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ABSTRACT Addressing the limitations inherent in conventional Power Quality Disturbance (PQD) iden-
tification systems, particularly regarding the restricted information obtainable from single image features
and the compromised noise immunity of single-channel networks, an innovative approach, integrating
Uniform Relative Position Matrix-ContinuousWavelet Transform (URPM-CWT) and multi-channel feature
fusion, is presented. This method capitalizes on the principle of feature fusion to enhance microgrid PQD
identification. To begin with, each PQD signal undergoes processing through the URPM and CWT, followed
by horizontal splicing to yield the URPM-CWT feature image. This is followed by the parallel deployment of
three refined networks—MobileNetV2, ResNet50, and ShuffleNetV2—using the Self FusionModule (SFM)
to yield amulti-channel feature fusion classificationmodel. The final stage involves feeding theURPM-CWT
feature image into the multi-channel feature fusion classification model and applying a fully connected layer
for training, leading to comprehensive perturbation recognition. Constructed using the PyTorch framework,
the proposed model is evaluated on an exhaustive database of 28 distinct PQD types. In a 30db white
noise environment, the method demonstrates an average classification accuracy of 99.35%, surpassing the
performance of standalone deep learning recognition approaches. Simulation experiments corroborate the
model’s high classification accuracy, effective recognition, and robust resistance to noise when dealing with
PQD signals. Thus, the model offers promising potential for practical applications in PQD identification and
classification.

INDEX TERMS Power quality disturbances, deep learning, relative position matrix, wavelet transform,
feature fusion.

I. INTRODUCTION
A microgrid is a self-contained, compact power system
encompassing diverse distributed power sources, loads,
energy storage, and control systems. It offers key advantages

The associate editor coordinating the review of this manuscript and
approving it for publication was Sinisa Djurovic.

such as efficient resource use, swift setup, and broad appli-
cability, making distributed power an appealing choice for
energy generation and management. The widespread uti-
lization of power electronic devices in microgrids leads
to the injection of a substantial number of harmonic sig-
nals into the grid. This causes power quality deteriora-
tion manifested in voltage waveform distortion, fluctuation,
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flickering, and three-phase unbalance. Furthermore, mini-
grids, typically independent nodes operable in both connected
and isolated modes, help optimize the use of distributed
power. They enable local energymanagement, provide redun-
dancy, reinforce grid resilience, and reduce transmission
losses. By balancing local generation and load, mini-grids
mitigate peak demand effects and voltage fluctuations on the
larger grid, enhancing power supply reliability and overall
grid efficiency. Given their substantial role, microgrids are
at the forefront of global power system research and devel-
opment. To fully leverage the advantages of microgrids, it is
essential to address fundamental power system issues. One
crucial technology for microgrids is the quick and accurate
determination of power quality disturbances. Proper identi-
fication of the types of disturbances, such as voltage sags,
swells, harmonics, and flicker, is vital, as it lays the foun-
dation for effectively managing power quality issues in the
future [1].

Researchers worldwide are diligently working on the
accurate identification of power quality disturbance sig-
nals, and various methodologies have been proposed to
tackle this omplex problem. One such proposal suggests
utilizing Variational Mode Decomposition (VMD) combined
with a Random Discriminative Projection Extreme Learning
Machine (RDPEML) [2]. While this approach demonstrates
commendable classification prowess, another introduces a
Discrete Fourier Transform (DFT)-based method for har-
monic estimation, which flaunts exceptional accuracy and
adaptability [3]. Also notable are the practical applica-
tions of Empirical Mode Decomposition (EMD)-based noise
reduction techniques that showcase the promise of real-time
harmonic signal analysis [4]. Other works have combined
the double-resolution S-transformwith directed acyclic graph
support vector machines to cater to both single and combined
disturbances [5].

However, as smart grids evolve and data volume swells,
the challenges escalate. Traditional methods struggle, neces-
sitating the introduction of deeper machine learning models
like the 1D-MR model, grounded on the Inception-ResNet
framework [7]. Recognizing the limitations of traditional
algorithms, this study embarks on refining the SSPQDD
algorithm. By embracing a multiple sequence approach,
it brings forth an enhanced detection mechanism and rec-
ognizes two concurrent disturbances within a singular win-
dow [8]. Additionally, with the rise of complex multilabel
classification tasks, this research introduces LGAN, a deep
learning marvel adept at extracting, directing, and pre-
dicting PQDs [9]. To ensure the interpretations of these
classifiers remain lucid, an explainable artificial intelli-
gence method is proposed, emphasizing comprehensible
decision-making [10]. The burgeoning field also sees the
introduction of an ensemble convolution neural network
(ECNN) targeting the quality of electric vehicle charg-
ing [11]. The realm of power quality disturbance recognition
is undergoing transformative changes. Recent research has
shown the potential of transitioning from one-dimensional

signals to two-dimensional visuals using the Markov tran-
sition field (MTF), coupled with the deep residual network
(Resnet). This technique has reported an astounding recog-
nition rate of 99.875% [12]. Moreover, the challenge of
overfitting, a persistent issue in machine learning, has been
addressed by another study through the dynamic adjustment
of sub-decision tree weights, demonstrating enhanced accu-
racy, notably in renewable energy system disturbances [13].
In the quest for optimized classification, theDAEnetwork has
emerged, offering superior performance metrics compared to
prominent techniques like SVM, SAE, and PCA [14]. Adding
to this line-up of advancements, the adoption of fully convo-
lutional networks (FCNs), bidirectional gated recurrent unit
(BiGRU), and the squeeze-and-excitation network (SENet)
presents a promising shift, holding an advantage over current
deep learning paradigms [15].
Each of these approaches offers unique insights and

advancements in the field of power quality disturbance iden-
tification, contributing to the development of more robust and
accurate methods for power systems analysis.

The following two major problems commonly exist in
the current microgrid Power Quality Disturbance recog-
nition: 1. Insufficient consideration of the complementary
nature of time-frequency analysis and image conversion
methods, leading to inadequate consideration of the static
structure and dynamic behavior of signals. 2. The limita-
tions of single-channel network features present significant
challenges, primarily due to the inadequate feature extraction
which results in considerable feature loss. This consequently
diminishes recognition accuracy, an issue that becomes
increasingly prominent in high-noise environments. In an
effort to confront and overcome these obstacles, this paper
makes the following noteworthy contributions:

1) A novel URPM-CWT feature image: The traditional
Relative Position Matrix (RPM) conversion method is
streamlined and upgraded, and a more effective Sym-
bolic Relative Position Matrix (URPM) conversion
algorithm is introduced. This advanced algorithm not
only accelerates the conversion time but also produces
superior results. By fusing the URPM with the Con-
tinuous Wavelet Transform (CWT) on a level plane,
we generate the URPM-CWT feature map. This inno-
vative procedure heightens the consistency of the image
features and bolsters its capability to resist noise inter-
ference.

2) A Self Fusion Module (SFM): This module is designed
to adapt to the multi-channel feature fusion classifica-
tion model, automatically adjusting the importance of
different features, and accommodating various inputs
and tasks. The adaptive feature fusion module enables
the model to perform well in handling complex
scenarios.

3) A multi-channel feature fusion classification model:
Comprising improved MobileNetV2, ResNet50, Shuf-
fleNetV2, and the adaptive feature fusion module,
this model employs three parallel networks for feature
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extraction, thereby enhancing recognition accuracy.
The final recognition and classification are achieved
through the fully connected layer, resulting in effective
performance even in high-noise environments.

II. IMAGE PREPROCESSING
Image Preprocessing is the process of processing the orig-
inal image to improve the quality of the image data or to
extract some important characteristics about the image so that
subsequent image processing or image analysis can be more
effective. This section introduces the Relative PositionMatrix
(RPM) [16] and its optimized Uniform Relative Position
Matrix (URPM) and Continuous Wavelet Transform (CWT)
[17], and finally the two are horizontally stitched to obtain
the URPM-CWT feature image.

A. URPM IMAGE GENERATION
1) TREND EXTRACTION
In this section, the focus is on trend extraction from original
time series data. First, a standard normal distribution Z is
obtained by the following z-score normalization method:

In this section, the focus is on trend extraction from original
time series data. First, a standard normal distribution Z is
obtained by the following z-score normalization method:

zt =
xt − µ

σ
, t = 1, 2, . . . ,N (1)

where µ, denotes the mean value of X and σ denotes the
standard deviation of X.

Then, we employed the Symbolic Aggregate approxima-
tion (SAX) [18] methodology to process the power quality
disturbance signals. Initially, a Piecewise Aggregate Approx-
imation (PAA) was utilized to represent the features of the
signals, thereby facilitating a more robust analysis and inter-
pretation of the data in question.

c̄i =
w
n

∑ n
w i

j= n
w (i−1)+1

Zj (2)

In order to reduce the dimensionality of the n-dimensional
original power quality disturbance signals to w dimensions,
the original signals were segmented into w fragments. Let c̄i

denote the mean value of the i-th segment. This procedure
reduces the dimensionality of the power quality disturbance
signals from n to w, thereby segmenting the signal into w
equal-sized ‘‘frames’’. It is imperative to ensure that the
compression ratio n

w is an integer.
Subsequent to the dimensionality reduction, the PAA fea-

ture representation was discretized into SAX, aligning the
resulting symbols with the corresponding features of the
time series, which share identical probabilities. The results
demonstrate that the values of the z-score normalized time
series adhere to a normal distribution.

Leveraging the properties of the methodology, it becomes
feasible to employ a lookup table approach to ascertain the
coordinates of a straight line under the normal curve, thereby
partitioning the area under the Gaussian curve. In the context

FIGURE 1. Comparison of URPM and RPM images.

of SAX, these x-coordinates of the lines are referred to as
breakpoints, and the breakpoints listed in the table partition
the data in the N (0,1) distribution into a equal regions.
By assigning a corresponding alphabet symbol alpha to each
interval

[
βj−1, βj

)
, the vector’s transformation PAA coeffi-

cients ĉ to the string c̄ is implemented as follows:

ĉ ∗ i = alpha ∗ j, iif , c̄ ∗ i ∈
[
βj−1, βj

)
(3)

SAX introduces a new metric for measuring the distance
between strings by extending the Euclidean distance and the
PAA distance. This function returns the minimum distance
between string features of two original time series Q̂ and Ĉ .

MINDIST (Q̂, Ĉ) ≡

√
n
w

√∑w

i=1
(dist(q̂ ∗ i, ĉ ∗ i))2 (4)

2) IMAGE GENERATION
To perform relative position computation between two two
minimum distances M, the computation follows the SAX
algorithm. The preprocessed power quality disturbance sig-
nals are then converted into a two-dimensional matrix H,
resulting in a Uniform Relative Position Matrix (URPM)
image. This approach eliminates the need for the traditional
relative position matrix’s min-max normalization step, signif-
icantly improving image conversion efficiency and enhancing
the characteristics of the resulting image.

H =


M1 −M1 M2 −M1 · · · Mm −M1
M1 −M2 M2 −M2 · · · Mm −M2

...
...

. . .
...

M1 −Mm M2 −Mm · · · Mm −Mm

 (5)

Which eliminates the traditional relative position matrix
in the use of min-max normalization to convert the resulting
matrix to gray value matrix this step, greatly improving the
image conversion efficiency as well as enhance the charac-
teristics of the picture law. The obtained image is shown in
Figure.1, and it can be clearly seen that the optimized image
features are more obvious.

B. CWT IMAGE GENERATION
Wavelet time-frequency image representation is a powerful
tool capable of visualizing the characteristics of a signal in
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FIGURE 2. CWT images.

time and frequency simultaneously. The Continuous Wavelet
Transform (CWT) [17] builds on the Fourier Transform (FT)
[19] by introducing scale and translation factors, and by using
finite-length and decaying wavelet basis functions instead of
the sine and cosine basis functions used in the FT. The finite
length and decaying nature of wavelet basis functions allow
for localized frequency analysis, an advantage not present
in traditional FT. This allows the window function to vary
with frequency characteristics, enabling detailed analysis at
different scales and locations.

The advantage of CWT lies in its adaptive window prop-
erty, for high-frequency components, the window length is
shorter to accurately obtain the location of the event, and for
low-frequency components, the window length is longer to
obtain more accurate frequency information. This flexibility
makes CWT able to show the time domain and frequency
domain characteristics of the signal and obtain better time-
frequency analysis.

First, we select a mother wavelet (base wavelet), denoted
as ψ . In this paper, we use the Morlet wavelet, known for
providing an optimal balance between time and frequency
resolution, thus facilitating the consideration of both time and
frequency domain characteristics of the signal. The mother
wavelet is a locally fluctuating, complex function with zero
mean, which is mainly used to analyze the characteristics of
signals at different time frequencies. The basic formula for
the continuous wavelet transform is:

CWT(s, f )

=
1

2π
√
s

∫
+∞

−∞

(∫
+∞

−∞

y(t)ψ∗

(
t − τ

s

)
dt

)
e−j2π f τdτ

(6)

where s and τ denote the scale and translation factors, respec-
tively, ψ∗ denotes the complex conjugate of the scale and
translation wavelet functions, and y(t) denotes the perturba-
tion signal.

Then, a collection of scale and translation factors is system-
atically selected, often based on the specific time-frequency
analysis needs of the given signal. Finally, a Figure 2 is
obtained which represents the information of the original
signal at different times and frequencies.

FIGURE 3. URPM-CWT images.

C. URPM-CWT IMAGE GENERATION
In our study, we combine the two unique image representa-
tions mentioned above, the symbol relative position matrix
(URPM) and the wavelet time-frequency image (based on
CWT), to reveal the structural, frequency, and time-domain
properties of the original perturbed signals more compre-
hensively. Specifically, we generate a URPM image and a
wavelet time-frequency image for each signal, and then hor-
izontally stitch these two images to generate a combined
image, as shown in Figure. 3.

In this combined image, the RPM image portion reflects
the relative positional information of the elements in the
signal, which captures and preserves some of the underlying
structure and patterns of the original time series. The wavelet
time-frequency image portion, on the other hand, demon-
strates the behavior of the signal in time and frequency, which
can reveal some of the variations and dynamic properties of
the signal, including periodicity, abrupt changes, and trends.

By horizontally splicing these two images, we have fused
the relative position information and time-frequency char-
acteristics, two distinct perspectives on signal analysis, into
one combined image. In this way, we can consider both the
static structure (via URPM) and the dynamic behavior (via
CWT) of the signal. This multi-perspective, multi-property
representation not only preserves the original complexity of
the signal, but also enhances the accuracy and reliability of
our understanding and analysis of the signal by providing a
more holistic view.

III. MULTI-CHANNEL FEATURE FUSION CLASSIFICATION
MODEL
In deep learning, feature extraction and feature fusion are
crucial aspects as they help in representing the data in a
way that enhances the learning capability of models. In this
section, we first explain the working principles of the Self
Fusion Module and the Convolutional Block Attention Mod-
ule. Then, we introduce the basic structures of MobileNetV2
[20], ResNet50 [22], and ShuffleNetV2 [23], along with the
improvement measures. Finally, we present the classifica-
tion model based on URPM-CWT and multi-channel feature
fusion.
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FIGURE 4. Self fusion module.

A. SELF FUSION MODULE AND CONVOLUTIONAL BLOCK
ATTENTION MODULE
1) SELF FUSION MODULE
In order to fuse features from different layers more efficiently,
this paper proposes a Self Fusion Module (SFM). This mod-
ule consists of two linear layers (Linear), ReLU (Rectified
Linear Unit) [24] activation function and Sigmoid [25] func-
tion. It is shown in Figure. 4.
The main part of the module can be divided into the fol-

lowing steps:
Feature Transformation: Each input feature undergoes a

transformation through a linear layer and a ReLU activation
function, enhancing the non-linearity of the model and facil-
itating the extraction of higher-level features. Given that the
dimensions of the feature vectors output by the three networks
(MobileNetV2, ResNet50, ShuffleNetV2) are different, the
linear layer adjusts the dimension of each feature vector to
a uniform size, enabling the fusion of features from all three
models. For instance, in our study, the feature vector size of
the ResNet50 output is 2048, while the output feature vector
sizes for the other two models are 1024. Using the SFM
module, we adjust the feature vector size to 2048 for all of
them.

Attention Weight Calculation: The attention mechanism
automatically calculates the weight for each feature, enabling
adaptive fusion of different features. Specifically, suppose
we have three feature vectors x1, x2, and x3 to be fused.
First, these three feature vectors undergo non-linear trans-
formations through a linear layer and a ReLU activation
function, after which they are summed. This summed feature
vector is then fed into a second linear layer to calculate the
attention weights. These weights, representing the relative
importance of each feature vector, are normalized using a
Sigmoid function, ensuring their values lie between 0 and 1.
This process allows the model to adaptively learn and focus
on the most important features during fusion.

The attentional weights are computationally defined as:

f1 = ReLU (W1 ∗ x1 + b1)

f2 = ReLU (W1 ∗ x2 + b1)

f3 = ReLU (W1 ∗ x3 + b1)

attn_weights = Sigmoid (W2 ∗ (f 1 + f 2 + f 3) + b2) (7)

In the context of the process described, x1, x2, x3 represent
the input features from the different networks.W1,W2 are the
weight matrices of the two linear layers, b1, b2 are the cor-
responding bias terms, ReLU and Sigmoid are the nonlinear
activation functions.

Feature fusion: We apply the attention weights, corre-
sponding to each of the three input feature vectors, to obtain
the fused features. Note that the fusion strategy here is not
simply a weighted average of all the features, but rather a
more sophisticated approach: for the first feature x1, we use
the derived attention weight as its weight, whereas for the
remaining two features x2 and x3, we use (1 minus the
derived attention weight) as their weights.

This approach ensures a dynamic balance between the
feature vectors. As the importance of the first feature
x1 increases (i.e., the attention weight approaches 1),
the importance of the remaining two features x2 and
x3 decreases, and vice versa. This adaptive adjustment allows
the model to focus on the most relevant features at any given
moment, thereby enhancing the efficacy of the feature fusion
process.

fused features = attn_weights ∗ x1

+ (1 − attn_weights) ∗ x2

+ (1 − attn_weights) ∗ x3 (8)

where ‘‘fused features’’ is feature fusion, ‘‘attn_weights’’
is the weights of feature x1, and 1-‘‘attn_weights’’ is the
weights of features x2 and x3.
This adaptive feature fusion strategy not only automati-

cally adjusts the importance of different features, but also
adapts to different inputs and tasks, enabling our model to
achieve good performance in dealing with various complex
situations.

2) CONVOLUTIONAL BLOCK ATTENTION MODULE
CBAM (Convolutional Block Attention Module) [26] is an
attention module that can effectively enhance the perfor-
mance of convolutional neural networks. CBAM module
introduces an attention mechanism in each of the two dimen-
sions, channel and space, by seamlessly inserting it into
an existing convolutional network. This design enables the
model to pay more attention to the important channel and
spatial regions, thus optimizing the model performance.

The CBAM module consists of two sub-modules: the
Channel AttentionModule and the Spatial AttentionModule.
As shown in Figure.5.

Channel Attention Module: for the input feature map F ∈

RC×H×W , where C is the number of channels, and H and W
are the height and width, respectively, first, global average
pooling and global maximum pooling are carried out, and
the obtained results are denoted as Favg ∈ RC and Fmax ∈

RC .Then, the two vectors are respectively passed through a
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FIGURE 5. CBAM module.

multilayer perceptual machine (MLP) to be processed and the
obtained results are denoted asMLP(Favg) andMLP(Fmax).
The two results are then summed and passed through a Sig-
moid function to obtain the channel attention weights:

Mc(F) = σ (MLP(Favg) +MLP(Fmax)) (9)

where σ denotes the Sigmoid function. Finally, the obtained
attention weights are multiplied with the original input fea-
ture map to obtain the output of the channel attention module:

F ′
= Mc · F (10)

Spatial Attention Module: first, the weighted feature map
F ′ is subjected to the average and maximum operations in the
channel dimension, and the obtained results are denoted as
F ′

avg ∈ RH×W and F ′
max ∈ RH×W . Then, these two results

are concatenated in the channel dimension and then passed
through a convolutional layer of size 7 × 7 and a Sigmoid
function to obtain the spatial attention weights:

Ms = σ
(
Conv

([
F ′
avg,F

′
max

]))
(11)

Finally, the obtained spatial attention weights are subjected
to an element-by-element multiplication operation with the
output of the channel attention module to obtain the final
output of the CBAM module:

F ′′
= Ms · F ′ (12)

Overall, the CBAMmodule allows the model to adaptively
reshape the channel properties and spatial distribution of the
feature map by introducing channel and spatial attention, thus
optimizing the feature representation ability of the model.

B. INTRODUCTION AND IMPROVEMENT OF
MOBILENETV2 MODEL
The MobileNet convolutional neural network, initially pro-
posed by Google in 2017, uses Depthwise Separate Convo-
lution (DSC) instead of standard convolution. This change
makes the network more lightweight and reduces compu-
tation and parameters. MobileNetV2, introduced in 2018,
further improved the model’s performance and efficiency
by introducing a linear bottleneck and an inverted residual
structure [20].

The core of MobileNetV2 is the Depthwise Separable
Convolution (DSC), which combines Depthwise Convolution

TABLE 1. Detailed structure of improved MobileNetV2.

(DC) and Pointwise Convolution (PC). DC applies a convo-
lution kernel independently to each input channel, reducing
computational load and preserving feature richness. PC, a
1× 1 convolution operation, is used for upscaling and down-
scaling of feature channels.

A key innovation in MobileNetV2 is the Linear Bottleneck
structure, where a linear activation function is used in the last
convolutional layer, instead of the ReLU activation function.
Additionally, the Inverted Residual structure improves net-
work efficiency by reducing computational complexity [20].
In this paper, we augment the original MobileNetV2 net-

work with additional depth-separable convolutional blocks
to capture more feature information. We replace the ReLU6
activation function with the SiLU [27] activation function,
also known as the Swish function. This new activation func-
tion enables the network to learn more complex feature
representations. We also include a Dropout [21] layer before
the fully connected layer to prevent overfitting and add the
CBAMAttentionMechanismmodule to help the model focus
more on essential information during feature extraction.

The structure of the improved MobileNetV2 model is
shown in Figure. 6. And the detailed structure of the model is
shown in the Table 1.

C. INTRODUCTION AND IMPROVEMENT OF RESNET50
MODEL
The ResNet50 model, part of the ResNet (residual network)
family, was designed to overcome challenges faced by deep
learning networks, such as vanishing or exploding gradients.
ResNet introduces ‘‘residual learning,’’ where each layer
learns a residual mapping between inputs and outputs, rather
than directly learning the original mapping. This approach
eases learning when the ideal mapping is close to a con-
stant [22].

ResNet50 is a deep neural network consisting of 50 layers
(including convolutional layers, activation layers, pooling
layers, etc.). In these 50 layers, the main building blocks
are multiple Residual Blocks. Each residual block usually
contains three convolutional layers (1 × 1, 3 × 3, 1 × 1 con-
volutional kernel), one Identity Block and each convolutional
layer is followed by a batch normalization (Batch Normaliza-
tion) and ReLU activation function. In addition, each residual
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FIGURE 6. Improved MobileNetV2 model structure.

block contains a Shortcut Connection, which is the core
innovation of ResNet. This shortcut connection allows the
inputs of the network to be directly connected to its outputs,
forming a constant mapping [22].

The input layer of the ResNet50 model accepts an RGB
image of size 224× 224, the first layer is a 7× 7 convolution
with a step size of 2, followed by a maximum pooling layer,
also with a step size of 2. There are then four stages, each
with a number of residual blocks, where the first residual
block of each stage is used to reduce the size of the feature
maps and to increase the number of channels, and the others
maintain the size and the number of channels unchanged. The
other residual locks maintain the size and number of channels
unchanged. Stage 1 has three residual blocks, stage 2 has four,
stage 3 has six, and stage 4 has three. Finally, a global average
pooling layer, and a fully connected layer are connected, and
the output layer is the number of categories for the classifica-
tion task [22].

In our implementation, we replaced ResNet50’s standard
convolutional layers with depth-separable convolutional lay-
ers. We also added a CBAM attention mechanism module
before the fully connected layer, helping the model focus on
crucial information during feature extraction. This results in
a more lightweight model, suitable for devices with limited
computational resources.

The structure of the improved ResNet50 model is shown in
Figure. 7. And the detailed structure of the model is shown in
the Table 2.

D. INTRODUCTION AND IMPROVEMENT OF
SHUFFLENETV2 MODEL
ShuffleNetV2 is a highly efficient deep neural network
architecture, designed for mobile and resource-constrained
devices. The model aims to maintain or enhance performance
while minimizing computational complexity, characteriz-
ing it with exceptional computational efficiency and fewer
parameters [23].

TABLE 2. Detailed structure of improved ResNet50.

The design of ShuffleNetV2 is based on four main factors:
uniformity of input/output channels, equivalent width/height
for balanced information flow, efficiency ofmatrix operations
for computational speed, and reduction of network traffic
to minimize data transfers. This reduction is achieved via a
‘‘channel shuffle’’ operation that rearranges feature channels

VOLUME 12, 2024 35603



J. Jiang et al.: Novel Methodology for Microgrid PQD Classification

FIGURE 7. Improved ResNet50 model structure.

after each convolutional layer, allowing different features to
be learned by various grouped convolutional layers.

The basic building block of ShuffleNetV2, called Shuffle-
Unit, includes grouped convolution, channel shuffling, and
depth-separable convolution. Grouped convolution reduces
the model’s computational complexity, while the channel
shuffle operation ensures adequate information exchange
between individual groups. Depth-separable convolution fur-
ther optimizes computational efficiency [23].
In our implementation, we added a CBAM attention mech-

anism module before the fully connected layer, enabling the
model to focus on crucial information during the feature
extraction process. This module can self-learn and automat-
ically assign attention weights in the spatial and channel
dimensions.

The structure of the improved ShuffleNetV2 model is
shown in Figure. 8. And the detailed structure of the model is
shown in the Table 3.

E. CLASSIFICATION MODEL BASED ON URPM-CWT AND
MULTI-CHANNEL FEATURE FUSION
In this paper, we propose a classification model based on
URPM-CWT and multi-channel feature fusion, the structure
is shown in Figure. 9.

Firstly, the original signals are converted into two kinds of
feature pictures, URPM andCWT, respectively, and then both
of them are horizontally spliced to complete the preprocess-
ing of the pictures to get more featured URPM-CWT feature
pictures.

Secondly, we propose to unify the feature vectors of each
channel to reach a suitable splicing dimension by a Self
Fusion Module (SFM) module, and then let SFM perform
adaptive weight calculation, which makes the model able to

TABLE 3. Detailed structure of improved ShuffleNetV2.

automatically adjust the importance of each channel feature,
and finally realize the effective fusion of the three feature
vectors.

Then this paper proposes a new Multi-channel fea-
ture fusion classification model (MCFFN). The model
is mainly composed of three models, the improved
MobileNetV2, ResNet50 and ShuffleNetV2, in parallel to
realize multi-channel feature extraction. With the parallel
model structure, each model can focus on learning different
features of the input data, thus improving the overall model
performance. And the advantages of each model can be inte-
grated into the MCFFN model, MobileNetV2 can enhance
the lightweight, high efficiency and structure optimization
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FIGURE 8. Improved ShuffleNetV2 model structure.

FIGURE 9. Classification model based on URPM-CWT and multi-channel feature fusion.

of the model, ResNet50 can solve the problem of gradient
vanishing during the training of deep neural networks, and
ShuffleNetV2 provides high efficiency and good perfor-
mance, and finally the MCFFN model has strong robustness
and generalization ability, which can be adapted to more
kinds of perturbations and higher noise environments.

To cap off the process, we classify the features using a Fully
Connected Layer (FC). This layer has the capacity to inte-
grate all high-level features learned and facilitate deep feature
interactions. The Fully Connected Layer is also designed to
directly output the probability of target categories, enabling
the model to easily adapt to complex classification tasks.
At last, a Dropout layer is added behind the FC layer to
prevent overfitting.

IV. RESULTS AND DISCUSSION
In order to verify the validity of the proposed model, this
section describes the composition of the database and the
comparison between the different approaches.

A. DISTURBANCE SIGNAL SAMPLE LIBRARY
COMPOSITION
According to the IEEE 1159 [27] standard and in conjunc-
tion with related literature, 28 PQD signals are simulated in
MATLAB given the power quality disturbance mathematical
model. These signals consist of 8 single types, 15 double
types and 5 triple types as shown in Table 4. where the
fundamental frequency is set to 50Hz, the sampling frequency
is set to 3.2kHz and the number of sampling points is set to

VOLUME 12, 2024 35605



J. Jiang et al.: Novel Methodology for Microgrid PQD Classification

TABLE 4. Categories of PQDS.

FIGURE 10. Plot of C4 class original signals with URPM-CWT features at
different signal-to-noise ratios.

640 points (10 weekly waves). Among them, the initial phase
of various disturbances and other indicators are completely
randomized.

To emulate signals obtained in practical engineering sce-
narios, each group of perturbations is subjected to five
different noise conditions: no noise, and signal-to-noise ratios
of 20dB, 30dB, 40dB, and 50dB, in Figure 10 shows the
original signal for C4 class in different signal-to-noise ratio
with URPM-CWT feature map. Each class of signal-to-noise
ratio generates 1800 samples, totaling 28 × 1800 samples.
On average, each model is fed 28× 600 samples. The dataset
is then randomly split into training and test sets in an 8:2 ratio.

The experiments were conducted on a system equipped
with an Intel Core i5-12600Kf 3.7GHz CPU, a GeForce RTX

3060Ti GPU, and 32 GB of RAM, running a 64-bit Win-
dows operating system. The software environment utilized
was Python 3.10, with the PyTorch 2.0.0 library, and CUDA
version 11.7.

In this paper, the models are evaluated using recognition
accuracy (Acc), precision of positive class prediction (Pre),
sensitivity (Sen), and F1-score performance metrics [29],
which are defined:

Acc(%) =
TP+ TN

TP+ TN + FP+ FN
×100%

Pre(%) =
TP

TP+ FP
× 100%

Sen(%) =
TP

TP+ FN
× 100%

F1−score(%) = 2 ×
Pre × Sen
Pre + Sen

× 100% (13)

Here, TP (True Positives) refers to the number of correctly
identified positive instances; TN (True Negatives) indicates
the number of correctly identified negative instances; FP
(False Positives) denotes the instances incorrectly identified
as positive; and FN (False Negatives) refers to the positive
instances that were incorrectly identified as negative.

B. COMPARATIVE ANALYSIS OF DIFFERENT SIGNAL
PREPROCESSING METHODS
In Figure 11, the efficacy of the URPM-CWT feature image
is substantiated through comparative experiments utilizing
four distinct signal preprocessing methodologies within the
ambit of an enhanced MobileNetV2 model framework. The
optimized URPM preprocessing technique exhibits a notable
augmentation in accuracy relative to the RPM method. Note-
worthy is the supremacy of the URPM-CWT’s recognition
accuracy, which prevails as the highest across all examined
noise environments, thereby evidencing its superior perfor-
mance over the competing three methods.

The incisive analysis of these experimental outcomes
provides profound insights into the robust nature of the
URPM-CWT technique, especially under the duress of noise-
afflicted environments, a prevalent complication in signal
processing tasks. The resilience of URPM-CWT is ascribed
to its advanced noise-resistant features, which adeptly coun-
teract the adverse impacts of acoustic disturbances on signal
categorization. Furthermore, the unwavering dominance of
URPM-CWT, evident across a noise range extending from
30db to 50db, reinforces its credentials as a dependable
preprocessing instrument across a diversity of operational
contexts.

These empirical findings corroborate the initial assertion
that the integration of Universal Recurrence Plot Mapping
with Continuous Wavelet Transform not only encapsulates
the inherent complexities within datasets with heightened
fidelity but also amplifies the discriminative prowess of the
model. Thereby, the URPM-CWT framework is affirmed
as a markedly beneficial methodology for the classifica-
tion of power quality disturbances in microgrids, heralding

35606 VOLUME 12, 2024



J. Jiang et al.: Novel Methodology for Microgrid PQD Classification

FIGURE 11. Comparison results of four preprocessing methods.

significant enhancements in scenarios where the dual imper-
atives of noise immunity and precision are paramount.

C. COMPARATIVE ANALYSIS OF DIFFERENT RECOGNITION
NETWORK MODELS
1) COMPARATIVE ANALYSIS OF DIFFERENT NETWORKS
UNDER THE SAME SIGNAL PREPROCESSING
In this study, we conducted a comparative analysis of five net-
workmodels – ImprovedMobileNetV2, Improved ResNet50,
Improved ShuffleNetV2, CNN and Proposed - under the
same signal preprocessing conditions. The accuracy, preci-
sion, recall, and F1 scores of these models were evaluated
under five conditions corresponding to different noise levels
(20db, 30db, 40db, 50db, and no noise), as shown in Table 5.

In addition to the performance metrics, we also present
the training and testing curves for the proposed model under
the 30db noise condition in Figure. 12. These curves offer
insights into the model’s convergence behavior, potential
overfitting, and generalization capabilities. Notably, it can
be observed that the curves tend to stabilize after the
15th iteration, indicating a plateau in the model’s learning
progress. By examining these curves, we gain a compre-
hensive understanding of the model’s training dynamics and
can make informed decisions on potential improvements or
modifications.

The results show that our proposed model performs
optimally in all noisy environments, with its accuracy consis-
tently above 99.35%, implying that this model outperforms
the other four models in processing signals in these noisy
environments. The performance of the conventional CNN
in all noise conditions is significantly lower than the other
models, which may indicate the lack of robustness of the
conventional CNN in dealing with this type of data or noise
scenarios compared to these improved and newly proposed
models. The accuracy of the current model can be clearly

TABLE 5. Comparison of different network models.

FIGURE 12. Training and testing curves.

found to be much higher than several other models at 20db
noise level, reflecting the best noise robustness of the newly
proposed model. As the noise level increases from 20db to
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TABLE 6. Comparative analysis with other methods.

FIGURE 13. 20db confusion matrix.

50db, all four metrics improve for all models, indicating that
these models may be more effective in recognizing signals in
higher noise environments.

The ConfusionMatrix [29], also known as the error matrix,
is a specific matrix used to characterize the prediction perfor-
mance of a model. The confusion matrix, shown in Figure 13,
can provide information about the correct as well as incorrect
classification of the model predictions. It can be observed that
the correct recognition rate of C15, C16, C19, C20 fluctu-
ates under high noise, while some of the perturbation types
such as C9, C10, etc. can still maintain 100% recognition
rate under 20db noise, which demonstrates the model’s good
ability to withstand noise as well as robustness, as shown in
Figures. 13 and 14.

2) K-FOLD CROSS-VALIDATION
Within the domain of machine learning, the application of
K-fold cross-validation [37], is a methodological cornerstone

FIGURE 14. 30db confusion matrix.

for validating predictive models. This technique partitions
the data into K segments of equal size, designating each in
succession as the validation set while the remainder form the
training set. Such a strategy not only facilitates a thorough
evaluation of model efficacy but also fortifies against the
potential for overfitting, thus enhancing model resilience and
transferability.

In the expanded experimental discourse of our study,
we have adopted an exhaustive K-fold cross-validation
schema to scrutinize the robustness and transferability of our
proposed model. Given the voluminous nature of our dataset,
a quintuple-fold (K=5) structure was chosen to harmonize
computational manageability with statistical robustness. The
dataset was subjected to a noise level of 30db to closely
simulate the intricate and noise-laden environments prevalent
in actual power quality analysis.

As illustrated in Figure 15, the fivefold cross-validation
yielded remarkably uniform accuracy rates: 99.3%, 99.27%,
99.4%, 99.35%, and 99.38%, with a mean accuracy of
99.34%. Figure 16 further delineates an average loss rate of
0.039 across the folds. This consistency in high performance
over varied data subsets not only corroborates the model’s
efficacy in categorizing power quality disturbances but also
its robustness amidst substantial noise levels.

The implications of these results are multifaceted. Pri-
marily, the consistently high accuracy across disparate data
partitions signifies an advanced degree of model generaliza-
tion, vital for real-world applications across heterogeneous
and dynamic environments. Additionally, the model’s stal-
wart performance in a 30db noise milieu endorses its inherent
resilience to sensory noise, thereby augmenting its suitability
for field scenarios where data purity is not assured.

In conclusion, the extended analytical scrutiny presented
here validates the proposed methodological framework,
endorsing it as a dependable and adaptable instrument for the
classification of power quality disturbances. This work also
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FIGURE 15. K-fold test accuracy.

FIGURE 16. K-fold test loss.

lays the groundwork for further inquiry, inviting assessments
of model robustness against escalated noise levels or within
broader and more varied datasets, thus contributing to the
progressive enrichment of power quality analysis research.

3) COMPARATIVE ANALYSIS WITH OTHER METHODS
In Table 3, a rigorous comparative analysis is conducted to
assess the Multi-Channel Feature Fusion Network (MCFFN)
against existing methodologies in terms of feature extrac-
tion capabilities, the diversity of Power Quality Disturbances
(PQDs) that can be identified, and overall classification
accuracy. The URPM-CWT+MCFFN framework stands out
for its capacity to accurately classify an expanded set
of 28 PQDs, thereby markedly broadening the scope of
detectable disturbances compared to traditional single-label
classification schemes.

Delving into the comparative statistics, it is evident that
methodologies leveraging deep learning, as cited in [30]
and [31], substantially outperform the conventional tech-
niques such as Decision Trees (DT) and Probabilistic Neural
Networks (PNN), detailed in [32] and [33]. When bench-
marked against state-of-the-art deep learning models refer-
enced in [34] and [36], the MCFFN demonstrates a notable
advancement, both in terms of the spectrum of PQDs it can
recognize and the fidelity of its classification accuracies.

The integration of Universal Recurrence Plot Mapping
(URPM) with Continuous Wavelet Transform (CWT) within
the URPM-CWT+MCFFN paradigm is instrumental in
achieving this enhanced performance. This synergetic con-
fluence of feature extraction and fusion methods is critical
for the nuanced detection of a more comprehensive array of
PQDs, exemplifying a significant leap in the domain of power
quality analysis.

V. CONCLUSION
This research was conducted to address the problems of
incomplete feature presentation in single-feature pictures
and a significant reduction in recognition accuracy of
single-channel networks in high-noise situations. This paper
proposes amicrogrid power quality disturbance identification
method based on URPM-CWT and multi-channel feature
fusion. The following conclusions were obtained through
simulation experiments in MATLAB and PyTorch.

1) In terms of image preprocessing, this paper is based on
the idea of feature complementarity, URPM-CWT can
fully extract the original signal perturbation features,
and has a certain anti-jamming ability, which can be
better recognized after inputting into the model, and
extends the previous image generation method of PQD
signal.

2) In terms of the recognition model, the MCFFN model
is composed of three improved network models and an
adaptive feature fusion module. The whole model has
excellent noise robustness. In the simulation validation,
the average correct rate of classification for perturba-
tion recognition under 30db noise condition can reach
99.35%.

3) Multi-channel feature fusion can make up for the
shortcomings of single-channel recognition, and the
performance advantages of each network can be com-
plementary to each other, which can enable the network
to maintain a good state of recognition under higher
noise conditions.

Automatic feature extraction will be a more important
concern in future work and is a prerequisite for the cor-
rect recognition of complex disturbed signals. Similarly, the
multi-channel feature fusion recognition model will have an
increased role.
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