideration the outerloop backoff as
well).

Motivation for interference and SINR prediction: Prin-
cipal motivation for extensive standardized support of CSI
reporting in 5G NR is scheduling and link adaptation.
A single CSI report, which is delayed and relatively sporadic
(periodic, semi-persistent, or aperiodic), cannot be expected
to uniformly and correctly represent an interference that
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FIGURE 10. End-to-end call flow for IAIS.

varies over multiple slots. This results in a mismatch between
reported CSI and actual observed SINR. As argued in
Section IV-A, this may result in too aggressive or too
conservative MCS selection. The source of the mismatch,
namely interference variation, and hence the size of the
mismatch can be large from slot to slot. A good predictor
that learns the interference process or the SINR process can
predict the SINR in a slot where it can potentially have a
lower mismatch in predicted value and the true SINR, thereby
permitting better scheduling.

The nature of the SINR process is such that a significant
variation comes from interference variation, which in turn
is strongly governed by the presence and absence of trans-
missions at the interfering nodes. This presence or absence
of transmissions is due to arrivals and departures of traffic
demand at the interfering links. Further, the interference
process is a superposition of interferers who have different
strengths, primarily arising from long term effects such as
pathloss and shadowing.

Classical predictors, based on linear models such as
autoregressive moving average (ARMA) and autoregressive
integrated moving average (ARIMA) [37], are more suited
where the primary sources of randomness in the underlying
process are gradually varying rather than abrupt. For
example, capturing a 25 dB variation in SINR time series
due to presence or absence of the nearest interferer in two
consecutive slots, via classical ARMA/ARIMA approach
may need large order of coefficients. ML Models such as
LSTM, on the other hand, appear to be more suitable to
capture the gradual as well as the predictably abrupt changes
in the time-series.

The predictor is a batch predictor, simultaneously pre-
dicting the likelihood (a predicted probability distribution)
of quantized value of the SINR in a window of future
slots. In this design the quantization of the SINR prediction
converts a regression problem to a classification problem.
The LSTM based NN Model for the predictor is trained on
cross-entropy loss minimization.

The training phase of the SINR predictor module is based
on an offline data collection procedure. The details of this
procedure will be explained in Section VI. Data collection
for training simply consists of running various traffic profiles
on the UE under consideration, applying various interference
profiles on the UEs in the neighboring cells, and recording the
(SINRmeasured (t), t) pairs at the worker UE, where t denotes
the timestamp and SINRmeasured (t) denotes the UE-measured
SINR at time t .
The call flow schematic depicted in Fig. 10 starts with

the periodic Interference Report messages that carry a set of
SINRmeasurements and timestamps associated with PDSCH
measurements for the time window since the last Interference
Report message. The DU, via the Q-E2 interface, transports
the same information to the RIC where the inference engine
is running the SINR predictor. The NN model in Fig. 10 is
a set of LSTM cells followed by two fully connected layers.
The dimensions involved in the NNModel are summarized in
Table 1. In particular, this NN module outputs N number of
softmax vectors with K bins each. These bins correspond to a
range of SINR values as shown in Table 1. Then, via argmax
selection criteria, per-slot SINR predictions are provided
for the next N slots by choosing the bins with the highest
associated probability for each slot.
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FIGURE 11. IIoT Factory Automation operation with radio network layout of 8 cells and 16 5G UEs.

TABLE 1. Summary of NN model parameters.

The time-complexity of such an NN model varies approx-
imately linearly with each of the following: The sequence
length or lookback, the output tokens which is a product
of the prediction window, and the number of bins. The
time-complexity of the LSTM component varies roughly as
square of the hidden size. The space-complexity of such
a model varies linearly with sequence length and hidden
size.

Within the MCS adjustment block, the following oper-
ations are performed. The first step is to convert the
predicted SINR value SINRpredicted (t0) for time t0 to the
predicted spectral efficiency SEpredicted (t0) with a look-up
table, i.e., SEpredicted (t0) = fsinr2se(SINRpredicted ), where
fsinr2se() denotes the conversion from SINR to spectral
efficiency. Then, the similar steps as in Section IV-B are
applied. Particularly, the adjusted/scheduled MCS is calcu-
lated through SEscheduled (t0) = SEpredicted (t0) − boffSE and
MCSscheduled (t0) = fse2mcs(SEscheduled (t0)), where fse2mcs()
denotes another look-up table that converts spectral efficiency
to scheduled MCS.

V. PRIVATE NETWORK DEPLOYMENT: OTA TESTBED
Our private 5G network is deployed in a warehouse
setting in one of the Qualcomm buildings. The high-level
diagram of the deployment is shown in Fig. 11. This stand-
alone (SA) 5G private network consists of a commercial
Microsoft Azure Private 5GC and the NG-RAN research
platform, as described in Section III. The 5GC provides

Access andMobilityManagement Functions (AMF), Session
Management Functions (SMF), and User Plane Functions
(UPF). The NG-RAN research platform is connected to
Microsoft Azure Private 5GC over 3GPP-compliant N2
[29] and N3 [30] interfaces that support control plane
(related to UE context management, PDU session/resource
management, etc.), signaling, and exchange of user data
between UPF and RAN. The 3GPP N6 interface with UPF
terminates in the Qualcomm intranet infrastructure for data
network connectivity.

Our private network deployment consists of 8 Radio Units
(RU) that provide 8 cell radio network with each of these cells
operating in FR1 band, TDDmode, and with 100MHz carrier
bandwidth. The HIGH-PHY baseband functionality for these
8 cells is achieved using two Qualcomm FSM100xx based
PHY baseband PCIe card hosted in RU servers. The 8 RUs
are spread across the OTA testbed to ensure necessary RF
coverage for all the 16 UEs that are part of the test-bed. Each
RU or cell is configured with DDSU TDD pattern, and the
DU scheduler performs both FDM (Frequency Division) and
TDM (Time Division) scheduling operation to provide end-
to-end connectivity for all the 16 UEs. The 5G UEs, shown
Fig. 13, have 2 transmitter (Tx) and 4 receiver (Rx) antennas
with 2×4Multiple InputMultiple Output (MIMO) capability
and can support 100 MHz bandwidth operations.

A. IIOT FACTORY AUTOMATION
Our IIoT Factory Automation operation developed on the
private 5G network test-bed, represents a typical assembly
line scenario, where an Automatic Guided Vehicle (AGV)
moves newly minted parts for sorting and another set of
AGVs supply the sorted parts for assembly (refer to Fig. 11).
The newly minted parts are placed into a conveyor belt,
where a camera running an ML algorithm identifies them
and instructs a downstream delta robot on how to sort them.
The sorted parts are then supplied to an assembly worker
by AGVs. All these different units are connected to our
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FIGURE 12. NG-RAN RF Radio Unit research platform.

FIGURE 13. Qualcomm® Snapdragon X60 5G Modem based User
Equipment [38].

private 5G network through 5G UEs. The various endpoints
connected to these 5G UEs are shown in Fig. 11 and are as
follows:

• Multiple Qualcomm Robotics RB5 Development Kits
(controlling AGVs),

• A Qualcomm Robotics RB5 Development Kit (camera
with image classification capabilities) [13],

• A PLC to control the delta robot and the conveyor belt,
• Worker in assembly line that uses the parts supplied,
• A main controller that orchestrates the whole factory
operation,

• 5G UEs serving as endpoints for security/monitoring
camera traffic.

The 5G UE is connected to Factory Worker, referred as S1
(see Fig. 11), which requires ultra reliable communication,
and hence the focus of IAIS performance. Four of the 5G
UEs run such a traffic to emulate security/monitoring camera,
and they are the interferers to S1. Among these UEs, two
of them run traffic equivalent to a 60 fps video stream,
and the other two run traffic equivalent to a 30 fps video
stream.

VI. OTA PERFORMANCE EVALUATION
A. KEY PERFORMANCE INDICATORS
The following key performance indicators (KPIs) help
in analyzing the benefits of IAIS in bursty interference
scenarios:

Effective DL Throughput: Effective DL throughput is the
accumulated throughput in a time window over the actual
number of DL slots used for transmission. The averaging
window is chosen as 500 msec. This KPI shows how
efficiently the available bandwidth is being used by the
scheduler.

Deviation of user experienced SINR: For the baseline
approach (CSI-RS based DL Link Adaptation), the deviation
of user experienced SINR is calculated as the difference
between the CQI reported SINR after outerloop adjustment
and the actual PDSCH SINR measured by the S1 worker
UE. For the IAIS approach, the deviation is calculated
as the difference between the predicted PDSCH SINR by
the NN model and the actual PDSCH SINR measured
by the S1 worker UE. Lesser deviation (close to zero)
indicates the interference prediction is close to ideal and the
channel is being used effectively. Positive values indicate
that the interference prediction is optimistic, resulting in
higher number of packet errors due to aggressive scheduling.
Negative values indicate that the interference prediction
is pessimistic, resulting in under-utilization of the channel
due to conservative scheduling. Tightly bounded distribution
around zero suggests that the scheduling is done effectively
resulting in efficient channel utilization. A wider distribution
of SINR deviation indicates that the scheduling is either
conservative or aggressive resulting in inefficient channel
utilization.

MCS: DL throughput is directly impacted by the MCS
scheduling. Accurate interference prediction helps in MCS
adjustment computations resulting in effective utilization of
the channel. Choosing a higher or lower MCS than the
ideal MCS for a particular DL slot can result in ineffective
utilization of the channel due to packet errors or wasted
channel capacity.

B. OTA TEST METHODOLOGY
The fully operational OTA network with 8 cells and 16 5G
UEs is subjected to interference among the cells, as they
all occupy the same 100 MHz bandwidth. In this section,
we describe test scenarios where the S1 worker UE is
subjected to DL interference from up to 4 other neighboring
cells. We evaluate the performance of this S1 worker UE in
the presence of semi-persistent bursty interference from up to
4 cells. This interference, therefore, leads to PDSCH BLER
at the worker UE. This impact is observed by variations in
worker UE’s PDSCHSINR. In our OTA analysis, we evaluate
and compare the performance of the worker UE’s DL
throughput while maintaining reliability requirements. The
baseline is conventional 5GCSI-RS based DL link adaptation
which is compared with IAIS. The specific 5G configuration
on the worker and interfering UEs is not covered in this
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FIGURE 14. Impact of interferers on PDSCH SINR at the worker UE. (a) PDSCH SINR vs time in single interferer scenario from farther RU, (b) PDSCH
SINR vs. time in single interferer scenario from nearer RU, (c) PDSCH SINR vs. time in Scenario A: Interference from Cells 2, 3, 5, and 8, (d) PDSCH SINR
vs. time in Scenario B: Interference from Cells 2, 3, 6, and 7.

manuscript. However, the DL channel configurations of these
UEs are such that the worker UE’s DL transmission is
impacted by theDL traffic on up to four interferers. S1worker
UE is served by Cell 1. We consider Cells 2, 3, 5, 8, 6,
and 7 as Interferers 0, 1, 2, 3, 4, and 5, respectively. Note that
even though the set of possible interferers includes six cells,
only up to four of them will be active in a given scenario.
In particular, in our deployment, interference on worker UE
from Cells 6 and 7 (interferers 4 and 5), is stronger than
interference on worker UE from Cells 5 and 8 (interferers
2 and 3) as the worker UE is closer to RU6 and RU7
compared to RU5 and RU8. Having six possible interferers
with different strengths where we select up to four of them at
a given time allows us to create and study various interference
scenarios.

1) BASELINE
As explained in detail in Section IV-B, the baseline approach
is the CSI-RS based DL link adaptation that is typically uti-
lized in 5G RAN systems. Note that CSI-RS allows for more
accurate noise estimation at the UE compared to UL-based
reference signals that rely on channel reciprocity between

DL and UL, since it enables capturing both interference
and noise. Here, UE measures CSI and reports CQI to
the DU. Then, the scheduler makes innerloop adjustments
through CQI to SE mapping as per 3GPP specifications
38.214 Table 5.2.2.1-3 [11]. SE adjustments are further
made based on outerloop backoff depending on HARQ
feedback, and MCS is chosen as per 3GPP specifications
38.214 Table 5.1.3.1-2 [11].

2) IAIS
The NN model running in Real-Time RIC is trained (using
offline training methods) to enable it to learn the interference
pattern on the worker UE. The scenario for training that is
chosen on our OTA deployment is as follows:

• Resource utilization: The worker UE is scheduled with
100% resource utilization, i.e., all the DL PDSCH
slots are occupied. This allows the model to learn the
interference pattern across all the slots.

• Number of interferers: Up to 4 interferers for a given
scenario, each occupying the same 100 MHz DL
resources.
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• Interferer strength: Scenario A is used for training in
which Interferers 0, 1, 2, and 3 introduce approximately
15 dB, 9 dB, 12 dB, and 6dB SINR degradation to the
worker UE, respectively. We consider these levels as the
reference state.

• Interference periodicity: Each interferer has a semi-
persistent bursty traffic scheduled at different peri-
odicities. In our scenario, Interferer 0 and Interferer
1 have similar traffic profiles such that it occupies 4 or
5 consecutive PDSCH slots every 33 msec. Interferer
2 and Interferer 3 have similar traffic profiles such that it
occupies 4 or 5 consecutive PDSCH slots every 16msec.

• Traffic pattern: UDP traffic on both the worker and
interferer UEs.

• Training data: The following training data is collected
from the worker UE under various scenarios listed in
the later sections: Periodic wideband CSI-RS reports
and PDSCH decoding SINR measurements with times-
tamps. This training data is input to the inference
prediction block which predicts the adjusted MCS for
a given DL slot.

• Number of datasets: Each dataset consists of 2-minute
captures on DL. Total of 7 datasets, each set having dif-
ferent start reference points of worker and interference
traffic, to obtain diversity, are used for training.

• Mode: Offline trained, online inferred.

A few salient challenges for the LSTM based NN Model
predictor to overcome are as follows. First, although each
interferer is subjected to a periodic traffic, overall the
interference process experienced at the worker UE is multi-
periodic with more than one periodicities of interferers
superposed. Second, the traffic at these multiple interferers is
not coordinated, i.e., the relative arrivals of interference bursts
from multiple interferers over the air vary run to run, and can
differ significantly between runs and training data. Further,
the periodicities of the interferer traffic are larger than the
lookback used for the model, to mimic real-life conditions
for time series prediction where such periodicities cannot
be known in advance. The trained NN Model, therefore,
must perform an online inference in the OTA network,
taking into account various delay components in the network.
The prediction then interacts with the link adaptation/MCS
selection module as outlined in Fig. 10 to perform MCS
selection.

The trained NN model for the aforementioned scenarios is
utilized to characterize IAIS OTA gains under the following
scenarios. Number of RUs and interferers, interference
periodicities, and traffic patterns are alike the training
scenarios where the first transmission PDSCH BLER target
is set to 10%. To characterize the IAIS performance gain, two
scenarios are chosen. The first is Scenario A, where, either or
all Cells 2, 3, 5, and 8 have DL traffic causing interference
on the worker UE. The second is Scenario B, where either or
all Cells 2, 3, 6, and 7 have DL traffic causing interference
on the worker UE. Cells 6 and 7 in Scenario B have larger

interference strength compared to cells 5 and 8 in Scenario A
as the stationary worker UE is closer.

C. TEST RESULTS
Fig. 14a shows the impact of Interferer 0 on PDSCH SINR
at the worker UE. The SINR degrades at the presence of
interference traffic occasions. This translates to block errors
causing throughput degradation. When the interferers are not
present, the PDSCH SINR dips are not seen. Therefore, the
DU schedules DL transmissions with an MCS that achieves
maximum spectral efficiency (SE) depending on the channel.
Fig. 14b shows the impact when Interferer 0 is stronger
by 7 dB. Higher interference strength leads to larger SINR
degradation on the worker UE. Similarly, when all the four
interferers have traffic running, Fig. 14c shows the impact
on the worker UE’s SINR. As the number of interfering
cells increase, we observe more frequent SINR dips on the
worker UE. The dips also have varying magnitude because
of different distances of stationary worker UE from the
interfering cells. We compare the performance of worker UE
under baseline and IAIS in two scenarios: Scenario A and
Scenario B.

The results in Figs. 15a and 15b show the comparison of
DL throughput performance between baseline DL LA and
IAIS. IAIS performs better in terms of DL throughput for
a given reliability criteria in the presence of semi-persistent
bursty interfering traffic compared to baseline DL LA.
The gain is largely because the NN model is capable of
efficiently predicting the interference occasion and adjusting
the spectral efficiency accordingly. In baseline DL LA,
the MCS adjustments become either more conservative or
aggressive leading to inefficient resource utilization either
due to wasted channel capacity or higher BLER, respectively.
In Scenario A, there is 39% gain between the performance
of DL LA and IAIS for the target of 10% first transmission
PDSCH BLER. This is because in IAIS, the NN model is
able to estimate SINR and utilize channel capacity. When
we compare the baseline performance of Scenario A and
Scenario B, we observe the effective DL throughput reduces
from 20.3 Mbps to 14 Mbps. This is because of higher
interference strength where the corresponding CQI reports
map to lower SE. Under such conditions, IAIS provides about
70% gain. This also indicates that the IAIS gain varies and
depends on multiple factors. Note that the IAIS approach
tends to show increasingly better gains in conditions where
the baseline DL LA performance tends to degrade.

The SINR deviation results in Fig. 16b show that the
difference between the CSI-RS based SINR calculation and
the UE-measured PDSCH SINR is large in both negative and
positive directions with baseline DL LA, i.e., when IAIS is
disabled. Along the negative axis, when the UE-measured
PDSCH SINR is higher, it leads to wastage in channel
capacity as the UE is capable of decoding with higher
SE on such occasions. Along the positive axis, when the
UE-measured PDSCH SINR is lower, the DU schedules
PDSCH at larger SE than what the channel can support in the
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FIGURE 15. (a) Scenario A: Average effective DL throughput comparison between IAIS OFF (baseline CSI-RS based DL LA) and IAIS ON for the 5G UE in
the OTA deployment, (b) Scenario B: Average effective DL throughput comparison between IAIS OFF (baseline CSI-RS based DL LA) and IAIS ON for the 5G
UE in the OTA deployment. Note that the interferer cells in Scenario B have larger interference strength than the ones in Scenario A.

FIGURE 16. (a) Effective DL throughput vs. time comparison between IAIS OFF (baseline CSI-RS based DL LA) and IAIS ON for the 5G UE in the OTA
deployment for both Scenario A and Scenario B, (b) Distribution of deviation of user experienced SINR for IAIS OFF (baseline CSI-RS based DL LA) and
IAIS ON cases for the 5G UE in the OTA deployment.

presence of interference, causing BLER and loss of packets.
Both cases of inefficient utilization can be mitigated with
accurate interference prediction that can be provided by IAIS.
The results show that the SINR deviation is comparatively
much lower with IAIS. Effective throughput figure in Fig. 16a
also provides another perspective of IAIS gain with both high
and low interference scenarios. The plot shows Worker UE’s
DL effective throughput calculated every 0.5 sec. Under both
Scenarios A and B, we see IAIS gains.

VII. CONCLUSION
We demonstrated performance gains and efficient use
of wireless channel resources that can be realized with
Interference-aware Intelligent Scheduling, IAIS, technique
in our indoor OTA test-bed private network environment
under a realistic factory automation use-case. We also
demonstrated the realization of such techniques as part of
Real-Time RIC and achieve AI/ML optimized time-stringent
closed loop control with the DU scheduler in the fully

disaggregated, virtualized, and in-house developed Next
Generation RAN research platform. Data-driven AI/ML
interference-prediction techniques such as IAIS enable net-
work deployments to extract higher radio link capacity while
operating with the required latency and reliability constraints,
allowing larger number of devices to be serviced and making
5G NR radio access network deployments cost-effective.
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