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ABSTRACT Electrical equipment is prone to different types of Partial Discharge (PD) failures that are
varying between minor and severe level. In this paper, Three developed models for Convolution Neural
Network (CNN) are proposed to detect and classify four different partial discharge types which are arcing,
corona discharge, tracking, looseness as well as healthy equipment situation. Notably, the resulting models
exhibited an impressive overall accuracy of more than 94%, which is particularly significant considering the
inherent presence of noise in the real-world samples obtained as representative field failures. These findings
underscore the robustness and effectiveness of the CNN models in accurately identifying PDs, despite the
intricate challenges associated with real-world data.

INDEX TERMS Acoustic emission, partial discharges, deep learning, optimization, Bayesian optimization,

ultrasound detection, hyperparameter, short-time Fourier transform.

I. INTRODUCTION

Partial Discharge (PD) can be defined as the existence of
a tiny vacancy in a solid insulator or a small gas bubble
in a liquid insulator causes changes in the electric field
distribution within the material. The dielectric constant of
the void or gas bubble is lower than that of the surrounding
insulating material, resulting in a higher electric field strength
inside the void or gas bubble than the surrounding insulating
material. In general, the occurrence of PD is a result of the
local accumulation of electrical stress in specific areas of
electrical insulation [1], [2].

PD can arise in a wide range of equipment that utilize
different insulation materials and structures, including gas-
insulated, oil-insulated, and solid-insulated devices. Any
imperfection in the insulation may result in the emergence of
PD. The nature of PD may differ depending on the equipment
with distinct structures and insulation materials. PD can take
place due to any of the following causes [3], [4]:

1) Rise of electric field intensity due to over stress.
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2) Deterioration of the insulating material with age.

3) Local overheating which usually implant voids and
bubbles.

4) Poor manufacturing which might introduce impurities
in the insulation.

5) Bad installation or termination that accelerate insula-
tion failure.

PD can take different forms and different names but as
per IEC 60270 partial discharge is a general name for all
forms which include Corona discharge, surface discharge
and internal discharge [5]. Corona discharge can not be
used interchangeably with the other two types as per IEC
60270 since corona usually take place in gaseous mediums
only. Corona discharge is an electrical discharge that occurs
due to the ionization of air in the vicinity of a high-
voltage electrode. Surface discharge is a type of electrical
discharge that takes place along the surface of a dielectric
material, and it frequently occurs at the interface of two
different materials [6]. Internal discharge usually takes place
in weak insulation spots. This discharge is initiated by various
factors such as the presence of cracks, contamination and air
voids [7].
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(a) Internal Discharge

(c) Corona Discharge (d) Tracking Discharge

FIGURE 1. Types of partial discharge.

In Fig. 1, several forms of PD are illustrated. In Fig.1(a),
internal discharge is shown where several voids are presented
in the insulation medium which usually develop higher
potential than the surrounding insulation medium. If PD is
not repaired, then it will stress the insulation to develop a new
form which is tracking (Fig.1(d)). Looseness (Fig.1(b)) is a
sign of surface discharge that - if ignored - lead to flashover
incident. Corona only takes place in gaseous mediums as it
can be shown in the Fig.1(c) which is represented by the blue
cloud around the conductor.

The methods employed for the detection of Partial
Discharge can be classified into two categories: conventional
and unconventional methods. The conventional method is a
well-established electrical technique that adheres to the IEC-
60270 standard for PD measurement. It involves measuring
the apparent charge (q) across the terminal of the test object.
However, it cannot be utilized on-site due to electromagnetic
interference from the environment. In contrast, unconven-
tional methods, including acoustic, Optical, Ultra High
Frequency (UHF), and High Frequency Current Transformer
(HFCT), detect high-frequency PD signals and are immune
to electromagnetic interference as it can be seen in Fig. 2.

Optical Effect

Sound Effect

Light Energy

Acoustic

Ultrasound

High Frequency 1EC 60270

Effect
Discharge Effect

Chemical Effect

FIGURE 2. PD detection methods.

:

DGA

Electrical equipment is prone to different type of failures
that vary between minor and severe levels, e.g. wiring
looseness is usually considered as minor and usually is not
expensive to be fixed. Other failures are considered severe
and cost the organizations huge maintenance expenditure
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to repair or sometimes to replace the equipment such as
Tracking.

This topic has caught many researches attention to study
the phenomena and the effect on each equipment separately.
For instance, in [8] the DC cables has been studied to inves-
tigate the effect of a DC electric field during transmission
causing a buildup of electrical charges on the insulation
surface. This led to an increase in local electric field
strength which led to partial discharging. As the insulation’s
ability to withstand electricity decreases, it becomes easier
for discharge channels to form, ultimately causing the
insulating material to breakdown. A correlation model has
been established to study the relationship between partial
discharge ultrasonic waves and the amount of discharge in
a DC cable. This model aims to analyze the mechanism of
partial discharge and the ultrasonic properties of the cable.

High Voltage Direct Current (HVDC) cable system is also
prone to frequent partial discharges. In [8], a correlation
between PD ultrasound waves and number of discharges per
cable is analyzed. Sagnac fiber detection system developed by
utilizing the ultrasound characteristics of various insulation
defects along with the repetition and magnitude of the PD.
The impact of varying the length fiber sensing probes on
the PD sensitivity has been studied using the frequency
distribution characteristics of the PD. The accuracy tolerance
of locating PD is within 80 m.

Harming discharges are not limited to DC cable, their effect
can be extended to the insulators that carries the DC cables.
Failure of the carrying insulators are a major source of power
interruptions which impact the reliability of the grid. In order
to maintain the reliability of the electric power system
and meet the reliability standards, it is crucial to schedule
inspection and ensure the proper functioning of insulators.
The article in [9] presents the results of a laboratory study on
distribution insulators failure prediction. The study involved
applying 13.8 kV to a contaminated insulator and using an
ultrasound detector connected to a computer to collect data.
The data has been then analyzed using a hybrid deep learning
technique called wavelet Long Short-Term Memory (LSTM)
for time series prediction.

Transformers are major component of power systems since
they link different voltage levels of the power grid and any
malfunction in transformers can lead to significant costs in
terms of downtime. Therefore, it is essential to detect in
advance any potential issues to prevent unsafe conditions
and minimize the expenses. Typically, faults in transformers
developed due to either electrical or thermal stresses, may
cause damages to the insulation oil in transformers. In oil-
filled transformers, the insulation consists of cellulose and
oil, and the decomposition of the insulation leads to the
creation of gases that can dissolve in the oil. By performing
dissolved gas analysis (DGA), it is possible to diagnose
any faults in oil-filled transformers through analyzing the
DGA composition percentages [10]. Traditional techniques
for measuring PD in transformers, including the pulse current
method, high-frequency current method, and dissolved gas
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analysis method, are useful for identifying the onset of
insulation degradation. However, these methods cannot
accurately locate the PD sources within the transformer.
These problems have been investigated in [11] and [12]
utilizing intelligent techniques such as hybrid differential
evolution (DE) algorithm and the particle swarm optimisation
(PSO) algorithm and the results showed high accuracy of
detection and localization.

Gas Insulated Switchgear (GIS) is another major part
of electrical system which is also prone to PD issues.
In [13], deep convolutional neural network (DCNN) has
been developed to accurately recognize PD within GIS. The
DCNN has shown high recognition precision when applied to
PD pattern which is surpassing traditional machine learning
algorithms. This method is particularly effective in handling
data that involve high noise levels, which are commonly
encountered in GIS studies. By training the DCNN on
large dataset, it is possible to improve the accuracy of PD
recognition even with the existence of high noise levels.
Overall, the use of DCNN in PD recognition has shown
promising results in improving the accuracy and reliability
of PD detection in GIS applications.

Automated PD fault recognition of electrical equipment
is a potential research area, specifically in the industry
where equipment failure can have a significant impact on
production capacity and employee safety. Neglecting active
Partial Discharge in power cables, for instance, can lead to arc
flash that may result in fatalities and fire. Identifying faults
beforehand is necessary to prevent severe equipment damage
and maintain a healthy production environment. Automated
PD fault recognition has been carried out through many
techniques including Machine Learning (ML) and Deep
Learning (DL) as it can be seen in the benchmark Table 1 of
many research efforts on PD utilizing Artificial Intelligence
(AI) based on Ultrasound data. The contribution of this paper
can be summarized into two major points:

1) Validate the capability of CNN structure to detect PD
patterns in mixed data collected from the field of
different kinds of electrical equipment.

2) Achieve high precision in the detection of PD in the
presence of high level of field noise.

The present paper is organized as follows: section II
is describing the modeling of PD in addition to data
collection methodology and processing. Section III elaborate
the proposed approach to detect the PD and the results.
Finally, section IV concludes the research work.

Il. SYSTEM MODELING

A. PARTIAL DISCHARGE DATA ACQUISITION

Electrical methods for detecting partial discharge are not
always effective due to electromagnetic interference, which
can be difficult to control in practical field application.
Discrimination based on time and frequency domain char-
acteristics is often necessary, and specialized PD couplers
may need to be designed to suit the machine. Acoustic
PD detection is preferable in many situations because it is
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immune to electromagnetic interference, does not require
large modification for different equipment, can be performed
with equipment on the service and can often provide location
information for PD sources in complex systems.

Acoustic Emission (AE) discharge detection involves the
detection of mechanical wave produced by a discharge
event that travels through the insulation to the surrounding
vicinity. When sound travels through a medium, it creates
a disturbance that propagates through the insulation. This
disturbance causes local changes in pressure(P) and density
(p), which in turn cause molecules to move and create a wave
motion. In liquids, the disturbance leads to compression and
refraction of the medium and can be described by general
differential equation of acoustic wave motion [26]

1 9%p
Vip=——=
P=2%

ey

where V2p = % + gi'; + %), c represents the velocity of
the acoustic wave. ’

there are several graphical modeling of PD, one of the well
known models is the Whitehead’s three capacitance circuit
model [27]. In order to represent the void within an insulation
material, a circuit model with 3 capacitances is used. In this
model, C1 and C3 are used to describe the capacitance of the
healthy insulation and runs in parallel to C4 and C5. On the
other hand, C4 and C5 are demonstrating the capacitance of
the insulator that is in series with the void C2. This circuit
model is illustrated in Fig. 3.

The model can be simplified by using three capacitance
equivalent circuit as demonstrated in Fig. 4. C1 and C3 are
the capacitance of the healthy insulation that are connected
in parallel with C2,C4 and C5 which is represented by C1 in
Fig. 4. On the other hand, C4 and CS5 represent the insulator
capacitance that is connected in series with the void C2, and
replaced with C3 in the simplified model.

V

C5

C1 C2 | ) (3

FIGURE 3. PD model.

Before PD event, the voltage across the void is equal to
X
Vy=—"S vy
Xc2 + X3
When PD start developing, the electric field force exerted
on the void from the outside suddenly disappears, causing

@)

5153



IEEE Access

A. H. Alshalawi, F. S. Al-Ismail: PD Detection Based on Ultrasound Using Optimized DL Approach

TABLE 1. Recent researches on PD detection based on acoustic emission and ultrasound.

Ref  Equipment AI method Accuracy
[7] Outdoor Insulator ANN-BP 85%
[14]  oil-filled submarine cable terminal ~ ANN-BP 96%
[15]  Power Transformer KNN/SVM 98%
[16]  High Voltage Bushing KNN/ANN/SVM & others  95%
[17]  Power Transformer PCA/KNN 94%
[18]  Power Transformer GB/RF/SVM& others >90%
[19]  Power Transformer IFA high
[20] XLPE Cable CNN 96%
[21]  Transformer Insulation CNN 88%
[22]  Power Transformer CNN/DNN/RNN 89-93%
[23]  PD simulator CNN 74-86%
[24]  Oil Paper Insulation KNN/MLP& others 92-99%
[25] Insulation for Transformers ANN 95%

FIGURE 4. PD simplified model.

the void to lose its equilibrium. As a result, the void starts to
vibrate due to the elastic force acting on it. This phenomena
can be expressed using the following equation:

d*u, duc

W +Rmcmz +u.=0 3)
where L,, is the inductance of the mechanical equivelent
circuit; C,, represents the elasticity of the system; R,
represents the friction losses; and u, is the external force on
the void wall.

The PD ultrasonic wave is affected by two primary factors,
the first factor is the electric field force that happened
during the discharge process and the second factor is the
pressure wave that results from the expansion of the void or
bubble due to the heat of the discharge arc [28].

There are two main types of Ultrasound detection method-
ology, one is known as structure borne where it detects
the propagated waves within the material or through its
surface by being attached to the device. This type shows
high accuracy in location where direct exposure of the PD
is challenging, for instance the switchgears that is on service
and difficult to be taken out for inspection. If the PD location
is accessible or far away from the sensor, then airborne
type is suitable for such applications. Both sensors convert
the detected waves into electrical signals, typically using
piezoelectric ceramics. This conversion process allows the
signals to be analyzed using conventional data acquisition
systems. Piezoelectric is a group of materials that exhibit

LnCpy
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a reversible relationship between mechanical stress and
electric force. This behavior is illustrated in Fig. 5, where
a cylindrical piezoelectric element with electrodes on both
ends is shown. When a voltage is applied to the element
through the electrodes, it either expands or contracts in
response to the voltage. Conversely, when the shape of
the piezoelectric element is deformed by an external force,
it generates a voltage. Hence, the piezoelectric element can
convert mechanical energy into electrical energy and vice
versa which is referred to as the piezoelectric effect. Materials
that exhibit this property are called piezoelectric materials.
Piezoelectric ceramics are one such type of piezoelectric
material [29].

*I:I =

Transducer
(a) (b)

FIGURE 5. Piezoelectric ceramics basic behavior.

Transducer

During the AE event, the AE wave generated within a solid
material travels through different materials until it reaches
the AE sensor made of piezoelectric ceramic. The AE wave
deforms the piezoelectric ceramic, producing a voltage signal
known as the AE signal. This signal is transmitted through a
cable and preamplifier, then the filter remove external signals.
After that, it amplifies the signal again to be detected by a
measuring instrument as shown in Fig. 6.

The modern PD acoustic detectors are based on a concept
called Superheterodyne. Fig.7 shows a circuit of a similar
detector that is used to collect the data used in this research.
The signal is detected through the transducer then it is
amplified before the mixer. In the mixer, multiplying the
original signal with local oscillator frequency will generate
new two signals with a frequencies that are equal to the
summation of the original frequencies and the difference of
the two original frequencies. The resultant signal with a lower
frequency is audible and will be passed through the filter,
the other signal with higher frequency is filtered out. The
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resultant signal is amplified later for the final stage before
producing the sound for the user [30].

B. PD SIGNAL PREPROCESSING

AE signal waveforms can exhibit a wide range of variations,
but they can usually be categorized into specific patterns
based on their visual appearance. Although all signals can
be categorized as PD, each equipment failing due to PD can
produce slightly different waveform. Also, some forms of PD
appear on some equipment but not in all, such as tracking can
not be seen in transformers internal winding.

All collected samples have been classified into 5 classes;
four represents the state of the failure and one represent the
healthy state of the equipment. The four classes that represent
the failure type are shown in Fig. 8. Time domain waveform
is usually investigated to identify the type of failure, but in
some cases we refer to frequency waveform to farther assist
the waveform because corona in some cases looks similar
to tracking but if frequency domain in corona is inspected
it can be noticed that the system frequency multiples
usually have higher components than other frequencies. The
noise level existed is considerable and it might affect the
recognition of fault, however adding the step of removing
the noise each time we need to classify the fault is not
significant for the final accuracy so it is not considered in this
work.

The collected samples are diverse which cover a wide
range of electrical equipment such as power transformers,
switchgears, controlgears, motors, and cables. The collected
samples have been processed and classified manually based
on general patterns that are usually recognized during the
inspection. The frequency response of any waveform is
produced by taking the Discrete Fourier transform of time
domain waveform as in equation 4 [31], then the negative
spectrum of the signal is removed by taking the absolute value
of the signal.

Y(k) =D X(WYDE=D “)

j=1

where W,, = exp (—2mi)/n

Arcing waveform is usually recognized as an off and on
burst of waves, that is due to the fact that the loose wire or
cable starts to build the voltage until the breakdown and then
it is emitting a high frequency sound wave as can be seen
in Fig. 9. The frequency domain shows clear components
at system frequency and around three times the system
frequency, however this pattern is not necessary to been seen
in all arcing waveforms.

During the event of equipment looseness, the time domain
waveform tend to form small triangles of wave burst and the
frequency waveform usually has frequency components more
than arcing waveform which is again not necessary a multiple
of system frequency as depicted in Fig. 10.

In case of corona, the time domain waveform produce
peaks on system frequencies which clearly can be observed
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by investigating the frequency spectrum. Corona produce
frequency components on the system frequency and system
frequency multiples as it can be seen in Fig. 11. In contrast,
tracking waveform is very random and produce high sound
intensity with random frequency components which clearly
can be seen in Fig. 12.

After processing the signal, the data need to be prepared for
Convolution Neural Network (CNN) by converting the wave-
form into pictures. This step is very important since CNN
accept input pictures only, hence three features is extracted
from the signals and then converted into pictures. First of
all, Short-Time Fourier Transform (STFT) is implemented to
preserve the time information. STFT is simply breaking the
audio signal into small segments [32] and taking FFT of each
segment as per the illustration in Fig. 14 [33].

After Completing the STFT, we start constructing the
signal into spectogram where the signal is converted into a
usable picture for CNN.

C. CNN ARCHITECTURE AND TUNING

CNN is a deep learning model that is inspired by the visual
system of living organisms. This type of neural network has
multiple layers and is commonly used in computer vision
and natural language processing. Its ability to automatically
learn and extract features from images and texts has made it
a popular choice for various fields. CNNs use convolutional
layers that apply filters to input data to extract meaningful
information. The extracted features are then fed into fully
connected layers that classify or predict the output. CNNs
have been successfully applied to various tasks such as
image classification, object detection, and natural language
processing [34].

CNN comprises several layers that function as building
blocks. More elaboration on some of these building blocks is
discussed and their respective roles in the CNN architecture
are as follows:

1) CONVOLUTIONAL LAYER
Mathematically, the convolution (x * w)(a) of functions x and
w is defined in all dimensions as

(x xw)(a) = /x(t)w(a — tyda (@)

The convolutional layer is a crucial element in CNN
architecture that plays a vital role in generating an output
feature map by convolving a set of convolutional kernels or
filters with the input image [35].

2) POOLING LAYER

Pooling layers are an essential component of CNN archi-
tectures, which enable sub-sampling of the feature maps
obtained after convolution operations. They reduce the
size of the feature maps by extracting dominant features
in each pool step while maintaining the most important
information [36].
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FIGURE 6. working principle of the detection system.
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FIGURE 7. Modern PD detector circuit.
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FIGURE 8. Time series waveform of random samples. FIGURE 10. Looseness common pattern.
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FIGURE 9. Arcing common pattern.

3) ACTIVATION FUNCTION
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Amplitude

200 250 0 50 100 150 200
Frequency (Hz)

FIGURE 11. Corona common pattern.

obtained by calculating the weighted sum of the neuron’s

In a neural network, the activation function plays a crucial input, and the bias is added if applicable. The activation
role in mapping the input to the output. The input is function determines whether the neuron will activate or not
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FIGURE 12. Tracking common pattern.
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FIGURE 13. STFT concept.

for a given input by generating the corresponding output.
Essentially, it transforms the input to the output, allowing
for more complex decision-making and non-linearity in
the neural network. A Rectifier Linear Unit (RelLU) is a
widely used activation function in CNNs. It is designed to
convert all negative input values to zero while maintaining
positive values. This function is computationally inexpensive
compared to other activation functions. Mathematically,
ReLU is represented as:

S)reLv = max(0, x) (6)

4) FULLY CONNECTED LAYER
Typically, the final layers of a CNN architecture used for
classification consist of fully-connected layers. Each neuron
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in a fully-connected layer is connected to every neuron in
the previous layer. The last fully-connected layer serves
as the output layer, which produces the classification result
of the CNN architecture [37]. Fully connected layers can be
modeled using the below general equations:

L
Wt + 1) = (1) + 135 0" D (exxi) ™
k
L
bt + 1) = bji(1) + ng’ D (exwri) (8)
k

The above equation is used to update wights w;; and biases
b;; which is derived from the least mean square method

L
I=1/2> (- ©)
k

there are great number of hyperparameters that can be
tuned within CNN architecture. e.g. filter size, number
of convolution layers, learning rate, input picture size
and number of fully connected neurons. Tuning of these
parameters can be done with trail and error, however there are
more robust methods that improve the architecture accuracy
and reduce the loss in more efficient way such as Bayesian
optimization method [38].

Bayesian optimization is an algorithm used to solve
global optimization problems by leveraging Bayes Theorem.
Global optimization is a complex task that involves find-
ing the input parameters that can minimize or maximize
a given objective cost function. Typically, the objective
function is characterized by non-convexity, nonlinearity,
high-dimensionality, noise, and high computational cost,
making it difficult to analyze. Bayesian optimization is an
effective approach to address these challenges, as it is able
to efficiently and effectively explore the parameter space to
identify the optimal set of parameters that can yield the best
results [39], [40].

IIl. PROPOSED APPROACH AND RESULTS

A. SINGLE-PHASE CNN FOR FAULT CLASSIFICATION

The main objective of the model is to classify any detected
fault during the equipment operation so the maintenance
crew can take action to rectify the issue. Sometimes, the
rectification is limited to cleaning the equipment, but other
times the rectification involve shutting down the whole
process and taking the equipment out of service for extended
periods. The ultrasound data is collected from different
equipment at different locations and times which reflect the
diversity of the data collected as it can be seen in Table 2 and
Table 3.

TABLE 2. Number of collected samples for healthy and faulty equipment.

Equipment Condition ~ Collected Samples

Faulty Equipment 1824
Healthy Equipment 1732
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TABLE 3. Number of collected samples for each type of PD.

PD Type Collected Samples
Arcing 356
Corona 442

Looseness 506

Tracking 520

The architecture of the network and the main parameters
are shown below in Table 4 and Fig. 15:

TABLE 4. Selected parameters for CNN.

Parameter Selected Value
Number of layers 22
Input layer size 86 x 86 x 3
15t Convolution Layer size 86 x 86 x 32
274 Convolution Layer size 43 x 43 x 64
37 Convolution Layer size 21 x 21 x 128
4th Convolution Layer size 21 x 21 x 128
1% pooling Layer size 43 x 43 x 32
274 pooling Layer size 21 x 21 x 64
374 pooling Layer size 10 x 10 x 128
Fully connected layers/ (neurons in each layer) — 2/(512) — (5)
Max Epochs 20
Mini-Batch size 32
Training-Validation-Testing percentages 70% - 15% -15%
Validation frequency 10
Initial learning rate 0.001
Learning rate drop factor 0.1
learning rate drop period 15

The selection of CNN parameters for this proposed method
is based on trail and error in addition to experts best practices.
The four convolution layers in this proposed model can learn
several features that are extracted from the acoustic signals
e.g. timbral and pitch information that is usually extracted
from MFCC and FTT. Fig. 16 shows learned features after
each convolution layer, each convolution layer will capture
certain picture features like edges and colors. First picture
in Fig.16(a), clearly shows the learnable features as mostly
colors while as the layers go deeper the learned features
turned to be more detailed and complex such as textures and
edges in Fig.16(c) and (d).
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The training and validation plot showed good improvement
of the accuracy and loss function as the number of iterations
increase as it can be seen in Fig.18. Table 5 shows the results
of CNN model training, validation and final accuracy as well
as simulation time:

TABLE 5. Output parameters for single-phase CNN.

Output parameter Result

Training Accuracy 98%
Validation Accuracy 92%

Training loss 0.038

Validation loss 0.23

Number of iterations 1540
Training time 159 sec

The detection of Tracking failure scored the lowest
accuracy due to the randomness of signal detected by
ultrasound device, while detecting healthy equipment scored
the highest accuracy since the produced signal is unique
in terms of the wave form and usually don’t produce high
frequency signals as it can be seen in Fig 17.

B. DOUBLE-PHASES CNN FOR FAULT CLASSIFICATION
The maintenance crew during the inspection demand the
knowledge of one answer as a starting point; is the equipment
healthy? in that case, the model can be modified to answer
this question in the beginning, then the model as a second
phase can identify the type of the fault. This method allow
the model to improve the overall accuracy to a very great
percentage.

The parameters in Single-Phase model is used as they
are except of the output classifier since it is changed to
two classifications. The output of the model outperforms the
previous single-phase model as it can be seen in Table 6 and
Fig. 19. The training and validation plot showed a robust
convergence after few iterations, which clearly improve the
detection of PD in the equipment.

All PD failures produce high frequency components
that easily can be distinguished from the health “silent”
waveforms which clearly indicated in the confusion matrix
in Fig.20.
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error, which is set as the objective function. In general,
Tracking | 1 6 7 | 64 AT Multiple hyperparameters are decided to be tuned within the

selected range in order to achieve the objective function. Four
hyperparameters are selected in this model to be optimized,
section depth decide the depth of the model in terms of
number of convolution layers in each section. [nitial learning
FIGURE 17. Confusion matrix for single-phase validation accuracy. rate in the other side will select the hyperparameters are
listed in the below Table 7. After optimizing the network,
Table 8 shows the outcomes of the optimizer with optimal

O @O
w0 0 o
o)

Predicted Class

TABLE 6. Output parameters for double-phase CNN.

Output parameter Result parameters.
Training Accuracy 100%
Validation Accuracy 99.62% TABLE 7. Hyperparameters tuning for CNN.
Training loss 9.6 x 107>
Validation loss 0.016
Number of iterations 1540 Hyperparameter Search range Scale
Training time 206 sec Section depth [14] Integer
Initial learning rate [1x10731] Log
Momentum [0.8 0.98] Real
C. ENHANCED SINGLE-PHASE CNN USING BAYESIAN Regularization [1x107191 x 1072 Log
OPTIMIZATION
The goal of the Bayesian optimization technique employed The optimized hyperparameters produced better model

in this research is to minimize the validation classification with improved accuracy as well as loss value as per Table 9.

VOLUME 12, 2024 5159



lEEEACCGSS A. H. Alshalawi, F. S. Al-Ismail: PD Detection Based on Ultrasound Using Optimized DL Approach

Training VS Validation

D2 T

100 -

Accuracy

0 750 1520
Iterations

Training VS Validation

Accuracy

0 750 1520
Iterations

FIGURE 19. Training verses validation accuracy and loss functions.
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FIGURE 20. Confusion matrix for double-phase validation accuracy.

TABLE 8. Optimal parameters for CNN.

Hyperparameter Optimal value
Section depth 2
Initial learning rate 0.0042
Momentum 0.8035
Regularization 1.237

The objective function progress through the optimization

process is shown in Fig. 21

TABLE 9. Comparison between single-phase and optimized models CNN.

Output parameter Single-Phase Model ~ Optimized model
Validation Accuracy 92% 94%
Validation loss 0.23 0.058
Training time 159 sec 4501 sec

The overall accuracy is improve as well as the validation
accuracy of each PD type when compared with Single-Phase

5160

Min objective vs. Number of function evaluations ;
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FIGURE 21. Function evaluations throughout the iterations.

case. Tracking detection accuracy is improved by far when
compared to other PD types as it can be seen in Fig. 22
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Predicted Class

FIGURE 22. Confusion matrix for Optimized double-phase validation
accuracy.

D. BENCHMARK WITH PRETRAINED MODELS

There are existing models that have been trained and
developed on audio classification for many general appli-
cations [41]. In order to investigate the performance of the
developed models, the same collected data have been trained
and validated with latest state-of-the-art audio classification
pretrained models and compared with the developed models

as shown in Fig 23. Below is a summary of each model:
¢ VGGish represents a Convolutional Neural Network

(CNN) that has been pre-trained by Google. Its archi-
tecture takes cues from the well-known VGG networks
extensively utilized for image classification tasks. The
structure of VGGish encompasses a sequence of con-
volutional and activation layers, with the possibility of
including a subsequent max pooling layer. In its entirety,
this neural network consists of a total of 17 layers [42].
e OpenL3 is a freely available deep audio embed-
ding framework developed as an open-source project.
It builds upon the self-supervised L3-Net and introduces
enhancements to its architecture. OpenL3 surpasses
the performance of VGGish, SoundNet, and even the
original L.3-Net on various sound recognition tasks [43].
« YamNet (Yet Another Mobile Network), abbreviated as
YAMNet, is a pre-trained model designed for acoustic
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detection. It is trained by Dan Ellis using the AudioSet
dataset, which consists of labeled data sourced from
over 2 million YouTube videos. YAMNet utilizes
the depth-wise-separable convolution architecture of
MobileNet_v1. This architecture allows for efficient
computation and reduces the number of parameters in
the model, making it suitable for mobile and resource-
constrained environments [44].

Accuracy of popular models

Yamnet
OpenL3
VGG
1-P

Opt

2-p 99 |-

1
100
FIGURE 23. Benchmarking the percentage accuracy of proposed models
with pretrained models.

IV. CONCLUSION

In this work, four different types of PD have been collected
of a diverse number of electrical equipment from the actual
field environment where noise is a major challenge. Each
type of PD produce a unique audio signal that is possible to
be detected by ultrasound detector. In this work, a general
observation on the audio signals have been reported in
order to be classified before the preprocessing of the data.
After the processing stage, a novel methodology have been
implemented to preprocess the data using three different
features which are STFT, MFCC and PSD. In the final stage,
three different proposed approaches have been discussed
which are the Single-Phase CNN, Double-Phase CNN and
Optimized Single-Phase CNN. The proposed approaches
have showed higher accuracy in comparison with a state-of-
the-art pretrained models.
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