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ABSTRACT In this paper, we construct a Bessel-class kernels for Support VectorMachine. This new class of
kernels are proved that they are continuous and satisfyMercer’s condition. The presentedBessel-class kernels
can degenerate to Gaussian kernel in an infinite smooth case. Compared to the other kernels, these present
Bessel kernels can be flexibly applied to classification and regression with fewer constants to be adjusted.
Additionally, four simulation experiments including classifications and regressions, have been carried out to
show the good performance of these Bessel-class kernels.

INDEX TERMS Machine learning, support vector machine, Bessel kernel, classification, regression.

I. INTRODUCTION
Support Vector Machine (SVM) is one of the competi-
tive methods for classification and regression in machine
learning(ML), and has been widely used in the areas of
pattern recognition, speech recognition and text classifica-
tion, etc., [1], [2], [3], [4]. SVM is based on the structural
risk minimization principle and capacity concept with pure
combinatorial definitions [5], [6], [7]. Compared with the
traditional methods which minimize the empirical training
error, SVM can avoid local minima by solving quadratic
programming problem of convex objective function with a
linear set of constraints [8], [9]. Furthermore, the quality
and complexity of the SVM solution does not depend on the
dimension of the input space [5], [6], [7].

Based on the statistical learning theory, SVM belongs to
the class of Kernel Methods. By choosing different mapping
function ϕ(x), one can map the training data into a higher
dimensional input space, and give an optimal separating
hyperplane in that space. It is noted that SVM has advantage
that it does not need the mapped patterns ϕ(x), and only need
a kernel function K (xk , xl) which involves the dot products
of these patterns instead. As mentioned before, the kernel
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TABLE 1. Some traditional kernels [11].

function can be regarded as a similarity measure between the
input objects. It is also emphasized that the kernel function
must satisfy Mercer’s condition [10]. The mapping from the
input space into the feature space is explained as well as
the ‘‘Kernel Trick’’. With different kernel, SVM can be used
to solve the specific problem. Table 1 lists some traditional
kernels, which can be applied for most of general problems
for SVM. Besides the linear kernel, the other kernel func-
tions based on polynomial, sigmoid function, Gaussian radial
basis function(RBF) listed in Table 1, have been successfully
applied for many science and engineering problems.

The performance of SVM seriously relays on the kernel.
Therefore, the choice of the kernel functions and the cor-
responding parameters is a key problem for an SVM [12].
To the authors’ knowledge, there are no good theories to
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select the best kernel function. Most of the selections for
the kernel functions in SVMs depend on the experience of
researchers without theoretical guidance. At present, most
researches have studied the performance of SVM utilizing
different kernels. Guo and Zhang et al [13] proposed amethod
using a kernelized multi-class support vector machine with a
fast version of recursive feature elimination. Their proposed
feature selection algorithm was efficient and worked well for
problems of the large number features. Wang and Zhang et al
[14] proposed a kernel function selection mechanism for
support vector machine(SVM) under sparse representation.
In their paper, the composed kernel function, which was
suitable for the given data, can be selected according to the
selection mechanism. Basing on the idea of enlarging the
spatial resolution to increase separability between classes,
Amari andWu [15] proposed a method of modifying a kernel
function. With the help of their method, the performance of
a support vector machine classifier was improved. They also
extended the method in Ref. [15] to improve the performance
of SVMs by conformally transforming kernel functions in
a data-dependent way [16]. Based on Gaussian RBF and
Polynomial kernels, their simulations for two artificial data
sets revealed that the method is effective.

It is noted that the most used kernels are those listed in
Table 1, or the combinations of those functions. The linear
kernels are suitable for linearly related data. The polynomial
kernels are generally applied for the global characteristics
of the sample, which have strong generalization ability. The
Gaussian RBF kernels have strong local effect to training
data, but they are not very good to the overall character-
istics of the data. It is also mentioned that the polynomial
kernels and Gaussian RBF kernels are difficult to adjust the
parameters in some cases. According to the features of the
above kernels, one can also establish mixed kernel for some
complex situations, instead of the single kernel. If all of the
above approaches can not be optimized for selection, it seems
that SVM is not valid to be applied for a specificML problem.
In the authors’ opinion, the poor performance is induced by
the unsuitable kernel. When a good kernel is used, SVM can
achieve good results. Therefore, it is necessary to search new
kernel type for SVMs. In this paper, we have presented a
type of Bessel-class kernels for SVM in ML problem. This
new class of kernels are continuous and satisfy the satis-
fies Mercer’s condition [17]. These Bessel-class kernels can
degenerate to Gaussian kernels in an infinite case. Addition-
ally, this class of Bessel kernels can be flexibly used with
only parameter to be adjusted, which can greatly simplify the
computation in ML procedure.

A brief outline of this paper is as follows. In Section II,
some basic formulas on SVMs for classification and regres-
sion problems are briefly reviewed to ensure the complete-
ness of this paper. In Section III, a new class of kernels based
Bessel functions are given and proved. In Section IV, four
simulation experiments including classifications and regres-
sions have been given to verify the validation of the new
presented kernels. Some conclusions are drawn in Section V.

II. SVM FORMULAS
In this Section, some basic formulas on SVM for classifi-
cation and regression problems are shortly reviewed. For all
further details, one can go to those references [5], [6], [7].

A. FORMULAS OF CLASSIFICATION
SVM is based on a context of convex optimization theory.
In the primal weight space, the nonlinear SVM classifier is
defined as

y(x) = sign[wTϕ(x) + b], (1)

where w ∈ Rn, b ∈ R, ϕ(x) is map function, which maps x
into a higher dimensional feature space which can be infinite
dimensional.

Consider a set of given training vectors xi ∈ Rn (i =

1, . . . ,N ), in two classes, and the indicator (feature) vector
y ∈ RN with yi ∈ {−1, 1}, the primal SVM for classification
can be written as follows

min
w,b,ξ

1
2
wTw+ c

N∑
k=1

ξk

s.t. yk (wTϕ(xk ) + b) ≥ 1 − ξk ,

ξk ≥ 0, k = 1, . . . ,N , (2)

where ξk is slack variable, c is a positive real tradeoff
constant.

By applying Lagrangian, Eq.(2) can be solved via the dual
problem

max
α

−
1
2

N∑
k,l=1

ykylK (xk , xl)αkαl +
N∑
k=1

αk

s.t.
N∑
k=1

ykαk = 0, αk ∈ [0, c], k = 1, . . . ,N , (3)

where αk are Lagrangemultipliers, andK (xk , xl) is the kernel
function as follow

K (xk , xl) = ϕ(xk )Tϕ(xl). (4)

After the dual problem is solved, the vector w can then be
given as

w =

N∑
k=1

ykαkϕ(xk ), (5)

by using primal-dual relationship. Consequently, Eq.(1) can
be written by

y(x) = sign
(
wTϕ(x) + b

)
= sign

(
N∑
k=1

ykαkK (xk , x) + b

)
. (6)
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B. FORMULAS OF REGRESSION
For a set of given training data {xk , yk} (k = 1, . . . ,N ), the
problem for regression in the standard form of SVM can be
written as

y(x) = wTϕ(x) + b, (7)

which is similar to Eq.(1).
The quadratic programming(QP) problem for Eq.(7) can

be given by

min
w,b,ξ ,ξ∗

1
2
wTw+ c

N∑
k=1

(ξk + ξ∗
k )

s.t. yk − wTϕ(xk ) − b ≤ ε + ξk ,

wTϕ(xk ) + b− yk ≤ ε + ξ∗
k ,

ξk , ξ
∗
k ≥ 0, k = 1, . . . ,N , (8)

where ε > 0 is the tolerance of accuracy for function estima-
tion, ξk and ξ∗

k are the slack variables.
The dual problem for Eq.(8) is

max
α,α∗

{−
1
2

N∑
k,l=1

(αk − α∗
k )(αl − α∗

l )x
T
k xk

− ε

N∑
k=1

(αk + α∗
k ) +

N∑
k=1

yk (αk − α∗
k )}

s. t.
N∑
k=1

(αk − α∗
k ) = 0, αk , α∗

k ∈ [0, c], (9)

where αk and α∗
k are the Lagrange multipliers.

The vector w can also be given by

w =

N∑
k=1

(αk − α∗
k )ϕ(xk ). (10)

In the dual space, the function y(x) can be written as follow

y(x) =

N∑
k=1

(αk − α∗
k )K (xk , x) + b. (11)

III. KERNELS AND KERNEL TRICK
A. CHARACTERISATION OF KERNELS
It is known that the linear SVM has been extended to a
nonlinear technique by Vapnik in 1995 by introducing a
kernel function K (xk , xl), which is obviously the inner prod-
uct of map function ϕ(x) as shown in Eq.(4). Fortunately,
it is not necessarily to know the explicit expression of the
mapping, since that one can evaluate the inner products of
map functions inHilbert space by following result. According
to Hilbert space theory, a symmetric, continuous function
K (·, ·) satisfying Mercer’s condition [17], there exists an
expansion

K (x, z) =

∞∑
k=1

λkϕk (x)ϕk (z), (12)

where x, z ∈ RN , and λk > 0.

Mercer’s condition requires that∫
K (x, z)g(x)g(z)dxdz ≥ 0, (13)

where g(·) is any square integrable function.
It is noted that the integral is taken over a compact subset

of RN and the kernel function can be written in the form of
inner product as shown in Eq.(4). Furthermore, we have the
following proposition, which is equivalent to Eq.(13).
Proposition 1: Let X be a finite input space with K (x, z) a

symmetric function on X . Then K (x, z) is a kernel function if
and only if the matrix

K (xk , xl) = [K (xk , xl)]Nk,l=1, (14)

is positive semi-definite (has non-negative eigenvalues).

B. BESSEL KERNELS
It is known that the kernel trick is powerful to handle the
non-linear separable problem, by mapping the inseparable
data into a higher dimensional space. Although there exists
many types of kernels for SVMs, as mentioned before, there
is in general no best choice for all of the problems. Generally,
the polynomial kernel in low order or Gaussian kernel can be
chosen to be a good initial try.

The present study in this paper focuses on a new class of
kernels based Bessel functions

Kv(x, z) =
2v0(v+ 1)
||x− z||v

Jv(||x− z||), (15)

where Jv(·) is the J Bessel function of order v (v = (k −

1)/2 ≥ 0, k = 1, 2, . . .), || · || denotes the standard Euclidean
vector norm, 0(·) is the Gamma function.
Lemma 1: The function given by Eq.(15) is continuous,

has maximum value Kv(x, x) = 1 for x = z (||x − z|| = 0)
and degenerates to zero as ||x− z|| → ∞.

proof: From the Poisson integral, the Bessel function can
be written as [18]

Jv(||x− z||) =
(||x− z||/2)v

√
π0(v+ 1/2)

×

∫ π

0
cos(||x− z|| cos θ ) sin2v θdθ. (16)

With the help of Eq.(15), one has

Kv(x, z) =
0(v+ 1)

√
π0(v+ 1/2)

×

∫ π

0
cos(||x− z|| cos θ ) sin2v θdθ. (17)

From above equation, it is obviously Kv(x0, z0) exists for
arbitrary ||x0 − z0||. Consider that

Kv(x0+1x0, z0 + 1z0)

=
0(v+ 1)

√
π0(v+ 1/2)

×

∫ π

0
(cos(||x0 − z0|| + 1||x0 − z0||) cos θ) sin2v θdθ
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=
0(v+ 1)

√
π0(v+ 1/2)

×

∫ π

0
(cos(||x0 − z0|| cos θ )

× cos(1||x0 − z0|| cos θ )) sin2v θdθ

−
0(v+ 1)

√
π0(v+ 1/2)

×

∫ π

0
(sin(||x0 − z0|| cos θ ) sin(1||x0 − z0|| cos θ ))

× sin2v θdθ. (18)

If 1x0 → 0 and 1z0 → 0, then 1||x0 − z0|| → 0 holds.
With the help of Eq.(18), one has

lim
1x0,1z0→0

Kv(x0 + 1x0, z0 + 1z0) = Kv(xo, z0). (19)

Thus, Kv(x, z) is continuous.
Since that −1 ≤ cos(||x − z|| cos θ ) ≤ 1 and sin2v θ =

(sin2 θ )v ≥ 0, we have

Kv(x, z) =
0(v+ 1)

√
π0(v+ 1/2)

∫ π

0
cos(||x− z|| cos θ ) sin2v θdθ

≤
0(v+ 1)

√
π0(v+ 1/2)

∫ π

0
1 · sin2v θdθ

=
0(v+ 1)

√
π0(v+ 1/2)

∫ π

0
cos(||x− x|| cos θ ) sin2v θdθ

= K (x, x). (20)

Eq.(20) implies that the Kv (x, z) has maximum value if
x = z (||x− z|| = 0). Furthermore, we also have

|Kv(x, z)| < |Kv(x, x)| (21)

if 0 ≤ | sin2v θ | ≤ 1, 0 ≤ | cos(||x− z|| cos θ )| ≤ 1 and x ̸= z
are considered.

The Bessel function has the expansions as follows [18]

Jv(||x− z||) =
||x− z||v

2v

∞∑
k=0

(−1)k (||x− z||/2)2k

k!0(v+ k + 1)

=
||x− z||v

2v0(v+ 1)

×

(
1 + 0(v+ 1)

∞∑
k=1

(−1)k (||x− z||/2)2k

k!0(v+ k + 1)

)
,

(22)

(||x− z|| ≪ 1) Jv(||x− z||)

= ×

√
2

π ||x− z||
cos

(
||x− z|| −

π

4
−
vπ
2

)
,

× (||x− z|| ≫ 1) (23)

Thus, one can obtain

lim
||x−z||→0

Kv(x, z) = 1, lim
||x−z||→∞

Kv(x, z) = 0, (24)

according to Eqs.(15), (22) and (23). □
Theorem 1: The function given by Eq.(15) satisfies

Mercer’s condition, and is a kernel function.
There exists two ways to prove THEOREM 1.

proof: From Eq.(15), it is obviously that the function
satisfies Kv(x, z) = Kv(z, x). Furthermore, Kv(x, z) is proved
to be continuous by LEMMA 1. The function Kv(x, z) can be
related to Hankel transforms as follow [18]

Kv(x, z) =
2v0(v+ 1)
||x− z||v

Jv(||x− z||)

=
2v0(v+ 1)
(2π )v+1

∫
||ω||=1

exp
(
i(x− z)Tω

)
dω, (25)

where the subscript ||ω|| = 1 denotes the surface integral
over the unit sphere in RN .

To an arbitrary vector λ = [λ1, . . . , λN ]T , one has
N∑

k,l=1

λkλlKv(xk , xl)

=
2v0(v+ 1)
(2π )v+1

N∑
k,l=1

λkλl

∫
||ω||=1

exp
(
i(xk − xl)Tω

)
dω

=
2v0(v+ 1)
(2π )v+1

∫
||ω||=1

N∑
k,l=1

λkλl exp
(
i(xk − xl)Tω

)
dω

=
2v0(v+ 1)
(2π )v+1

∫
||ω||=1

∣∣∣∣∣
N∑
l=1

λl exp
(
i xTl ω

)∣∣∣∣∣
2

dω ≥ 0. (26)

According to Proposition 1, the theorem is proved. □
proof:Consider a train set be {x1, x2} ∈ RN . The matrix

[Kv(xk , xl)]2k,l=1 can be given as follow

[Kv(xk , xl)]2k,l=1 =

[
Kv(x1, x1) Kv(x1, x2)
Kv(x2, x1) Kv(x2, x2)

]
, (27)

From Lemma 1, one has 1 = Kv(xk , xk ) =

|Kv(xk , xk )| > |Kv(xk , xl)| (k, l = 1, 2). Hence, the
determinant det([Kv(xk , xl)]2k,l=1) > 0 and subdeterminant
det([Kv(xk , xl)]1k,l=1) = 1 > 0. According to Hurwitz
theorem, [Kv(xk , xl)]2k,l=1 is positive definite.

Suppose the matrix [Kv(xk , xl)]Mk,l=1 is positive definite

under the train set {x1, . . . , xM } ∈ RN (M > 2). With the
help of Hurwitz theorem, the determinant and subdeterminant
det([Kv(xk , xl)]Pk,l=1) > 0 (P = 1, . . . ,M ) hold. When
another train data xM+1 is considered, the train set is then
{x1, . . . , xM , xM+1}. We can force the (M + 1)-th vector
to move from ∞ to the real situation xM+1. According to
Lemma 1, Kv(x, xM+1) is continuous, Kv(xk , xM+1) = 0
(||xk − xM+1|| → ∞) and Kv(xM+1, xM+1) = 1 (||xM+1 −

xM+1|| = 0). Consequently, the determinant and subdetermi-
nant det([Kv(xk , xl)]Pk,l=1) > 0 (P = 1, . . . ,M + 1) hold as
the (M + 1)-th vector moving to the real situation.
Based on the above mathematical induction, matrix

[Kv(xk , xl)]Mk,l=1 is positive definite. □
Form the above Proofs, one can see that the function given

by Eq.(15) is kernel function. Furthermore, PROOF 2 shows
that the matrix of function (15) is not just positive semi-
definite, but indeed positive definite. It could be concluded
that the proposed Bessel-class kernel function has some good
properties over the other kernels.
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FIGURE 1. Comparison between bessel-class kernel and gaussian kernel
with v = 1, 2, 5, 10.

C. RELATION BETWEEN BESSEL KERNEL AND GAUSSIAN
KERNEL
Since that Gaussian kernel has good property, it is widely
used in SVM. However, the presented Bessel-class kernels
constructed in this paper share this property. We will prove
that Gaussian kernel is a type of Bessel-class kernels in an
ultimate case.
Theorem 2: The Bessel-class kernel Kv(x, z) will recover

the Gaussian kernel, if v → ∞, i.e.,

lim
v→∞

Kv(x, z) = exp

(
−

||x− z||2

2σ 2

)
, (28)

where σ =
√
2v.

proof: From Eqs.(15) and (22), one has

Kv(x, z) = 1 +

∞∑
k=1

(−1)k (||x− z||/2)2k0(v+ 1)
k!0(v+ k + 1)

= 1 +

∞∑
k=1

(−1)k (||x− z||/2)2k

k!

×
1

(v+ k)(v+ k − 1) . . . (v+ 1)

= 1 +

∞∑
k=1

(−1)k (||x− z||/2)2k

k!

×
v−k

(1 +
k
v )(1 +

k−1
v ) . . . (1 +

1
v )
1

+

∞∑
k=1

1
k!

(
−||x− z||2

4v

)k

=

∞∑
k=0

1
k!

(
−||x− z||2

4v

)k

= exp

(
−

||x− z||2

2σ 2

)
, (||x− z|| ≪ 1) , (29)

where v → ∞ is applied. □
Theorem 2 illustrates that Gaussian kernel is an infinite

smooth case of Bessel-class kernels. It is also shown in Fig.1
that the parameter v control the kernel shape in such a way
that the curve becomes flat when v increases.

TABLE 2. Benchmark of raisin grains classification (%).

IV. SIMULATION EXPERIMENTS
To evaluate the performance of the presented Bessel-class
kernel in SVM, four experiments including classifications
and regressions have been given in this section. In the sim-
ulations, the 5-folds cross-validation has been used, and the
optimal parameters are searched by using the Grid Search
(GS) and Particle SwarmOptimization (PSO) based on cross-
validation. In practice, it is found that PSO is faster than GS.
Furthermore, the features are normalized by

x̄kl =
xkl − min(xkl)

max(xkl) − min(xkl)
, (30)

for the features of every sample.

A. RAISIN GRAINS CLASSIFICATION (2 CLASSES)
In this subsection, a benchmark problem for raisin grains
classification is performed. The datasets used are taken
from website [19]. The data consist of 900 instances with
7 attributes, which are used to make a binary decision on the
variety of raisin: Kecimen(450 pieces) or Besni(450 pieces).
To perform the classification by SVM, we use sequential
selection of 700 training data and 200 testing data, in which
the two classes of the raisin grains are equal.

In Reference [20], Cinar et al. have given the benchmark by
applying the Logistic Regression (LR), Multi-Layer Percep-
tron (MLP) and SVM with Polynomial kernel. In this paper,
we perform the classification using SVM with Gaussian ker-
nel and Bessel-class kernels. The parameters here, are c =

4096, σ = 8.00 for Gaussian kernel, c = 0.5 for Bessel-class
kernels with v = 0,1/2, c = 1000 for Bessel-class kernel with

VOLUME 12, 2024 5361
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TABLE 3. Benchmark of accuracy for Iris classification (%).

v = 1 and c = 4101 for Bessel-class kernel with v = 16, 32,
respectively.

The performance measures of accuracy, sensitivity, speci-
ficity and precision are listed in Table 2. It is seen that
the performances of the SVM utilizing Bessel-class kernels
(especially, v = 16) are fairly good for the training set and
test set, respectively. It is noted that Gaussian kernel is an
infinite smooth case of Bessel-class kernels, which can be
found in Fig. 1. The Gaussian kernel (σ = 8.00) is in case
of Bessel kernel with parameter v = 32 under relationship
σ =

√
2v, if v ≫ 1. Therefore, it is seen in Table 2 that, the

performance of SVMwith Bessel-class kernel (v = 32) is the
same as one with Gaussian kernel (σ = 8.00). Additionally,
it can be found that the performance of Bessel-class kernel
with parameter v = 16 is the best for the specified train and
test data set in this numerical experiment. Some of the perfor-
mances based on the testing set are not so better than those
of training set. It is interpreted that the results obtained in
Reference [20] are based on the training set of 900 instances.
In this paper, the instances are divided in training set and
testing set, in which the number of training samples in this
paper is much smaller than that of Reference [20].

B. IRIS CLASSIFICATION (3 CLASSES)
In this experiment, a flower iris classification is given to
verify the validation of the presented Bessel-class kernel in
SVM. The datasets from the UCImachine learning repository
[21] include 150 instances with 4 attributes, which are used to
make the 3 classes decision: Setosa (50 pieces), Versicolour
(50 pieces) and Virginica (50 pieces). In the numerical exper-
iment, 90 training data (30 pieces for each class) and 60 (20
pieces for each class) testing data are used to train and test the
model by SVM based on ‘‘one vs one’’ approach.

We perform the classification using SVM with Gaus-
sian kernel and Bessel-class kernels, comparing with
the Bayesian-class classifiers [22], e.g., LogitBoost NB,
Bayesian Network, Diverse En-semble Creation by Opposi-
tional Relabeling of Artificial Training Examples
(DECORATE), Lazy Bayesian Rule (LBR) and Average
One-Dependence estimation (AODE). The parameters for
this experiment are c = 32, σ = 5.65 for Gaussian kernel,

FIGURE 2. Relative errors for the regression based on different kernels.

c = 32 for Bessel-class kernels with v = 0,1/2, 1, 16 and 32,
respectively.

The performance measures of accuracy are shown in
Table 3. The accuracies of Bessel-class kernel are 100% for
training set, 93.33% and 96.67% for testing set, respectively.
It can been found in Table 3 that, Bessel-class kernel can
achieve 100% accuracy in train set with different v. Further-
more, the accuracy increases to 96.67%when the parameter v
is larger than 16. Additionally, one can see that the parameters
σ = 5.65 and v = 16 satisfy the relationship σ ≈

√
2v.

Therefore, it is illustrated in Table 3 that the performance of
Gaussian kernel (σ = 5.65) is the same as that of Bessel-class
kernel (v = 16), since that Gaussian kernel is a special
case of Bessel-class kernel. It is seen that the SVM utilizing
Bessel-class kernels give the excellent performs for all of the
training set and testing set.

C. ONE-DIMENSIONAL FUNCTION REGRESSION
This numerical experiment will show the validation of the
Bessel-class kernels in the one-dimensional function regres-
sion. Consider a polynomial equation as follow

y(x) = x3 + x2 − x + 5, x ∈ [−5, +5]. (31)

The relative error for this function regression is defined by

Relative error =

∣∣∣∣y(xk ) − ŷ(xk )
y(xk )

∣∣∣∣ , (32)

where xk is testing point, ŷ(xk ) is the numerical result obtained
by SVM.

In the numerical experiment, 20 training data and 50 testing
data are set uniformly in the interval x ∈ [−5, +5], respec-
tively. To compare the performances of different kernels,
we test the problem with different kernels, i.e., Gaussian
kernel, Bessel-class kernels with v = 0,1/2, and 1. The
parameters here, are c = 32768, σ = 8.00 for Gaussian
kernel, c = 2200 for Bessel-class kernels, respectively.
It is shown in Fig.2 that, the Bessel-class kernels have sig-
nificantly lower error than Gaussian kernel. Furthermore,
the relative error decreases when the parameter v increases.
It implies that the Bessel-class kernels have advantages
over the Gaussian kernel in some problems of function
regression.
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FIGURE 3. Prediction results for ALE using different kernels.

D. ALE REGRESSION IN SENSOR NODE LOCALIZATION
PROCESS
The last numerical experiment including ALE regression
is proposed to show the performance of the presented
Bessel-class kernel in SVM. The datasets given by repository
on the website [23] include 107 samples with 4 features.
To compare the results with those in reference [24], we have
used 75 data for training and the left 32 for testing. In the
numerical computing, the Gaussian kernel and Bessel-class
kernels are used to solve this problem. The parameters for
this experiment are c = 32, σ = 2.00 for Gaussian kernel,
c = 300 for Bessel-class kernels with v = 0,1/2, 1, and
c = 330 for Bessel-class kernels with v = 2, 4, respectively.
After training the model, the predicted ALE results have

been given by 32 testing data with Gaussian kernel and differ-
ent Bessel-class kernels. From Fig.3, it is found that predicted
results agree well with the simulated results and gathered
along the straight regression line with mild scattering points.
The most scattering points are in 95% Confidence Interval
(CI), which implies that the regression line has a strong
positive correlation (R) and relative small Root Mean Square

TABLE 4. Benchmark of the results obtained by different kernels.

Error (RMSE). The detailed value on R and RMSE are list
in Table 4. The predicted results obtained by Bessel-class
kernels have stronger positive correlation R than those of
polynomial kernel. Furthermore, it is shown that the predicted
results obtained by Bessel-class kernels are better than the
first two results by polynomial kernel. It is illustrated in
Table 4 that the performances of Bessel-class kernel with
v = 2 and 4 are much more suitable to ALE regression
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than polynomial kernel and Gaussian kernel. As mentioned
before, the Gaussian kernel is the ultimate case of the Bessel-
class kernel, the prediction given by Bessel-class kernels are
nearly close to that obtained by Gaussian kernel. Therefore,
it is found in Fig.3(a) and (e) that, the prediction results for
ALE are similar by using Gaussian kernel (σ = 2) and
Bessel-class kernel (v = 2) with the relationship σ =

√
2v.

In these cases (σ = 2, v = 2), RMSEs are not the same,
since that the parameter v is not large enough. Furthermore,
it is emphasized that R increases and RMSE decreases, when
the parameter v increases which can be found in Table 4.

V. CONCLUSION
A new type of Bessel-class kernels are presented for SVM
in this paper. These new kernels are continuous and sat-
isfy the satisfies Mercer’s condition. It is proved that the
Gaussian kernel is an infinite smooth case of Bessel-class
kernels, if v ≫ 1. This class of Bessel kernels can be
flexibly used with different v. For a fixed v, there only
exists one tradeoff parameter c to be adjusted, which greatly
simplifies the computation in machine learning procedure.
Four simulation experiments including classifications and
regressions, have been performed to evaluate the validation
of the Bessel-class kernels. These simulated results obtained
by these kernels have performed significant well in those
simulation experiments. Since that there is no best kernel for
all the applications, the studies of Bessel-class kernels are still
an open subject. The further work for this type of kernels will
be done by authors in the future.
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