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ABSTRACT For an extended period, a technological architecture known as cloud IoT links IoT devices
to servers located in cloud data centers. Real-time data analytic are made possible by this, enabling better,
data-driven decision making, optimization, and risk reduction. Since cloud systems are often located at a
considerable distance from IoT devices, the rise of time-sensitive [oT applications has driven the requirement
to extend cloud architecture for timely delivery of critical services. Balancing the allocation of IoT services
to appropriate edge nodes while guaranteeing low latency and efficient resource utilization remains a
challenging task. Since edge nodes have lower resource capabilities than the cloud. The primary drawback
of current methods in this situation is that they only tackle the scheduling issue from one side. Task
scheduling plays a pivotal role in various domains, including cloud computing, operating systems, and
parallel processing, enabling effective management of computational resources. In this research, we provide
a multiple-factor autonomous IoT-Edge scheduling method based on game theory to solve this issue. Our
strategy involves two distinct scenarios. In the first scenario, we introduced an algorithm containing choices
for the IoT and edge nodes, allowing them to evaluate each other using factors such as delay and resource
usage. The second scenario involves both a centralized and a distributed scheduling approach, leveraging
the matching concept and considering each other. In addition, we also introduced a preference-based stable
mechanism (PBSM) algorithm for resource allocation. In terms of the execution time for IoT services and the
effectiveness of resource consolidation for edge nodes, the technique we use achieves better results compared
with the two commonly used Min-Min and Max-Min scheduling algorithms.

INDEX TERMS Edge computing, IoT, fog computing, resource allocation, game theory, matching
algorithm, centralized matching, distributed matching.

I. INTRODUCTION
Internet of Things (IoT) is becoming a popular thing in our
The associate editor coordinating the review of this manuscript and daily lives. Everyone used the practical implementation of the
approving it for publication was Zhiwu Li . IoT devices to get more advantages [4]. IoT devices create a
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link between wearable devices and smart meters in our smart
cities. As a result, there has been a globally unparalleled rise
in the deployment and use of IoT devices [5]. For instance,
Cisco predicts that by 2030, there will be 30 billion IoT
devices [6]. Due to its extensive and high-capacity processing
and storage capabilities, cloud computing [7], [8], [9] has
remained the favored choice for IoT producers and suppliers
to fulfill their storage and computational requirements [10],
[11], [12]. However, the geographical distance between cloud
datacenters [13], [14] and IoT devices, often located in
remote areas, can lead to increased latency and delays in
high-performance systems. Consider a scenario where a
wearable device worn by a patient transmits brain data for
rapid analysis. In this case, any delay in transmitting the
information processing call to the designated server could
escalate the potential health risks for the patient [15].

This challenge becomes particularly pronounced in a
cloud-based environment, where analysis is required to
be performed in regional cloud data centers. In light
of the fact that applications for intelligent transportation
systems and other delay-critical services sometimes need
answers in milliseconds, this poses a severe difficulty. Fog
computing [16], [17] is an emerging method that addresses
latency problems by enabling data analysis at the edge [18],
[19] in close proximity to IoT device sources [20], [21]. It is
important to note that IoT devices have limited computational
network, and storage capabilities [22], [23]. For example,
these devices can consume substantial network bandwidth
when exchanging data. This might result in bottleneck
difficulties and slow down the entire network. By giving IoT
devices access to quick data analyses and decision-making
tools at the network’s edge, fog nodes help to mitigate this
issue [24], [25]. The resource constraints that fog nodes
commonly experience are the main cause of the system’s
multiple major problems, which the fog computing system
possesses despite its advantages. To increase both the number
of tasks that can be done and the Quality of Service (QoS)
[26] that is provided for every job, these resources must be
properly employed and handled.

When fog computing is deployed, data is examined within
an IoT gateway. Data is examined on the sensor or device
itself via edge computing. In short, data is not transported
anywhere when edge computing is used. This lowers
expenses and enables real-time data analysis, improving
performance [27], [28]. The most important aspect of edge
computing is the effective distribution of scarce resources,
and the effectiveness of this process directly impacts how
well the edge computing paradigm as a whole performs(see
Figure 1 depicting the architecture of edge computing). Due
to its enormous success, edge computing is becoming more
and more popular, and the research community is paying
close attention to it. The crucial factor, namely the latency
between the two sides, must be taken into account in order
to properly profit from edge computing technology. In order
to ensure quick and effective data and message transfer, IoT
devices must connect to the edge nodes that are nearest to
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them. In this study, we tackle the challenge of efficiently
associating IoT devices with appropriate edge nodes while
considering the interplay of these two conflicting objectives.
Here, the issue is to guarantee both optimal resource
utilization on edge nodes and efficient task execution of
IoT-generated activities. Task scheduling optimizes resource
utilization, enhances system efficiency, and minimizes idle
time by organizing and prioritizing tasks. It aids in meeting
deadlines, improving throughput, and balancing workloads in
diverse computing environments.

A. RESEARCH FOCUS

Several scheduling techniques have recently been presented
for edge computing environments. These techniques’ main
goals are to improve and accelerate IoT task execution times
at the edge and to optimize resource allocation. However,
a key challenge with these approaches is that they often focus
on optimizing certain factors that are applicable only to one
side of the equation. This leads to an imbalanced situation
where the requirements of one party are disregarded during
the scheduling process. In recent times, game theory [29],
[30] has emerged as a tool to generate wise scheduling
choices that consider the interests of both sides. These strate-
gies tend to have a business-centric orientation, incorporating
business-related considerations into the construction of utility
applications. The Quality of Service (QoS) [28] given to IoT
services is maximized by the approach we use, in contrast,
while simultaneously effectively regulating resource usage on
the edge nodes.

B. INNOVATIVE PERSPECTIVE

In this research, we have proposed an intelligent autonomous
scheduling technique in an IoT-edge context. This strategy
employs game theoretic matching to make smart scheduling
choices for edge and IoT gadgets. The method we employ
differs from others in that it takes into account both the
preferences and constraints of both types of devices when
scheduling. Our approach aims to reduce the latency and
duration of IoT service execution while also increasing the
efficiency with which available resources on edge nodes are

used. Here’s a rephrased version of our summary
« We introduce an independent and smart scheduling

solution for IoT services within edge computing envi-
ronments using matching algorithm. This work stands
out as a novel performance-centric method that takes
into account the preferences and limitations of both edge
and IoT aspects when formulating scheduling choices,
as indicated in [7], [31], and [32].

« By formulating unique optimization challenges for indi-
vidual stakeholders and suggesting specific constraints
for each underlying problem, these difficulties are
subsequently consolidated into a unified optimization
problem, amenable to effective resolution using match-
ing game theory.

« Developing preference metrics for both IoT devices and
edge nodes, aiding them in evaluating and prioritizing
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FIGURE 1. Architecture of edge computing.

each other using distinct criteria Furthermore, introduc-
ing methods for generating preferences will aid edge
nodes and IoT devices in creating practical preference
rankings aligned with the established preference met-
rics.

The development of centralized and distributed schedul-
ing algorithms By presenting two scheduling strategies,
we want to make our solution more complete. Each
kind has distinct benefits that apply in certain settings
and applications. The concept of a centralized approach
finds applicability in business scenarios where a central
commanding organization becomes necessary to act as
the focal point for all communication. The advantage
of this tactic lies in the presence of a centralized gov-
erning body that assumes responsibility and addresses
issues promptly upon emergence. The network is more
secure [33] in such an environment because there is
a centralized authority managing network scheduling.
As an illustration, consider the network of weather
stations consisting of microcontrollers that collect data
on various environmental conditions across an expan-
sive and remote region. Conversely, the decentralized
approach could prove advantageous for rapidly creating
small to medium-sized networks where there’s no need
for a large-scale and business-oriented setup. The above
approach is also appropriate for gatherings with strict
security considerations that lack confidence in a cen-
tralized entity to carry out the scheduling process. The
preference-Based Stable Matching (PBSM) algorithm
that we developed considers a scenario where there
are n 10T devices expressing their clear preferences for
various edge nodes, and at the same time, n available
edge nodes express their distinct preferences for the
targeted IoT devices. These preferences are flexible and
can be defined as needed during the implementation
process. Each IoT device receives its own edge node.
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The suggested approach then distributes each edge node

to an IoT device, with the condition that each IoT device

receives a single unique edge node.
In the second section, an examination of existing litera-
ture concerning task scheduling and associated algorithms
in IoT environments is conducted. Moving on to the
third section, difficulties with IoT and edge optimization
aspects are formulated. The fourth section introduces the
fundamentals and definitions of matching game theory,
detailing preference functions and suggesting methods for
creating preference lists. Transitioning to the fifth section,
the proposed centralized, distributed matching, and PBSM
algorithms are elucidated. In Section VI, the setup for
the experiment and simulation is given in detail, and the
explanation of the empirical results follows. Finally, in the
concluding seventh section, a summary of the findings is
presented.

Il. LITERATURE REVIEW

In reference to the work outlined in [32], a study was
presented addressing the tradeoff between makespan and
cloud costs within the context of scheduling large-scale
applications on a cloud platform. The study introduces an
innovative scheduling algorithm referred to as the cost-
makespan-aware scheduling heuristic. This algorithm aims
to strike a balance between optimizing application execution
performance and managing the requisite expenses associated
with utilizing cloud resources. Additionally, the research
proposes an effective strategy for task reassignment. This
strategy leverages the critical path of a directed acyclic graph
that models the application, enhancing the output schedules
produced by the Cost-makespan-aware scheduling algorithm.
These refinements were intended to meet user-defined dead-
line constraints and ensure the system’s quality of service.
In paper [33], an approach to scheduling tasks in the context
of IoT is introduced, leveraging data mining techniques by the
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authors. Their method involves the utilization of a prior task
classification using an upgraded version of the prior rules-
based algorithm; subsequently, they employ a unique strategy
called TSFC (Task Scheduling in Fog Computing) for task
scheduling.

This strategy primarily relies on time-based factors,
disregarding the availability of resources at both the network
(such as bandwidth) and fog node levels (comprising CPU,
RAM, and power). Consequently, this approach poses a
potential risk to the overall quality of service for these
tasks. Alternatively, in the article [34], a resource allocation
model using a decoupled methodology is introduced as
Zenith, proposed by the authors as a fresh technique. This
new strategy is built on an auction-based resource sharing
mechanism, made possible by a contract that guarantees
resource optimization for both fog nodes and service
providers as well as the preservation of integrity. Nonetheless,
their other abstracted layers, such as microdata centers
(MDCs), must be put between the different endpoints in
this design.This exhibits significant resource utilization and
might not be appropriate for time-sensitive tasks. A task
scheduling approach centered around prioritization tiers is
proposed by Choudhari in their publication [7]. In the
paper [41], the energy-aware scheduling of dependent tasks
in heterogeneous multiprocessor systems is addressed by the
author. Tasks and processors have been modeled, formulating
an optimization problem to minimize task schedule length.
An optimization problem is formulated to minimize task
schedule length involving a task prioritization method and
a weight-based energy distribution strategy, leading to the
creation of a list-based energy-aware scheduling algorithm.
Efficient task execution while meeting dependencies and
energy constraints is ensured by this approach. Additionally,
in the paper [42], an energy-efficient scheduling algo-
rithm is introduced, leveraging an enhanced per-assignment
strategy. This novel approach optimizes processor allo-
cation, frequencies, and task start times while ensuring
compliance with data dependency and energy constraints.
In [43], a global and local attention-based reinforcement
learning approach for UAVSs’ cooperative behavior control
is devised by researchers. Motion, coordination models, and
constraints are analyzed-focusing on collision avoidance,
motion updates, and task execution for multiple UAVs.
This is abstracted as a multi-constraint decision-making
problem, and a multi-agent reinforcement learning algorithm
is crafted. Inspired by human learning, the design incor-
porates a global-and-local attention mechanism, enabling
cooperative behavior control and effective coordination
among UAVs.

In article [35] examines centralized user clustering to
divide IoT users into various groups in accordance with
users’ priorities. The cluster holding the utmost priority
is tasked with offloading computations to the edge server,
whereas the cluster with the lowest priority performs
computations locally. The importance of the new edge
computing paradigm and its contribution to the development
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of the IoT drive research in this area, as mentioned in [36].
This study emphasizes the significance of edge computing
in the IoT environment. This study examines, identifies, and
documents current, ground-breaking advancements in edge
computing from an IoT standpoint. It creates a taxonomy
to categorize and organize the literature on edge computing
and outlines the essential conditions for the successful
implementation of edge computing in the IoT. In paper [37],
to efficiently handle resource allocation for EN. In order
to maximize the use of edge computing resources within
the restrictions of the available budget, it provides resource
bundles and services. The suggested paradigm ensures equity
while sharing resources (wireless channels, communication)
between different edge service providers and customers (or
groups of users). In the research [38], the computation
offloading mechanism was described as a stochastic game
and analyzed how numerous selfish users allocate resources
in IoT edge computing networks. In order to resolve the game
using the suggested IL-based MA-Q method, a multi-agent
reinforcement learning framework is created. Simulations
show that the suggested IL-based MA-Q method is capable
of solving the specified issue and is more energy-efficient
without incurring additional costs for channel estimation
at the centralized gateway. For the IoT edge computing
system, according to the paper [39], a resource allocation
policy was suggested to increase the effectiveness of resource
consumption. The proposed guideline aims to minimize the
combined value of the extended total of the mean task
fulfillment duration and the mean count of resource appeals
over time. To address this challenge, a strategy grounded
in deep reinforcement learning is employed. An enhanced
deep Q-network learning technique was put forward, where
many replay memories are used to retain the experiences
independently with little effect from one another. A brand-
new framework, as stated in [40] built around markets was put
out to effectively distribute the resources of heterogeneous,
capacity-limited edge nodes to several competing services
at the network edge. The suggested framework creates a
market equilibrium solution by appropriately pricing the
geographically dispersed services, maximizing the use of
edge computing resources, and also allocating the best
resource bundles to the services given the available budgets.
Mentioned were two distributed methods that quickly reached
market equilibrium.

IlIl. SYSTEM MODEL

In this section, we present an optimization problem formu-
lation and an explanation of the related restrictions for the
IoT-to-Edge scheduling problem in the subsequent section.

A. EDGE NODES OPTIMIZATION PROBLEM

The operating cost and traffic cost functions are very
important to edge nodes. Both of these functions are
thoroughly addressed in this section in terms of the numerous
limitations that must be taken into account.
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TABLE 1. List of definition.

Symbol Explanation
e A single edge node
a A single IoT device
T A single resource type
E Set of active Edge nodes
A Set of active IoT device
R Set of resource types; r = 1,2,3...,R
Oc(e) Operational cost on a certain edge node
Te(e) Traffic cost on a certain edge node
T(e) Opverall cost on a certain edge node
£ Amount of resources of type r on a edge node e
Se Resource vector of edge node e
Neq Network latency between e and a
Wae Bandwidth capacity on the link ae
Ce CPU cost on a certain edge node e
Xe RAM cost on a certain edge node e
(o8 Maximal amount of traffic that e can afford
AvOpr Operational needs on a certain e or a
AvRes Available resource capacity on a certain e or a
Buae A binary decision to schedule a certain IoT task
coming from a certain @ on e
M(O,T) Total operations and traffic cost of the setup
w A matching relation between two entities
w(e) A matching scheme of a edge node
|w(a)|” Combined resources r of edge nodes matched to an a
aj >e a2 Certain e prefers being matched to a; rather than as
L(a) The preference list of IoT device a
L(e) The preference list of edge node e

1) OPERATIONAL COST

CPU and memory have an impact on the edge nodes’
operating expenses. The CPU cost (measured in MIPS)
accounts for both the active CPU consumption cost associated
with an individual edge node’s IoT operations and also the
idle CPU consumption cost. The cost of idle memory while
the node is not in use is included in the memory cost (i.e.,
RAM), which defines how much memory is utilized by the
edge node to support IoT operations. The operational cost
O.(e) of e € E is defined in technical terms as follows:

O.(¢e) = RAM, + CPU, (1

2) TRAFFIC COST

The devices in an IoT ecosystem must transmit the data
collected at specific bandwidth rates to the edge nodes.
Various availability values for the active physical links may
exist at various times, depending on the underlying demand.
To send and receive important information, edge nodes also
occasionally need to connect with one another. In order to
determine the traffic cost of the edge nodes, the bandwidth
cost associated with each link as well as the latency between
the present hops are taken into account. Technically, the
traffic cost T,(e) associated with an edge node e € E, which
corresponds to an IoT device a € A, can be expressed as
follows:

Te(e) = Z Wae - Bae + Z

a,ecAE e,e'€E|e#£e

Weer * Nea (2)

Therefore, each edge node ¢ € FE must reduce the

subsequent objective function:
T(e) = Oc(e) + Tc(e) (3)
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Some restrictions should be taken into account in order to
do this:

Condition 1: No edge node shall have more resources
allocated to it overall compared to the available resource
capacity.

ZSZ “Bge < S;, VecEs VieR, Yaea @

acA

Condition 2: Any edge node should only receive a certain
amount of traffic at a time in order to avoid overloading it.

Te(e) < Qe, VeeE (5)

B. 10T DEVICES OPTIMIZATION PROBLEM

The least amount of lag possible is what IoT devices are
mostly focused on [33]. The calculation of traffic expenses
for each IoT device involves considering the network’s
bandwidth expenses and latency between consecutive hops.
The traffic cost 7,.(e) of an IoT device a € A engaging with a
edge node e € E can be described formally by saying:

T.(e) = Z Wae + Nea (6)
a,ecAE

The following restrictions must be taken into account in
order to reduce this cost:

Condition 1: Only one edge node should be allotted to each
Internet of Things task at a time, such as,.

S Bu=1. Ve M
ecE

Condition 2: An IoT device’s overall traffic expenses must
be lower than its traffic capacity.

T(a) < ¢a,  Vaea ®)

C. GENERALIZED OPTIMIZATION DIFFICULTY
We therefore establish the general optimization difficulty
that we intend to minimize in this study on the basis of the
optimization problems for edge nodes and IoT devices that
were described in the sections above:

M(O,T) = Oc(e) + Tc(e) + Tc(a)

rginM (0,T7)

s.t ZSZ “Bae <, Veeg VrerVa €A

acA
Tc(e) < ¢61 VeEE
ZBae =1, VaEA (9)
ecE
Bae = 0,1, Vaea VeeE (10)

IV. FORMULATION

In this section, we go over the main concepts of matching
game theory, discuss the preference functions of edge nodes
and IoT devices, and then demonstrate how to create
preference lists for both entities in real-world scenarios.
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A. MATCHING GAME CONCEPTS

Concept 1: The matching relation(w) is the result of the IoT-
to-Edge scheduling, where w is a function such that AUE —
24VE satisfying the following requirements:

o w(e) C A such that |w(e)|” < s/

o w(a) C E such that |w(a)|” < s, or o], =0, Vaea, e €
E and r € R, Where |w|) = 0 demonstrates that a is
not allotted.

o acwle)if < w(a)=e,Vea, YecE

Concept 2: A matching w is considered blocked by an IoT-
Edge pair (a, ) when there exists a pair if (a, ) where a €
w(e) and e € w(a). Additionally, @ must be preferred over
w(e) and e must be preferred over w(a).

Concept 3: If a particular edge node e is using all of its
resource capacity, it is said to be saturated. If a node still has
some resources available, it will take any IoT job a as long as
s, < 80, Vrer.

Concept 4: When (1) Every IoT device a’s is paired with
an edge node and (2) there are not any blocking pairings,
a matching relation w is considered stable.

B. AN OPTIMAL FUNCTION FOR IOT DEVICES SELECTION
IoT devices have a natural inclination to assign tasks to
edge nodes that achieve two objectives: firstly, they minimize
the expense of task-related data transfer, and secondly, they
capitalize on the largest pool of available resources. The
overarching aim is to expedite job completion timelines.
A transitive, comprehensive, and stringent preference relation
L(a) exists between each IoT device a € A and the set E of
edge nodes. When there is a preference relation e >, €, a
favors edge node e over edge node ¢'. Additionally, if an IoT
device a is undecided about whether to join a edge node e or
remain alone, a edge node e is said to be unacceptable to the
device a. The provided explanation establishes the preference
function of an IoT device in the following manner [23].

€l >a 6/2 <= Lu(e1) > Lu(e2) (11)

where (12), as shown at the bottom of the next page.

C. EDGE NODE PREFERENCE FUNCTION

In accordance with the consolidation policy of the edge
nodes, the preferred list of edge nodes is created. An edge
node particularly desires to increase the efficiency of its
resource use by hosting the greatest number of IoT devices
and making the best use of its resources. This suggests that
edge nodes prefer IoT tasks to non-tasks, and vice versa.
A well-defined preference relation L.(A) exists for each edge
node e € E in relation to the set of IoT devices, establishing
a transitive, comprehensive, and rigorous comparison. In this
context, the notation al >, a2 signifies that edge node
e prioritizes receiving tasks from IoT device al over IoT
device a2. Additionally, if a edge node e chooses to remain
unmatched over being matched to an IoT device a, the IoT
device is considered to be unacceptable to a(i.e., 0 >, a then).
Building upon this idea, the preference mechanism of an edge
node can be formally described as stated in reference [29].
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D. GENERATING A LIST OF PREFERRED IoT DEVICES

We outline how the preference list for each IoT device may
be truly built using the criteria given in Algorithm 1 (is used
by every IoT device) The method takes a set of edges that
can perform IoT activities as input and generates a preference
list L, for each IoT device a that contains the edge nodes
sorted by a according to how much they are preferred by
that device. The procedure starts by exploring unvisited edge
nodes (Line 4). Subsequently, it evaluates the compatibility
between available resources (AvRes) and task requirements
(AvOpr) (Line 5). The algorithm assesses latency with the
underlying IoT device, recording results (Lines 6-8) for edges
having sufficient resources. In cases of inadequate resources,
the edge is removed, and the next unvisited one is considered
(Lines 6-8). For assisting the IoT device in deciding its
preferred order among the retained edges, the algorithm
employs Eq. (12).

E. GENERATING A LIST OF PREFERRED EDGE NODE
By attempting to host as many IoT devices as they can, edge
nodes primarily aim to increase their resource consumption.

Algorithm 1 Generating a List of Preferred IoT Devices a’s

1: Input: Create a collection labeled E comprising opera-
tional edge nodes, with the initial node denoted as eg.
Output: Preference list L(a) of IoT device a
while there are still some unexplored edges in E do
Mark e as visited after choosing it
if AvRes(eg) <« AvOpr(a), i.e., Resources are
available for eg to complete the tasks then
Verify and note eq’s delay
end if
Go to the following unexplored edge in E
end while
10: Ranking the edge nodes using Eq. (12) and storing the
results in L(a).

0 2D

Algorithm 2 Preference List Creation for Edge Node e
1: Input: Enumerate a collection of Internet of Things (IoT)
A devices aiming to organize their functions on edge
nodes.
2: Output: Preference list L(e) of edge node e
In accordance with the IoT device’s preference degree,
sort the IoT devices using Eq. (14) and store the results
in L(e).
4: while L(e) is not empty do
5: Get ag the head of L(e)
6: if AvRes(e) < AvOpr(ag) then
7.
8
9

remove aq from L(e)
else
: ap = ap-next
10: end if
11: end while

VOLUME 12, 2024
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This demonstrates that edge nodes favor more IoT device
assignments over fewer or inadequate ones. In technique
2, we suggest a heuristic technique to assist edge nodes
in creating their preference lists. The goal is to add the
subsequent IoT device to the preference function at each stage
that leaves the least amount of space after being attached to
the underlying edge node.

The algorithm takes input about a collection of IoT
devices to serve and generates a preference list for each
edge node. This list ranks IoT devices based on how much
the edge node prefers them, giving priority to devices that
use fewer resources when assigned to the node. To find
the preference ordering among the collection of potential
edge nodes (Line 3), the program first applies Eq. This
preference formulation prioritizes IoT devices that utilize
minimal resources when allocated to edge nodes. The concept
of sequential task execution is not invoked in this context.
Consequently, We refrain from indicating that the edge node
prioritizes any specific IoT task over others based solely on
resource consumption. Instead, we discuss a strategy for task
consolidation. Subsequently, the algorithm assesses whether
the resource demand of each IoT device in the preference
sequence, denoted as AvOpr, is less than or equal to the
available resources on the executing edge node, represented
as AvRes (Line 6). If an IoT task’s resource requirements
exceed the edge node’s available resources, that respective
IoT device is excluded from the list of favored devices
(Line 7); The IoT device is retained in any other case. Follow
this procedure until all IoT devices on the preference list have
their resource requirements met.

V. EFFICIENT loT-TO-EDGE SCHEDULING STRATEGY: A
MULTI-TO-SINGLE MATCHING GAME

The pair of methods we propose are decentralized and
centralized. It is important to note that the procedure for
pairing IoT devices with edge nodes follows the approach
outlined in reference [36]. The simultaneous deployment
of Virtual Network Functions (VNFs) within substrate
networks is the main emphasis of this study. In conducting
our experiments, each scenario was executed 50 times to
ensure consistency and reliability. We utilized a standardized
hardware setup with processor Intel Core i7 running at a speed
of 3.8 GHz and 32 GB of RAM specifications and employed
32-bit Windows operating system for all simulations.

A. CENTRALIZED MATCHING ALGORITHM

The group of edge nodes that are currently up and running
and the group of IoT devices looking to organize their duties
are used as inputs for the centralized scheduling approach.

Each IoT job is embedded to a edge node as the output.
Centralized matching algorithm is given in Algorithm 3. The
process commences by evaluating unutilized edge nodes at
saturation point (Line 4) and unassigned IoT devices (Line 5).
If applicable, the edge node with the highest priority for the
IoT device is chosen along with the first unassigned IoT
device (Line 6). Line 7 Subsequently, the algorithm checks
if the chosen edge node possesses adequate resources for the
IoT device’s requirements. If affirmative, the IoT device is
scheduled to the fog node, decreasing its available resources
accordingly (Line 9). However, if the edge node’s resources
are insufficient (Line 12), the IoT device is declined.
To optimize further, the algorithm discards IoT devices with
lower priority than the refused one (Line 13), diminishing
complexity. To update preference lists considering changing
edge node resources, emerging nodes, and departing nodes
(Line 18), we repeat algorithms 1 and 2 before cyclically
reiterating the entire process at fixed intervals (Line 19).

a1 =e €y = Le(ar) > Le(a2) (13)
where (14), as shown at the bottom of the next page.

B. ALGORITHMS FOR DISTRIBUTED MATCHING

As the [oT devices and edge nodes interact straight to perform
the matching, the distributed execution of our approach does
not require a central entity.

Every IoT device executes Algorithm 4, which produces
a matching scheme between the edge and IoT devices after
receiving as an input the underlying IoT device’s preference
list. To accomplish this, the procedure initially goes through
the IoT device’s set of preferences (Step 4), followed by
the selection of the preferred edge node, which is the top-
ranked one (Step 5). Subsequently, the IoT device transmits
an proposal message to the chosen edge node (Step 6) and
patiently anticipates a reply (Step 7).

The lowest-ranked edge on the IoT preference list is
selected first. If this edge declines hosting the IoT tasks, the
next highest-preference edge is chosen (Line 8). In case of a
negative response, the process repeats until a willing edge is
found, facilitating the matching between the IoT device and
an edge (Line 11). This cycle repeats periodically (Line 15).
Prior to this, Algorithm 1 is executed to adjust preference
lists due to evolving edge resources, new additions, and
departures, impacting the preference functions of both sides
(Line 14).

Each individual edge node executes Algorithm 5, generat-
ing a matching arrangement between edge and IoT devices.
The algorithm takes a queue of IoT devices that have

~+o00, If e provides the lowest traffic cost and the most resources to do the jobs,

La(e) =

—00, Otherwise

VOLUME 12, 2024

0, If e proposals the lowest traffic cost or has the most resources available to complete the jobs; (12)
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Algorithm 3 Algorithm for Centralized Matching
1: Input: For IoT devices, set A, and for edge nodes, set E

110 Edge Nodes

50000 @ centralized

2: Output: IoT devices embedded on edge nodes e ® Fes
3: repeat c 40000 @ distributed
4 while There are non-standard 3e € E do R . i
. . — max-min
5 while Unmatched devices 3a € A do ';
20000
6: a < as the head of L(e) ]
. r r =
7 if s, > s/ then § 10000 13
8 Match a to e w ol a9 —2 2
9 sz — S(’; _ SZ 400 500 600 700 800
10: Remove a from L(e) Number of loT Devices
11: else
12: Decline a FIGURE 4. 110 Edge nodes.
13: Decline every ¢’ in order to have a >, @’
14: Proceed to the following edge node e 110 loT Devices
15: end if 250 — @ centralized
. 2 [ ® PBSM
16: end while % 200 [~ @ distributed
17: end while E L mih-rmin
. . s 150 —
18: simulate algorithms 1 and 2 s I ® rmexmit
19: until € elapses £ s
= .
;'j’ 50 —
5 L
2 e — e
30 Edge NOdes 0 20 30 40 50 60
1250 — @ centralized
£ ® esw Number of loT Devices
3 1000 @ distributed
E min-min FIGURE 5. 110 loT devices.
c 750 ;
= @ max-min
§
g = 210 loT Devices
% 250 600 — @ centralized
? L @® PBSM
5 0 + @ distributed
200 300 400 500 600 400 — min-min
k= @ max-min

Number of loT Devices

200 —

FIGURE 2. 30 Edge nodes.

Average Makespan in Time Units
T

60 Edge Nodes 0 2'0 — = - -
800 — @ centralized
£ i ® Psu Number of loT Devices
3 600 |- @ distributed
gt min-min FIGURE 6. 210 loT devices.
‘g 400 ; @ max-min
é 200 | In order to determine if the input queue is empty or not,
5 [ the algorithm first cycles through it (Line 4). A nonempty
o = ~ 20 T :
g o= o~ w00 s s queue indicates that the underlying edge node has not yet
checked any proposal messages from some IoT devices.
Number of loT Devices If the queue has entries, the algorithm selects the most
FIGURE 3. 60 Edge nodes. recent proposal message to evaluate whether the edge node

possesses adequate resources for executing tasks produced by
the Internet of Things device that sent the message. It also
submitted proposal messages to the respective edge node determines if the edge node is on the node’s preferred list
running Algorithm 4 as input. (Line 6). If these conditions are fulfilled, the edge node

+00, if the completion of a’s task consumes the least amount of space on the edge node
Le(a) = (14)

—00, Otherwise
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310 loT Devices

1250 @ centralized

@® PBSM
1000 @ distributed

min-min
750
@ max-min

LI S —_—]

o
=}
5]

L

T

250

Average Makespan in Time Units

l

)
5]

30 40 50 60

Number of loT Devices

FIGURE 7. 310 loT devices.

Algorithm 4 Distributed Matching Algorithm in IoT
1: Input: The number of choice L(a) made by IoT device a
2: Output: Identification of coordinating edge and relevant
IoT devices
3: repeat
4 while L(a) is not free do
5 e < first item in L(a)
6: Dispatch proposal message proposal[e] to e
7
8
9

Await response R[proposal[e]]
if R[proposal[e]] = “decline” then
Move e to the last of L(a)

10: else if R[proposal[e]] = “accept” then
11: Conclude the process

12: end if

13: end while

14 execute algorithms 1

15: until € elapses

responds to the IoT device with an acceptance message,
confirming its readiness to perform the tasks. Subsequently,
the edge node adjusts its available resource quantity by
subtracting the necessary amount required for executing the
IoT activities (Line 7). The IoT device receives a decline
message informing it that the edge cannot currently fulfill its
tasks (Line 9), and the edge declines all other IoT devices
whose position in the preference list is lower compared to
that of the declined IoT device (Line 10). Conversely, this
situation arises when the resources on the edge node are
inadequate for the tasks of the IoT, or if the IoT device
is not prioritized highly on the edge node’s preference list.
The underlying IoT devices are taken out of the queue in
lines 11-12. The entire process is carried out on a regular
basis after a predetermined amount of time (Line 16), but
right before that, Algorithm 2 is again executed to obtain new
updated preference lists according to the dynamic nature of
the edge node resources, the emergence of new edge nodes
and IoT devices, and the departure of current ones, all of
which have an impact on the preference functions of both
parties (Line 15).

The parameters for the PBSM comprise: the collection of
n operational edge nodes denoted as E, the set of n active IoT

VOLUME 12, 2024

Algorithm 5 Algorithms for Distributed Matching - Edge
Sid
1: Input: IoT devices are submitting proposal messages to
e in Q(a) queue.
: Output: IoT device mapping to a specific node e
repeat
while Q(a) is not empty do
if s > s/a € O(a) then
Deliver i a response with accept, i.e.,
R[proposal[f1] = “accept”

A A o

7: Change the e resource so that s, = s, — s},
8: else

9: Deliver a a response with decline,
i.e..R[proposal(f]] = “decline”

10: Decline all ¢’ in a way that a >, a'

11: Take a out of Q(a)

12: Take a’ out of Q(a)

13: end if

14: end while

15: execute algorithms 2

16: until € elapses

devices labeled as A, the distinct order of preferences for the
n edge nodes represented as >,= (¢, >¢2, - - ., >en), and
the unique preference order for the n IoT devices denoted as
>a= (als >a2s - -+ » >an)-

The PBSM’s outcome consists of assigned pairs of IoT
devices and Edge nodes. Initially in Algorithm 6, the setup
ensures no engagement between IoT devices and Edge nodes
(line 2-7). The A’ structure in line 2 manages unassigned
IoT devices. Moving to the allocation phase, the while loop
in line 4 monitors Edge node assignments to IoT devices.
The structure of the PBSM guarantees termination of the
while loop when the output, A encompasses all IoT device-
Edge node pairs. In line 10, the function labeled rand_pick()
is employed to randomly select an IoT device from the
set A’. The subsequent function, denoted as extract() and
located in line 11, serves the purpose of retrieving the most
favored edge node based on the preference profile a* for
each IoT device. This information is then stored within the
data structure referred to as e*. The condition presented
in line 12 is evaluated, and if it is met, the IoT device
denoted as a* is inserted at the index of ¢* using line 13.
Once an IoT device represented by a* is incorporated into
A, it is subsequently removed from the set A*. However,
if the assessment in line 12 is unsuccessful, it indicates that
a specific device ¢* is contending with multiple proposals.
To address the competitive landscape among IoT devices,
a decision is taken in step 17 to single out an IoT device from
the available options. Resolving conflicts involves utilizing
the precise preference sequence of the prime edge nodes
(¢*) and retaining the most favored IoT device among the
proposals in A[e*]. The 19th step involves eliminating the
assigned IoT device from set A’ while incorporating declined
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Algorithm 6 Preference Based Stable Matching Algorithm
Input: A = ay,a2,...,a,; E = ey, ea, ..
s >=a2s s =an)s me= (els ™e2s o+ o5 >en)-
Output: A < ¢
1: begin
/* Initialization Phase* /
A=A
: for eachi € A do
Ali] < ¢
edge node
end for
: foreachi € E do
Alil < ¢ > Initially, no edge node is assigned a IoT
device
8: end for
/* Allocation phase */
9: while A’ # ¢ do
10: a* < rand_pick(A")

o en; =a= (>al

AW

> Initially, no IoT device is assigned a

W

11: e* <« extract(>})
122 if Ale*] == ¢ then
13: Ale*] < a*

14: A «— A a*

15: else

16: a* = Ale*]

17: if a* >+ a* then
18: Ale*] < a*
19: A=A a*
20: A=A Ua*
21: end if

22: end if

23: end while
24: return A
25: end

IoT devices. Ultimately, line 24 of the PBSM function yields
the conclusive pairings of IoT devices and Edge nodes within
the system.

VI. FINDINGS FROM OBSERVATIONS AND ANALYSIS

In this part, we first explain the setting in which our
simulations were run, followed by a discussion of the
outcomes.

A. EXPERIMENTAL SETUP

We take into account Remote Patient Monitoring using loT-
based implantable or wearable sensors for the simulations.
The experiment replicates an IoT sensor that continuously
sends patient physiological characteristics, including tem-
perature, blood pressure, and pacing, to the edges for
analysis. We create our own scheduling application to run
the simulations, and each edge node is given a CPU with
a capacity between [3, 000, 9, 000] MIPS, a RAM with a
capacity between [6, 000, 25, 000] MB, and a link bandwidth
with a capacity between [9, 000, 25, 000] Mbps.
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FIGURE 8. CPU utilization
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FIGURE 9. RAM utilization.
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FIGURE 10. Bandwidth utilization.

But compared to edge nodes, IoT devices use far fewer
resources. In particular, the IoT devices’ CPU capacity
is selected from a range of [400, 800] MIPS, their RAM
capacity is selected from arange of [5S00, 1000] MB, and their
link bandwidth capacity ranges from [600, 1000] Mbps.

Every set of edge nodes and IoT devices has a delay
that varies between 200 and 6000 milliseconds. Since
MaxMin [35] and Min-Min [35], [40] two widely used
scheduling algorithms, are utilized often in the scheduling
literature in many relevant fields, including fog, edge, and
cloud computing, we compare our solution with theirs.
By scheduling the quickest-finishing jobs first, the Min-
Min approach favors them. When there are more large-sized
activities than smaller-sized tasks, Min-Min’s performance
begins to suffer, resulting in inefficient resource use and
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prolonged makespan. On the other hand, the basic notion of
Max-Min is to prioritize the jobs with the longest execution
times in order to reduce the overall makespan. Our approach
differs from current alternatives by encompassing a broader
spectrum of metrics. These metrics include factors like
latency, CPU, RAM, and bandwidth, considered from both
IoT devices and edge nodes perspectives. This sets our
solution apart from the MinMin and Max-Min algorithms,
that alone focus on the edge nodes aspect.

B. RESULTS FROM THE EXPERIMENT

Our simulations primarily explore three key aspects: the
average amount of time required to complete an Internet of
Things job, how efficiently edge nodes use their resources,
and how long the solution takes to execute altogether.

We rigorously assess each indicator under a number of
realistic circumstances in order to thoroughly examine the
scalability of our system over a wide variety of real-world
scenarios.

1) AVERAGE MAKESPAN

We commence by studying the time taken by different
solutions for task completion. It is worth noting that this
is the duration between the initiation and completion of a
task. In the initial trials, the number of fog nodes remains
constant, while we vary the quantity of IoT devices Figures 2,
3, 4. This investigation aims to reveal how the makespan is
influenced by the number of IoT devices generating tasks.
Our experiments encompass [oT device quantities ranging
from 200 to 600, while the number of fog nodes is consistent
Figures 2, 3, 4.

The initial finding from figures 2, 3, 4 is that, in contrast
to the Max-Min and Min-Min techniques, our two suggested
algorithms produce low makespan. Furthermore, in each
of the instances, our distributed and PBSM approaches
performed better than the centralized algorithm. The key
benefit of the distributed version is that it allows edge
nodes and IoT devices to simultaneously and independently
make judgments based on their preference lists by decen-
tralizing the matching process. The Min-Min and Max-Min
approaches exhibit subpar performance in contrast to our
solution. This is because they solely consider task completion
time, disregarding vital factors such as resource usage
and latency. These factors profoundly influence makespan.
Another key insight from Figures 2, 3, 4 is that makespan
rises with the growing count of IoT devices. This is due
to the fact that having more IoT devices will result in a
higher number of tasks being assigned to each individual edge
node when compared to having a set number of edge nodes.
This inevitably lengthens the time jobs must wait before
beginning, increasing the entire timeline.

In Figures 5, 6, 7, we measure the makespan of the IoT
jobs while also controlling the number of edge nodes that
serve them and the number of IoT devices that are responsible
for their creation. IoT devices in mentioned diagram is
maintained at 110 Figure 5, 210 Figure 6 and 310 Figure 7.
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210 Edge Nodes

125000 @ centralized
® PBSM
100000 @ distributed

@ min-min
75000
max-min

50000

25000

700 800

c\

Execution Time in ms

IS
1=}
5y
@
=}
5]
@
=3
3

Number of loT Devices

FIGURE 14. 210 edge nodes alongside diverse loT devices.

The results indicate that expanding the edge node count
for a fixed IoT job set leads to a decrease in makespan.
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This is attributed to the higher availability of edge nodes,
reducing waiting times and task completion duration. The
outcomes depicted in Figures 5, 6, 7 highlight that our
distributed, PBSM, and centralized algorithms outperform
the Min-Min and Min-Max techniques in terms of makespan.
Moreover, the distributed approach slightly surpasses the
centralized method when dealing with varying IoT task vol-
umes. Overall, our approach demonstrates superior makespan
reduction and scalability compared to Min-Min and Min-Max
methods, especially with the growth of IoT devices and edge
nodes.

2) RESOURCE UTILIZATION

We evaluate resource consumption on edge nodes in various
studies where these nodes are assisting IoT tasks. The
utilization of CPU, RAM, and link bandwidth is quantified.
Resource consumption is crucial since it helps us determine
how much money each of the compared techniques will
cost edge providers. In order to investigate the scalability of
the various investigated methodologies, we run four distinct
experiments for this set of tests, modifying the quantity of IoT
devices and edge nodes in different configurations.

We examine the CPU, RAM, and bandwidth usage in
Figures 8, 9, 10 for a system with 10 edge nodes and 100 IoT
devices. Further tests are also conducted in this section.

From the provided data, we can infer that as the number
of edge nodes increases while keeping the IoT jobs constant,
there is a noticeable reduction in resource consumption
per edge node. This aligns with expectations, as a higher
quantity of edge nodes distributing the same workload leads
to a lighter load on each node. Additionally, the study
indicates that both of our algorithms consistently achieve near
maximum resource utilization across different combinations
of IoT and edge device quantities.

Nevertheless, the resource utilization of the Min-Min
and Max-Min algorithms exhibits variability, as specific
edge nodes experience periods of high utilization while
others remain partially or entirely idle. In contrast, our pro-
posed solution’s preference function considers the resource
consolidation approach of individual edge nodes. This
enables these nodes to optimize resource usage effectively,
minimizing the necessity for deploying extra edge nodes
to cater to IoT devices. As a result, this approach pro-
posals the benefit of lightening edge providers’ financial
responsibilities.

3) EXECUTION TIME

The execution time required by the various solutions under
consideration is the third measure we take into account in
our investigation. To achieve this, we design four distinct
trials using various combinations of edge node and IoT
device numbers. We adjust the number of edge nodes in
Figure 11 from 10 to 30 and a certain amount of IoT
devices at 200. In Figure 12, we deploy 400 IoT devices
at a fixed number while varying the number of edge nodes
from 20 to 60. In Figure 13, we increase the number of
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IoT devices from 400 to 800 while fixing the number of
edge nodes at 100. In Figure 14, we modify the number
of 10T devices The execution time required by the various
solutions under consideration is the third measure we take
into account in our investigation. The initial inference from
the data indicates that an escalation in the count of IoT
devices across several examined methodologies corresponds
to a proportional increase in execution time. This pattern
emerges to provide broader task allocation capabilities to
edge nodes via diverse algorithms. Furthermore, with a surge
in the quantity of edge nodes, there is also a corresponding
elevation in the run time of the diverse algorithms. This
phenomenon is attributable to the expanded inputs that
IoT devices require to take certain inputs into account
when formulating their preference lists in the presence of
additional edge nodes. These findings also highlight that
our decentralized and centralized algorithms exhibit shorter
execution times compared to the Min-Min and Max-Min
methodologies. In comparison to the centralized variant, our
distributed solution demonstrates improved execution speed.
The basis for this is that in the distributed version of our
technology, edge nodes and IoT devices can connect with
one another directly without the need for a middleman. This
helps to reduce the total communication overhead between
the various nodes.

4) CONTRAST AGAINST THE IDEAL OUTCOME
We contrast our solution’s performance with that of the best
option. The appendix contains the comparison’s findings.

VIi. CONCLUSION

In this research, we employed game theory to tackle the issue
of scheduling time-sensitive IoT services in edge computing
environments. Our strategy comprises of two main parts:
IoT devices and edge nodes may be evaluated by each other
by: (1) including preference functions, and (2) using both
centralized and distributed intelligent matching algorithms.
as well as important indicators like latency and resource
utilization, to facilitate the allocation of IoT services to
suitable edge nodes, considering the preferences of all parties
involved. The key benefit of our approach over the state-of-
the-art is that we generate scheduling decisions while taking
the preferences and limits of both IoT devices and edge nodes
into account.

We evaluate how well our method performs in comparison
to two widely used scheduling methods, Min-Min and
Max-Min, used in cloud and edge computing contexts.
The results show that our method works better than Min-
Min and Max-Min by achieving up to a 30% to 40%
increase in efficiency for resource utilization on edge nodes.
Additionally, it reduces the execution time of [oT services by
a factor of 2 to 9. Our solution also boasts faster execution
times and enhanced scalability. In our future work, we will
focus on an auction-based approach for better utilization of
resources in a monetary environment.
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