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ABSTRACT Deep learning has shown superiority in change detection (CD) tasks, notably the Transformer
architecture with its self-attention mechanism, capturing long-range dependencies and outperforming tradi-
tional models. This capability provides the Transformer with significant advantages in capturing global-level
features of complex changes in objects within high-resolution remote sensing images. Though Transformers
are mature in Natural Language Processing (NLP), their application in computer vision, particularly CD
tasks, is nascent. Current research on leveraging Transformers for CD reveals limitations, especially under
varied lighting and seasonal changes. To address this, we propose VisionTwinNet, a two-stage strategy.
First, our Gated EnhanceClearNet, a specially designed deep network reduces image noise and enhances
brightness, preserving shadows and correcting color distortions. With its unique gating mechanism, this
network can adaptively adjust the importance of features, thereby exhibiting superior performance in various
remote sensing image degradation issues. Secondly, we have developed Hybrid Light-Robust CDNet,
a hybrid robust lightweight network custom-designed for CD in remote sensing images. This module deeply
integrates the advantages of CNN and Transformer and introduces an innovative attentionmechanism design,
optimizing the key/value dimensions separately, instead of adopting traditional single linear transformations,
ensuring efficient detection. Specifically, the LR-Transformer Block employs a lightweight multi-head self-
attention mechanism, optimizing computational efficiency while providing richer feature representations.
Comparative studies with six CD methods on three public datasets validate VisionTwinNet’s robustness and
efficacy. Our approach notably reduces algorithmic complexity and enhances the efficiency of the model.

INDEX TERMS Automatically adjustable framework, change detection, deep learning, multi-scale feature
extraction, transformer.

I. INTRODUCTION
Change Detection (CD) denotes the comparison and analysis
of remote sensing images through multiple time periods.
Although definitions vary with application scenarios, CD pri-
marily identifies changes in surface features at the pixel,
semantic, or scene levels. This technique has a wide range
of applications, including resource management, urban plan-
ning, disaster assessment and other areas.

Over time, CD started with pixel-level statistical tech-
niques, like image transformation methods [1], [2], [3],
during the 1980s. These early methods were more suited to
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low andmedium-resolution images due to their inherent accu-
racy constraints. The advent of machine learning and deep
learning in the 1990s heralded a leap in CD’s accuracy. Initial
forays into this domain saw the application of artificial neural
networks (ANN) [4] and decision trees [5] to remote sensing
images. With these advancements, the focus shifted towards
applying machine learning to CD, with notable milestones
like the incorporation of Support Vector Machines (SVMs)
by Cortes and Vapnik in 1995 [6]. SVMs, offering an opti-
mal balance between model intricacy and learning prowess,
surpassed traditional methods in generalization. Additionally,
Markov Random Field (MRF) enhanced object-level change
detection by merging spatial and spectral information [7],
offering an efficient CD technique.
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FIGURE 1. Various factors affecting change detection results. (a) Shadows
on tree changes. (b) Color noise error. (c) Low light causes edge blur.

Challenges in early CD, especially in intricate scenarios,
were mitigated with the 2010 emergence of convolutional
neural networks (CNNs) and wdeep neural networks [8].
These networks excel in extracting sophisticated scene fea-
tures and demonstrate resilience to noise. A pivotal moment
came in 2012 when Hinton and Alex unveiled the AlexNet
for the ImageNet competition [9]. AlexNet’s groundbreaking
features, like ReLUs and Dropout, have set precedents in
CD. The continuous quest for broader information capture
led to the integration of attention mechanisms and additional
convolutional layers [10].

In recent studies, Transformers have been identified as
highly effective for bi-temporal CD models [11]. Compared
to CNNs and RNNs, Transformers demonstrate superior dis-
criminative capabilities and an expanded receptive field in
the CD domain. Their ability to effectively model within
the spatial-temporal domain underscores their proficiency in
capturing complex changes within bitemporal images [11].
Bandara’s proposal of a Siamese network, which employs
a transformer encoder coupled with an MLP decoder, fur-
ther underscores the pivotal role these architectures play in
advancing CD methodologies [12].

At present, various CD algorithms have achieved high pre-
cision on mainstream datasets such as DSIFN, LEVIR, and
WHU-CD [13], [14], [15], [16]. However, these algorithms
exhibit limitations when dealing with bi-temporal images
under varying illumination conditions and noise. Within the
realm of bi-temporal image CD, identifying color noise and
object edge shadows in low-light images remains a significant
challenge, as illustrated in Figure. 1. Additionally, current
models still lack sufficient detection accuracy regarding the
decay of buildings. With the increase in model complexity,
computational demands also rise, potentially limiting their
utility in real-world applications. Consequently, traditional
deep learning methods may exhibit substantial limitations in
this application scenario.

To address these issues, this paper proposes a two-stage
strategy, VisionTwinNet, that integrates image enhancement

and change detection, exhibiting robustness especially for
images under low and uneven lighting conditions. Our
method not only elevates the visual quality of low-light
images but also augments their realism and accuracy in repli-
cating real-world scenes. Specifically, we initially employ
Gated EnhanceClearNet for image enhancement, a network
comprising two main components: the Illumination Assess-
ment Module and the EnhanceClearNet Module, deciding
whether to undertake the image enhancement task through a
gating mechanism. With this design, our network can adap-
tively handle input images of varying quality, enhancing and
denoising them only when necessary. This approach not only
improves the model’s flexibility and efficiency but also main-
tains the images’ original characteristics, thereby improving
overall performance without compromising visual quality.
Subsequently, a Hybrid Light-Robust CDNet, a mix of robust
lightweight network, is utilized for change detection tasks.
The overall architecture of this network mainly consists of
Local Feature Capture Unit (LFCU), LR-Transformer Block,
and Scale-Adaptive Decoder, which collaborate to achieve
efficient detection of changes in remote sensing images. From
extracting local features to integrating multi-scale features
and then generating high-resolution prediction results, the
method ensures computational efficiency and effective local
feature extraction. Moreover, the LR-Transformer Block
designed in this paper not only processes multiple different
attention heads in parallel in different subspaces, enhancing
the model’s representational capability, but its innovative
design for the attention mechanism also optimizes com-
putational efficiency and alleviates computational burden,
enabling higher efficiency and performance when handling
large-scale input features.

The main contributions of our work can be summarized as
follows.

1) Inspired by the Retinex theory [17], we propose Gated
EnhanceClearNet, a lightweight image enhancement
network. This network first assesses the illumina-
tion quality of the input image and then determines
whether to perform image enhancement. This adaptive
enhancement strategy not only improves the model’s
efficiency and flexibility but also ensures the improve-
ment of overall performance without compromising
visual quality.

2) After the image enhancement stage, we introduce the
Hybrid Light-Robust CDNet for CD tasks. This mod-
ule is specifically designed for images under low and
uneven illumination conditions, thereby enabling it to
effectively detect changes within images even under
intricate lighting circumstances. This module deeply
integrates the advantages of CNN and Transformer and
introduces an innovative attention mechanism design,
optimizing the key/value (k/v) dimensions separately,
instead of adopting traditional single linear transforma-
tions, effectively reducing computational complexity.

3) By integrating Gated EnhanceClearNet and Hybrid
Light-Robust CDNet, this paper proposes a two-stage
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strategy named VisionTwinNet. Initially, Gated
EnhanceClearNet determines whether image enhance-
ment is necessary, followed by Hybrid Light-Robust
CDNet conducting the CD task. This structure ensures
that our method provides high quality results in a wide
range of lighting conditions.

4) We conducted experiments on four publicly available
datasets, and the results show that our method out-
performs existing methods under both low-light and
uneven illumination conditions. This further proves the
effectiveness and robustness of our method. Mean-
while, the method proposed in this paper effectively
reduces the algorithm complexity and ensures higher
efficiency of the model.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III describes the pro-
posed Gated EnhanceClearNet and Hybrid Light-Robust
CDNet in detail. Section IV presents the experimental results
and conducts a comparative analysis. Section V gives the
conclusion.

II. RELATED WORK
The field of change detection (CD) gained significant atten-
tion was due to the introduction of traditional machine learn-
ing methods, such as supporting vector machines (SVMs)
(Vapink,1998) decision trees (DTs) [18], and random forests
(RFs) [5]. SVMs, for example, can effectively detect changes
in images by mitigating the uncertainty associated with
change thresholds, exhibiting strong generalization capabil-
ities, and can efficiently processing data in high-dimensional
feature spaces [1]. In contrast to traditional methods such as
direct comparison and image transformation methods, which
are limited to detecting changes in medium to low-resolution
satellite images, DTs can effectively detect changes in high
spatial resolution multispectral data and eliminate noise
related to shadows in the image [4]. RFs have demonstrated
similar capabilities and have subsequently played a crucial
role in the reimplementation of direct comparison meth-
ods in high-resolution remote sensing imagery [19], [20].
Markov Random Fields (MRFs) have also been widely used
in CD research [21]. Despite continuous optimization [7],
some limitations remain, such as insufficient preservation of
change edge details, resulting in excessive smoothing [19].
This poses a significant challenge for CD in high-resolution
remote sensing imagery. To address this issue, Im and Jensen
proposed an unsupervised CD method that combines MRFs
with an edge information-based penalty function to avoid
excessive smoothing and improve the generation of differ-
ence maps [7]. During the same period, other improved
direct comparisonmethods, such as conditional randomfields
(CRFs), were also applied to CD in high-resolution remote
sensing imagery [22], [23].
During this period, traditional machine learning and

other methods encountered many limitations in the field
of CD [24]. The emergence of deep learning provided

unprecedented opportunities for advancement in this area,
with convolutional neural networks (CNNs) for CD tasks in
various fields. For example, an innovative CNN-based model
for detecting changes in synthetic aperture radar (SAR)
imagery was introduced in recent research [25]. Another
study proposed three fully convolutional neural network
architectures and two Siamese extensions of fully convolu-
tional networks, collectively known as FC-EF, for performing
CD using a pair of images [26]. Due to the limitations of
existing algorithms in terms of feature representation and
discriminative ability, attention mechanisms have been intro-
duced. Liu proposed a deep Siamese convolutional network
with dual-task constraints (DTCDSCN) to address the CD
problem, effectively addressing these issues [26]. To enhance
the completeness of object boundaries and the compactness
of their interiors in the generated change maps, methods
that use attention mechanisms for change map reconstruction
have been introduced [27].
Deep learning networks have demonstrated great poten-

tial in CD tasks [28], [29], [30]. However, the Transformer
architecture is increasingly being widely applied to CD
tasks because of its capability to model dependencies with
long-range and learn more discriminative global-level fea-
tures. This is particularly effective for handling the complex
changes of objects in high-resolution remote sensing CD.
Chen proposed a bi-temporal image transformer (BIT) that
expresses bi-temporal high-resolution images into semantic
tokens and uses a transformer encoder to efficiently model
spatial-temporal contexts for CD [31]. Compared to CNNs,
this method has lower computational costs and fewer model
parameters [32]. In 2022, a Siamese network architecture
that features a transformer encoder with hierarchical struc-
ture and a lightweight MLP decoder was introduced [33],
which achieved better performance in edge segmentation and
shadow processing than previous counterparts.

However, the recognition of color noise and object edge
shadows in bi-temporal image CD, particularly in low-light
images, remains a significant challenge. Chen suggests that
variations in lighting conditions between images taken at
different periods can result in the identical object appearing
with different colors and brightness levels. This phenomenon
can lead to erroneous CD results. Hence, it is essential
to perform color correction and uniform balance of light-
ing conditions [34]. Furthermore, compared to CNNs, the
transformer employs attention as an alternative to convolu-
tion to realize global context modeling [31]. However, since
the original attention mechanism calculates pairwise feature
affinities at all spatial locations, it entails high computational
burden and substantial memory occupation, especially for
high-resolution inputs. Consequently, there is a necessity to
exploremore efficient attentionmechanisms. Unlike previous
work, we design a two-stage approach that combines image
enhancement and change detection, specifically address-
ing images under low and uneven lighting conditions. The
method proposed exhibits significant robustness. Our method
not only improves the visual quality of low-light images, but
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FIGURE 2. Overall structure of our proposed model VisionTwinNet.

also augments their realism and accuracy in relation to real-
world scenarios. The introduction of the gating mechanism
enables our network to adaptively process input images with
different qualities, which not only improves the flexibility and
efficiency of the model, but also helps to maintain the orig-
inal characteristics of the images. In addition, the innovative
design of the attention mechanism in this paper effectively
reduces the computational complexity of the model.

III. METHOD
In this section, we provide a detailed explanation of the
proposed VisionTwinNet architecture, designed for change
detection (CD) tasks, and its application to remote sensing
images. The main objective of this work is to address the
issues of model performance and efficiency in situations
where images are under complex lighting conditions. The
overall flow of our VisionTwinNet architecture is illustrated
in Figure. 2. This VisionTwinNet architecture employs a
two-stage strategy, mainly including two modules, Gated
EnhanceClearNet and Hybrid Light-Robust CDNet. Gated
EnhanceClearNet determines whether image enhancement
is necessary, and subsequently, Hybrid Light-Robust CDNet
conducts the CD task. This structure ensures that our method
provides high-quality results in a wide range of lighting
conditions. More specifically, given an input bi-temporal
image, the Gated EnhanceClearNet generates the enhanced
images. It includes the use of gating mechanisms and

quality assessment modules to flexibly determine whether
image enhancement and degradation removal are needed. The
Decomposer divides the image into reflectance and illumi-
nation. The EnhanceNet improves image lighting, and the
ClearNet removes image degradation and artifact issues. Sub-
sequently, the enhanced images are fed into the Local Feature
Capture Unit (LFCU) to extract local features. These features
then go through four consecutive LR-Transformer Blocks
to compute feature differences. Finally, a Scale-Adaptive
Decoder effectively fuses features of different scales and
generates high-resolution prediction results, as illustrated in
Figure. 3.

A. GATED ENHANCECLEARNET
Inspired by the Retinex theory, this paper proposes a simple
and effective light-weight network, Gated EnhanceClearNet,
as illustrated in Figure. 4. This network is composed of
two main components: the Illumination Assessment Module
and the EnhanceClearNet Module, with a gating mechanism
deciding whether to perform image enhancement tasks.

Initially, the input image enters the Illumination Assess-
ment Module, where a convolutional neural network (Quality
Assessment Module) evaluates the illumination quality of
the image. The Quality Assessment Module comprises three
convolution layers, a maximum pooling layer, and two fully
connected layers. The last layer uses a Sigmoid activation
function to map the output to a value between 0 and 1,
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FIGURE 3. Multi-level feature fusion module.

FIGURE 4. EnhanceClearNet.

representing the quality score of the image. Subsequently,
based on the quality score from the Quality AssessmentMod-
ule, the gatingmechanism decideswhether the image requires
enhancement. If the gate value is below a certain threshold,
the image is passed to the EnhanceClearNet Module for
further enhancement.

EnhanceClearNet is a nested structure consisting of two
sub-networks. The primary network receives the original
image as input and inspired by the Retinex theory, decom-
poses it into reflectance and illumination component. This
decomposition allows the main network to handle the reflec-
tion and illumination information in the image separately.
Firstly, the main network processes the illumination compo-
nent through a sub-network called ‘‘EnhanceNet’’ to improve
or enhance the brightness and overall lighting conditions of

the image. ‘‘EnhanceNet’’ is responsible for adjusting the
image’s brightness, contrast, etc., effectively enhancing the
visual quality of the image without introducing unnecessary
alterations, making the image brighter, clearer, and high-
lighting the detail information in the image. Secondly, the
main network processes the reflectance component through
another sub-network called ‘‘ClearNet’’ to remove or reduce
degradations and artifacts in the image caused by vari-
ous factors such as rain, smog, or other visual distortions.
‘‘ClearNet’’ focuses on denoising and removing unneces-
sary components from the image, thereby enhancing the
clarity and visibility of the image. In the output phase of
the main network, the outputs of these two sub-networks
are recombined to produce the enhanced image. Through
such a nested structure, EnhanceClearNet is capable of both

4548 VOLUME 12, 2024



T. Chen, A. Chen: VisionTwinNet: Gated Clarity Enhancement Paired

enhancing illumination and removing image degradation,
producing clearer images with better visual effects. The entire
network architecture is designed to be end-to-end, learn-
ing, and extracting reflectance and illumination information
directly from the original images to better accomplish the
image enhancement tasks.

1) QUALITY ASSESSMENT & GATING MECHANISM
To enhance the adaptability and performance of the model to
images of varying quality, this paper introduces an adaptive
image enhancement strategy based on a gating mechanism,
as illustrated in Figure. 2. The core idea of this strategy is
to automatically determine whether image enhancement and
degradation removal are necessary, based on the quality of the
input image.

Firstly, we have designed a Quality Assessment module,
consisting of a series of convolution layers, to estimate the
quality of the input image. This module outputs a scalar
between 0 and 1, representing the quality score of the image.
Subsequently, we have introduced a gating mechanism that
controls whether the image passes through the enhancement
module (EnhanceClearNet), based on the output from the
Quality Assessment module. Specifically, the gating mecha-
nism transforms the quality score into a binary decision signal
through a threshold function. If the image quality score is
above a predefined threshold (close to 1), the image bypasses
the enhancement module and directly enters the next stage
of the network; if the quality score is below the threshold
(close to 0), the image will be processed by the enhancement
module. Finally, the enhanced image (if enhanced) or the
original image (if not enhanced) is passed to the next layer
of the network for further processing.

With this design, our network can adaptively handle input
images of different qualities, enhancing images and removing
degradations onlywhen necessary. This not only improves the
flexibility and efficiency of the model but also helps to main-
tain the original characteristics of the images, thus enhancing
overall performance without sacrificing visual quality.

2) DECOMPOSER
The Decomposer module is a core part of EnhanceClear-
Net, as illustrated in Figure. 4, responsible for effectively
decomposing the input image into its reflectance and illu-
mination. This module uses the Leaky ReLU function with
a slope of 0.2 as the activation function and adopts bilinear
interpolation for upsampling, combined with corresponding
feature maps to ensure the consistency of spatial dimensions.
By introducing three residual blocks, this module enhances
the information flow, helping to reduce the vanishing gra-
dient problem during training. These designs allow each
sub-network to focus on their respective tasks, improving
the flexibility and efficiency of the model. The mathematical
formula for the Leaky ReLU function can be presented by

f (x) = max(ax, x) (1)

Reflectance branch: Its main task is to accurately cap-
ture the reflective properties of the image. The branch
follows a UNet-like structure [35], with the inclusion of
additional components such as an improved ReLU acti-
vation function, residual blocks, extra convolution layers.
The proposed branch employs a down-sampling technique
using max pooling, similar to the UNet architecture, and an
up-sampling technique using interpolation functions, which
adopts bilinear interpolation. A key feature of this branch is
its mathematical formula, which, by defining how to calculate
weighted average pixel values and perform horizontal linear
interpolation, can flexibly handle tensors of different sizes
and maintain the consistency of spatial dimensions [36]. The
mathematical formulate can be presented by

R1 = I (xx, y) (2)

R1 =
I (x1, y1) × (x2 − x′)

(x2 − x1)
+
I (x2, y1) × (x′

− x1)
(x2 − x1)

(3)

R2 =
I (x1, y2) × (x2 − x′)

(x2 − x1)
+
I (x2, y2) × (x′

− x1)
(x2 − x1)

(4)

I (x ′, y′) =
R1 × (y2 − y′)

(y2 − y1)
+
R2 × (y′ − y1)

(y2 − y1)
(5)

where I (x ′, y′) is a weighted average of the surrounding pixel
values using the bilinear interpolation formula, and R1,R2
represent the results of horizontal linear interpolation on the
image values at y1 and y2, respectively.
Illumination branch: Illumination branch. It is another

crucial component of EnhanceClearNet, focusing on pre-
cise modeling of the illumination component. This branch
employs two convolution layers and ReLU activation func-
tions as illumination layers and generates illumination output
using a 1 × 1 convolution layer and a Sigmoid activation
function. With this design, the Illumination branch is capable
not only of improving overall visual quality and lighting
conditions but also of ensuring accuracy and robustness under
various lighting scenarios.

3) ENHANCENET
Compared to bright-light images, low-light images are more
prone to degradation and disturbances. EnhanceNet, as illus-
trated in Figure. 4, is a solution targeted at issues of
degradation and disturbance in low-light images, aiming
to improve output quality by enhancing the reflectance
map [37]. Several key sections are specifically designed in
this network structure to achieve this goal.

Firstly, EnhanceNet employs a novel reflectance recovery
network, which incorporates both illumination information
and degraded reflectance to produce higher-quality out-
puts under challenging low-light conditions. Building on
this, EnhanceNet introduces a Multi-Scale Attention Module
(MSIA), a design inspired by KinD++ [38]. The MSIA
module performs well in resolving color distortions and over-
exposure in low-light images. However, relying on MSIA
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FIGURE 5. Visual comparison with KinD++ in LOL dataset.

FIGURE 6. Visual comparison with KinD++ in LEVIR-CD dataset.

alone is not sufficient, and hence, EnhanceNet adds squeeze-
and-excitation (SE) blocks after each MSIA module to
adaptively recalibrate channel-wise feature responses in the
convolutional neural network, enhancing its representational
ability.

Additionally, to ensure the effective learning and updating
of weights during the training process, EnhanceNet incor-
porates three residual blocks into its architecture. These
combined designs enable the model to proficiently preserve
texture details in dark areas (such as frosted glass) and yield
noticeably better results in this aspect compared to the origi-
nal algorithm, as shown in Figure. 5(1).

Beyond the features mentioned above, EnhanceNet can
also more effectively recover color information in dim-light
images, rendering the colors of the restored images closer to
those of the original scenes, as demonstrated in Figure. 5(2).
Meanwhile, the model efficiently suppresses overexposure
in bright areas of low-light images on high-precision remote
sensing datasets like LEVIR, as depicted in Figure. 6.
In summary, by adopting and enhancing the MSIA module

from KinD++ and introducing other innovative techniques,
EnhanceNet provides an effective solution for the restora-
tion and enhancement of low-light images. This design not
only elevates the visual quality of low-light images but also
augments their realism and accuracy in reflecting real-world
scenarios.

4) CLEARNET
ClearNet is a specialized neural network architecture, as illus-
trated in Figure. 4, developed for the purpose of manipulating

the illumination intensity within an input image. This pro-
cess aims to balance the lighting contrast across different
areas of the image, creating a more visually pleasing and
natural result. By connecting the input image and input
ratios, three consecutive convolutional layers in this net-
work architecture—each utilizing 3 × 3 filters, a stride of 1,
and Leaky ReLU activation functions—are responsible for
extracting features related to illumination intensity within
the image. The subsequent convolutional layer, employing
3 × 3 filters and a Sigmoid activation function, transforms
these features into representations associated with the desired
illumination modifications.

This approach allows the enhancement of the brightness
of darker areas by adding a smaller proportion of light
while maintaining the consistency of the original image with
real-world lighting conditions and increasing the brightness
of bright areas with an equal or greater amount of light.
To better adapt tomultiple datasets, the ClearNet structure has
also undergone meticulous parameter tuning. This design can
eliminate or reduce degradations and artifacts in the image
caused by various factors, thus enhancing the clarity and
visibility of the image.

5) LOSS FUNCTION
The loss function of the Gated EnhanceClearNet is composed
of three parts, corresponding to the Decomposer network, the
EnhanceNet network, and the ClearNet network, respectively.
Loss function for Decomposer network is presented by

LDec = LHrec + LLrec + 0.009LRequal + 0.2LHmutual
+ 0.15LHinput + 0.15LLinput (6)

where LHrec and LLrec compute the reconstruction loss under
high and low illumination conditions, respectively; LRequal
computes the mean absolute difference between predicted
reflectance under low and high illumination conditions;
LHmutual calculates the mutual illumination conditions; LHinput
and LLinput compute the mutual illumination loss between the
predicted illumination and the input image under high and
low illumination conditions, respectively.

Loss function for EnhanceNet can be given by

Lreflec = Lsquare + Lssim&se (7)

where Lsquare calculates the mean squared error (MSE)
between the predicted reflectance and the actual reflectance,
and Lssim&se calculates the SSIM [39] loss between the pre-
dicted and actual reflectance.

Loss function for ClearNet can be given by

Lillu = Lsquare + Lgrad (8)

where Lgrad calculates the gradient loss between the predicted
and ground truth illumination maps, and Lsquare computes the
MSE between the predicted and actual illumination values.
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B. HYBRID LIGHT-ROBUST CDNET
The Hybrid Light-Robust CDNet proposed in this paper is
a hybrid robust lightweight network specifically designed
for change detection in remote sensing images. The over-
all architecture of this network mainly consists of three
primary components: Local Feature Capture Unit (LFCU),
LR-Transformer Block, and Scale-Adaptive Decoder, which
work together to efficiently detect changes in remote sensing
images.

Firstly, the input image is fed into the Local Feature
Capture Unit (LFCU), a specially designed module for effi-
ciently and robustly extracting spatial and local features.
LFCU precisely controls the localization of convolution oper-
ations through partial convolution and 1 × 1 convolution
blocks, as well as residual connections, thereby effectively
extracting local features while maintaining computational
efficiency.

Subsequently, the output from the LFCU is fed into
the LR-Transformer Block. This block initially utilizes the
Residual Depthwise Convolution (ResDWC) module for
depthwise separable convolution and residual connections,
enhancing computational efficiency, model expressiveness,
and training stability. Then, it implements a Lightweight
Multi-Head Self-Attentionmechanism, allowing parallel pro-
cessing of multiple different attention heads in different
subspaces, enhancing the model’s representational capability.
The innovative attention mechanism design separately opti-
mizes the key/value (k/v) dimensions, significantly improv-
ing computational efficiency and reducing computational
burden. Moreover, the LR-Transformer Block also intro-
duces a 2-layer MLP module to transform the features
at each location, allowing the model to learn and cap-
ture more complex feature representations and improve its
performance.

Finally, the output from the LR-Transformer Block is
decoded by the Scale-Adaptive Decoder. This decoder
employs a strategy of multi-scale feature fusion and adap-
tive feature selection to address the issues of low detection
accuracy and high false alarm rates in traditional decoders
due to scale variations and complex backgrounds when
dealing with change detection tasks in remote sensing
images. The Scale-Adaptive Decoder, through the MLP
decoder head, convolution difference module, intermedi-
ate prediction module, final linear fusion layer, upsam-
pling convolution layer, residual block, and final predic-
tion head, accomplishes effective fusion of features at
different scales and generates high-resolution prediction
results.

In conclusion, through the collaborative effort of these
three main components, the Hybrid Light-Robust CDNet
achieves efficient detection of changes in remote sensing
images. From local feature extraction to multi-scale feature
fusion, and finally to the generation of high-resolution pre-
diction results, each part plays a crucial role within the entire
network, collectively forming a powerful network for change
detection in remote sensing images.

1) LOCAL FEATURE CAPTURE UNIT
This paper proposes a module named Local Feature Capture
Unit (LFCU) designed to extract spatial and local features
efficiently and robustly through meticulously crafted struc-
tures and operations. The core components of LFCU are
partial convolution and 1 × 1 convolution blocks, working
together to capture local features and spatial context.

Partial convolution proposes an innovative convolution
strategy, its main advantage being significantly improving
computational efficiency and effectively extracting local fea-
tures. By applying convolution only over a subset of the
input channels, partial convolution not only reduces com-
putation and memory access, enabling the model to handle
larger inputs or deeper network structures, but also captures
significant spatial features of the input, retaining the original
information of the other channels. Moreover, partial convo-
lution enhances the model’s expressiveness by altering the
way convolution is applied, enabling the model to learn more
complex feature representations without increasing computa-
tional burden. Given an input feature map X, we can divide it
into two parts as follows:

X1,X2 = split(X , dimconv) (9)

where dimconv is the number of channels to apply convolution,
X1 are the selected channels, X2 are the channels that are kept
unchanged. Then, convolution operations are applied to X1,
represented as:

Y1 = Conv(X1,W ) (10)

whereW represents the convolution kernel weights. The final
output feature map is given by the following concatenation
operation:

Y = Concat(Y1,X2) (11)

The introduction of this partial convolution reduces com-
putation and memory access, thereby capturing important
local features while maintaining computational efficiency.
Overall, the operation of partial convolution can be repre-
sented as the following composite function:

Y = Concat(Conv(split(X , dimconv)[0],W ),

split(X , dimconv)[1]) (12)

Moreover, 1×1 convolution blocks allow the channel num-
ber to be alteredwithout changing spatial dimensions, thereby
achieving channel integration and expansion. This design aids
in enhancing the expressive capability of the model while
maintaining computational efficiency. LFCU also includes a
residual connection, enhancing training stability and conver-
gence speed, helping to retain the original information of the
input, thus enhancing the robustness of the model.

In summary, the LFCU module, by precisely controlling
the localization of convolution operations and combining
partial convolution, 1 × 1 convolution blocks, and residual
connections, addresses the challenge of effectively extracting
local features while maintaining computational efficiency.
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This integrated design not only captures spatial context but
also emphasizes the importance of local features, represent-
ing an efficient and robust method of feature extraction.

2) LR-TRANSFORMER BLOCK
The LR-Transformer Block is designed to address a series
of challenges in remote sensing image change detection,
integrating innovative designs and multi-scale strategies.
This block incorporates the Residual Depthwise Convolution
(ResDWC) module, a lightweight multi-head self-attention
mechanism, and a two-layer Multi-Layer Perceptron (MLP),
providing a powerful framework to overcome detection issues
in long-distance dependencies and complex backgrounds.
The ResDWC module, utilizing depthwise separable convo-
lution and residual connections, enhances themodel’s expres-
sive ability and computational efficiency while maintaining
training stability. The lightweight multi-head self-attention
mechanism exhibits exceptional performance when handling
large-scale input features, possessing superior computational
efficiency and parallel processing capabilities. The two-layer
MLP module further enriches the model’s feature expressive
ability. Moreover, by combining multi-scale feature fusion
and adaptive feature selection strategies, the Scale-Adaptive
Decoder successfully resolves the problems of low detection
accuracy and high false detection rates caused by scale vari-
ations and complex backgrounds.
Residual Depthwise Convolution (ResDWC): The Res-

DWC module combines the advantages of depthwise sep-
arable convolution and residual connections to enhance
computational efficiency, augment the expressive capability
of the model, and boost training stability. Depthwise separa-
ble convolution [40] significantly reduces computation and
model parameters by decomposing the convolution operation
into two steps: depth convolution and point convolution. This
method allows each input channel to have a corresponding
convolution kernel, achieving depth convolution. Residual
connections, on the other hand, create a shortcut connec-
tion by adding input features to the convolutional features,
allowing the model to learn an identity mapping between
the input and output, which is very beneficial for training
deep networks. Additionally, residual connections can also
alleviate the vanishing gradient problem, enabling deeper
networks to be effectively trained. Thus, as the first part of the
encoder, the ResDWCmodule provides a powerful and stable
foundation for subsequent feature extraction and information
transmission.
Lightweight Multi-Head Self-Attention: It is designed to

efficiently reduce computational complexity while maintain-
ing the performance of the model. This attention mechanism
incorporates an innovative design, optimizing the dimensions
of keys and values (k/v) separately, instead of using tradi-
tional singular linear transformation. This design enhances
computational efficiency and reduces computational burden,
allowing the self-attention mechanism to exhibit higher effi-
ciency when dealing with large-scale input features. Within

the multi-head self-attention mechanism, the input feature
space is divided into multiple heads, each performing atten-
tion operations independently. Specifically, for the h^th head,
the Query (Q), Key (K), and Value (V) are generated through
the following linear transformations:

Qh = XhWqh, Kh = XhWkh, Vh = XhWvh (13)

where Xh represents the input features of the hth head,
Wqh,Wkh,Wvh represents the corresponding weight matrices,
respectively.

Additionally, we incorporate the concept of Relative Posi-
tion Encoding [41]. This not only enables the capturing of
interactions among input features during the computation of
attention scores but also enhances the model’s capability to
apprehend more complex dependencies by providing spa-
tial positional information through the integration of relative
position encoding. This, in turn, leads to an elevation in the
model’s performance. The attention scores are computed as
follows:

Atten(Qh,Kh,Vh) = soft max(
QhKT

h
√
dkh

+ Relative_Pos)Vh

(14)

where dkh represents the dimension of the key in the hth head,
and Relative_Pos represents the relative position encoding.

This lightweight multi-head self-attention mechanism not
only achieves parallel processing of multiple distinct atten-
tion heads in different subspaces, enhancing the model’s
representational capability, but also its innovative design opti-
mizes computational efficiency and reduces computational
burden. Thus, it exhibits superior efficiency and performance
when dealing with large-scale input features.
2-Layer Multilayer Perceptron (MLP): Following the self-

attention mechanism, this paper introduces a 2-layer MLP
module, used for transforming the features at each position.
Consequently, the model can learn and capture more complex
feature representations, enhancing the model’s performance.
Specifically, the 2-layerMLPmodule first processes the input
features through a linear transformation and a non-linear acti-
vation function (ReLU), and then obtains the output features
through a second linear transformation. This process can be
represented as:

H1 = ReLU(XW1 + b1), H2 = H1W2 + b2 (15)

where X represents the input features, W1 and W2 are the
weight matrices, b1 and b2 are the bias terms, and H1 and H2
are the output features of the first and second layers, respec-
tively. In this way, the 2-layer MLP module can effectively
enhance the expression ability of the model and improve the
performance of the model.

3) SCALE-ADAPTIVE DECODER
The Scale-Adaptive Decoder employs strategies of multi-
scale feature fusion and adaptive feature selection to address
the challenges faced by traditional decoders in remote sensing
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image change detection tasks, where scale variations and
complex backgrounds lead to lower detection accuracy and
a higher rate of false detections.

The main components of the Scale-Adaptive Decoder
include: an MLP decoder head, a convolutional difference
module, an intermediate prediction module, a final linear
fusion layer, an upsampling convolutional layer, residual
blocks, and a final prediction head. Specifically, the MLP
decoder head maps feature at different scales into the unified
embedding space. The convolutional difference module com-
putes the feature differences between two time points. The
intermediate prediction module generates change predictions
at each scale. The final linear fusion layer merges differen-
tial features from all scales. The upsampling convolutional
layer and the residual blocks work together to produce high-
resolution predictions, and the final prediction head generates
the ultimate change detection results.

In detail, features from different scales are mapped to a
unified embedding space through the MLP decoder head.
Then, the feature differences between two time points are
computed by the convolutional difference module, capturing
the change information in the images. Based on this, change
predictions are generated at each scale to understand the
image changes from various scales and perspectives. Subse-
quently, differential features from all scales are merged by
the final linear fusion layer, forming a comprehensive feature
representation. This representation, encompassing change
information from all scales, provides rich contextual informa-
tion for subsequent predictions. To produce high-resolution
prediction results, an upsampling convolutional layer and
a residual block are designed. These modules collabora-
tively upscale the low-resolution feature representations to
ensure the spatial details in the prediction results. Finally,
the high-resolution feature representations are transformed
into the ultimate change detection results by the final pre-
diction head. This step maps the feature representations to
the prediction space, generating the desired change detection
results. The formula for the Scale-Adaptive Decoder is as
follows:

ĉt1 = MLP(ct1), ĉt2 = MLP(ct2) (16)

1c = difference(ĉt1, ĉt2) (17)

p = prediction(1c) (18)

ĉ = linear_fuse(1c1, 1c2, 1c3, 1c4) (19)

y = u(ĉ) + r(ĉ) (20)

result = change_probability(y) (21)

where ĉt1 and ĉt2 are the features at two time points.
The advantage of the Scale-Adaptive Decoder is that it

can adaptively select and fuse features of different scales,
thereby dealing more effectively with the scale variations and
complex background issues in the task of remote sensing
image change detection. Additionally, it employs a strategy
of multi-scale prediction and final prediction, allowing the
decoder to generate meaningful change predictions at each

TABLE 1. Five dataset description.

scale, thereby improving the accuracy and robustness of
change detection.

C. LOSS FUNCTION
For the CD task, we address the issue of imbalanced data by
employing a hybrid loss function. Given the pixel-level nature
of our CD task, there’s a notable imbalance between the pro-
portions of changed and unchanged pixels. To mitigate this,
we’ve adopted a composite loss function that combines both
the weighted cross-entropy (WCE) [42] and the dice coeffi-
cient loss (DICE) [43]. This is mathematically expressed as:

Ltotal = Lw + Ld (22)

Lw = −

H×W∑
i=1

[w1yi log(pi) + w2(1 − yi) log(1 − pi)]

(23)

LDICE = 1 −
2

∑H×W
i=1 yipi∑H×W

i=1 yi +
∑H×W

i=1 pi
(24)

where Lw denotes theweighted cross-entropy loss, Ld denotes
the dice coefficient loss, yi denotes the true label for the pixel,
indicating whether it has changed (1) or remained unchanged
(0),w1 andw2 denotes the weights of changed and unchanged
classes, respectively, pi denotes the predicted probability of
changed pixel.

IV. EXPERIMENTS AND ANALYSIS
To validate the efficacy of our proposed VisionTwinNet,
we conducted experiments on three publicly available change
detection (CD) datasets: LEVIR-CD [44], DSIFN-CD [28],
and WHU-CD [45], as illustrated in TABLE 1. Specifically,
the performance of Gated EnhanceClearNet was indepen-
dently evaluated on the LOL dataset [46]. In this section,
we first describe the dataset used and then compare the CD
methods. Subsequently, we elucidate the experimental setup
and describe the evaluation metrics for the network. Finally,
experimental results and ablation studies are presented.

A. DATASET DESCRIPTION
LEVIR-CD [44]: This dataset is a newly created, exten-
sive CD dataset in buildings, which consists of 637 high-
resolution Google Earth image patch pairs, each with a
size of 1024 × 1024 pixels. We divide images of size
1024 × 1024 into non-overlapping patches of size 256 ×

256. These patches are distributed into three parts to
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TABLE 2. Quantitative comparison results of different CD methods on the three CD Test Sets.∗

make 7120/1024/2048 image pairs of training/validation/test,
respectively.

DSIFN-CD [28]: This dataset, manually collected from
Google Earth, consists of 6 large bi-temporal high-resolution
images covering 6 cities in China, each with a size of 32507×

15354. We do not follow its default dataset split and divide
images of size 512× 512 into non-overlapping patches of size
256 × 256. These patches are distributed into three parts to
make 14400/1360/192 image pairs of training/validation/test,
respectively.

WHU-CD [45]: This dataset, collected from WuHan Uni-
versity, consists of 5 large high-resolution images, covering
over 220,000 buildings in Christchurch and New Zealand,
each with a size of 32507 × 15354. We divide images of
size 32507 × 15354 into non-overlapping patches of size
256 × 256. These patches are distributed into three parts to
make 6096/762/762 image pairs of training/validation/test,
respectively.

Low-LEVIR-CD: This dataset is a version of the
LEVIR-CD dataset that has been manually processed
for low-light conditions. It follows the configuration of
LEVIR-CD.

LOL [46]: This dataset is a benchmark dataset used to
address the real-world challenge of enhancing low-light
images. It contains 500 pairs of images, each pair consisting
of a low-light and unprocessed images, each with a resolu-
tion of size 400 × 600. The image pairs are clipped into
256 × 256.

B. COMPARISON METHODS
In this section, we present the CD performance of the current
state-of-the-art (SOTA) methods, as illustrated in TABLE 2.
FC-EF [26]: This method concatenates bi-temporal images

and processes them through a single-stream convolutional
network, based on the UNet architecture, to detect changes
using an early fusion strategy.

FC-Siam-Diff [26]: This method is a feature-difference
approach that uses a post-fusion strategy based on the FC-EF
network. It extracts multiscale features from a twin convolu-
tional network for bitemporal images. Algebraic operations

are then applied to these features to obtain disparity features,
which are used to detect changes.

FC-Siam-Conc [26]: This method is a feature-
concatenation approach for change detection. It extracts mul-
tiscale features from twin convolutional networks. Unlike the
FC-Siam-Diff method, the FC-Siam-Conc method concate-
nates these multiscale features in the channel dimension to
perform change detection.

DTCDSCN [26]: This method is a dualtask constrained
deep Siamese convolutional network (DTCDSCN). It con-
sists of three sub-networks: a change detection network and
two semantic segmentation networks (SSN). Additionally,
a dual attention module (DAM) is introduced, along with an
improved focal loss to address the issue of sample imbalance.

CDNet [47]: This method is based on an inverse con-
volutional network for change detection. Utilizing an early
fusion strategy, it takes a pair of images as input and pro-
duces a pixel-level classification map highlighting structural
changes.

STANet [44]: This method is a spatiotemporal attention
neural network based on Siamese architecture. The network
aggregates multi-scale feature maps from consecutive frames
to leverage temporal consistency.

IFNet [28]: IFNet is a multi-scale feature concatenation
method designed for change detection. It fuses multi-level
deep features of bi-temporal images with image difference
features. This fusion strategy allows IFNet to effectively
detect changes between the two images.

SNUNet-CD [42]: This method combines Siamese net-
work and NestedUNet for change detection in remote sensing
images. It emphasizes the preservation of shallow-layer,
high-resolution features often overlooked by other methods.
The network uses the Ensemble Channel Attention Module
(ECAM) for deep supervision, refining features for accurate
classification.

Bit-CD [31]: This method efficiently models spatial-
temporal contexts in remote sensing change detection.
It translates bitemporal images into semantic tokens, refines
them using transformers, and outperforms many state-of-the-
art methods with fewer computational costs.
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ChangeFormer [12]: Unlike traditional convolutional-
based methods, ChangeFormer combines a hierarchically
structured transformer encoder with a Multi-Layer Percep-
tion (MLP) decoder, enabling efficient capture of multi-scale
long-range details for accurate change detection.

We employed the state-of-the-art methods, along with
VisionTwinNet, to assess change detection performance
on the WHU-CD, LEVIR-CD, and DSIFN-CD test sets.
TABLE 2 presents a comprehensive performance compari-
son of VisionTwinNet with other state-of-the-art techniques
on the WHU-CD, LEVIR-CD, and DSIFN-CD test sets.
Quantitative results demonstrate that VisionTwinNet exhibits
superior performance across these three CD datasets. On the
WHU-CD dataset, the precision, recall, F1 score, and IoU are
94.53%, 88.79%, 91.57%, and 84.45%, respectively, surpass-
ing the ChangeFormer model by 6.12%, 1.1%, 3.52%, and
5.8%. On the LEVIR-CD dataset, VisionTwinNet still outper-
form other models, achieving 92.93%, 90.87%, 91.88%, and
84.04% in terms of precision, recall, F1 score, and IoU. Given
the high accuracy of models on this dataset, VisionTwin-
Net slightly exceeds ChangeForer by 0.88%, 2.07%, 1.48%,
and 1.56%. On the DSIFN-CD dataset, our model show-
cases the best performance, with scores of 92.56%, 91.90%,
92.22%, and 85.57% respectively. Notably, our model’s F1
score surpasses that of ChangeFormer by 5.55%. It’s worth
highlighting that our VisionTwinNet model demonstrates
exceptional performance across all three datasets.

The visual comparison of various CD methods across the
WHU-CD, LEVIR-CD, and DSIFN-CD datasets is depicted
in Figure. 7. To highlight the differences in detection results,
we employed red squares to underscore distinct areas of
disparity. It is evident that our model yields superior results
compared to others. VisionTwinNet performs exceptionally
well in capturing small local changes, intricate regions of
dense and subtle variations, and accurately differentiates
between building boundaries and their shadows, as seen in
Figure. 7(c), (d), and (e). This is attributable to the com-
bination of LFCU and LR-Transformer, which equips the
model with a robust capability to capture detailed features
and long-range information. Moreover, our model demon-
strates resilience against fine-grained changes in dense areas
and variations in similar color regions, as illustrated in
Figure. 7(e), (f), and (g). For instance, in Figure. 7(e),
the VisionTwinNet model adeptly extracts features of nar-
row roads or small object changes, as indicated by the red
box. Compared to other models, ours benefits from learn-
ing long-range context, resulting in fewer missed detections
than models like BIT-CD. These results can be observed in
Figure. 7(e) and (f). Additionally, our model, benefits from
late fusion, effectively retains and captures detailed features
from high-resolution satellite images. Distinctive contribu-
tions from different feature levels ensure smooth boundaries,
precision, and apt handling of subtle changes. Notably,
compared to scenarios like in Figure. 7(h) where EF-CF
over-detects buildings and roads beyond their actual size, our
model exhibits fewer false detections than other benchmark

TABLE 3. Quantitative comparison results of different CD methods on
Low-LEVIR-CD. All values are reported in percentage (%). Low-LEVIR-CD is
a manually processed low-light LEVIR-CD dataset.

TABLE 4. Quantitative comparison results on LOL dataset in terms of
different image quality methods. The highest scores are highlighted in
bold.

methods. Furthermore, our model is robust against seasonal
and lighting changes that introduce noise, as well illustrated
by TABLE 3.

TABLE 3 demonstrates the robustness of VisionTwin-
Net, when equipped with Gated EnhanceClearNet, in high-
precision change detection of remote sensing bi-temporal
images subject to seasonal and lighting condition variations.
In the Low-LEVIR-CD dataset, the F1 score of VisionTwin-
Net is 42.46% higher than that of ChangeFormer, 32.32%
higher than CDNet, and the IoU is 40.72% higher than
ChangeFormer and 33% higher than CDNet. CDNet is a
version of the VisionTwinNet algorithm that does not incor-
porate Gated EnhanceClearNet. Owing to the parallel and
serial combination of Transformer and CNN, its detection
performance in the Low-LEVIR-CD dataset, which is char-
acterized by low illumination and significant image noise,
remains superior to ChangeFormer.

TABLE 4 presents the quantitative comparison results
among various image quality methods on the LOL dataset.
To measure and compare the performance of different bench-
markmethods, we utilized four commonly used image quality
metrics, namely PSNR, SSIM, LOE, and NIQE. PSNR is
a frequently used metric to measure the quality of image
or video compression, with higher values indicating bet-
ter reconstructed image quality. SSIM, on the other hand,
is a metric that accounts for image structure, brightness,
and other details to provide a judgment that more closely
aligns with human visual perception. It ranges from -1 to 1,
with 1 indicating identical images. LOE is an index reliant
on perceived luminance order [48]. NIQE is a no-reference
image quality assessment method [49], where a lower score
typically denotes superior quality, closely resembling natural
images. Our EnhanceClearNet network significantly outper-
forms other benchmark methods. Using the ground truth
images provided by the LOL dataset as reference, we com-
puted the PSNR and SSIM scores, further underscoring that
EnhanceClearNet considerably surpasses other benchmark

VOLUME 12, 2024 4555



T. Chen, A. Chen: VisionTwinNet: Gated Clarity Enhancement Paired

FIGURE 7. Visual comparison of different CD methods on the LEVIR-CD and DSIFN-CD test sets.

methods. Similarly, our model also surpasses other methods
in LOE and NIQE metrics, exceeding the second-best by
71.9 and 0.1129 respectively. Moreover, EnhanceClearNet
demonstrates stronger robustness and generalization capa-
bilities, performing superiorly on high-precision bi-temporal
remote sensing images like LEVIR-CD when compared to
other methods.

C. IMPLEMENTATION DETAILS
For our experiments, we utilized the TensorFlow framework
on an Nvidia GTX 3090Ti GPU and an Intel Core i9-12700
5.0GHz CPU. The implementation details will be explained
in two sections: the first emphasizes the Gated EnhanceClear-
Net for image enhancement, while the latter focuses on the
Hybrid Light-Robust CDNet for change detection.Within the
image enhancement domain, the Decomposer is trained with
a batch size of 12 and processes image patches of dimen-
sions 48 × 48. Moreover, the EnhanceNet and ClearNet are

trained with a batch size of 4, handling image patches sized
256× 256. In terms of change detection, our training scheme
incorporates data augmentation strategies, including Gaus-
sian blur and random flipping. Additionally, Cross-Entropy
(CE) loss and adaptive moment estimation (AdamW) opti-
mizer are used to train the model with a weight decay of 0.02.
The learning rate starts at 0.00001 and decreases linearly
to 0 over time. The model is trained for 300 epochs with a
batch size of 16. To maintain a fair comparison with other
methods, we have re-implemented all the change detection
networks from publicly available codes, adhering to their
default hyperparameters.

D. EVALUATION METRICS
To fully evaluate the performance of the model in change
detection, we’ve selected a set of metrics that are both widely
recognized and particularly relevant to the nuances of the
task.We report on precision (Pre.) and recall (Rec.) to capture
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TABLE 5. Complexity and performance evaluation of different CD methods on LEVIR-CD dataset.∗

the model’s accuracy and sensitivity in identifying changes.
The overall accuracy (OA) offers a broad view of the model’s
general performance. The F1 score, acting as the harmonic
mean of precision and recall, and the mean Intersection over
Union (mIoU), which quantifies the average overlap between
predicted and actual results, are central to our assessment,
providing a nuanced understanding of the model’s efficacy
in delineating change categories. Detailed computations for
these metrics are as follows:

Precision =
TP

TP+ FP
(25)

Recall =
TP

TP+ FN
(26)

F1 = 2 ×
precision× recall
precision+ recall

(27)

mIoU =
TP

TP+ FP+ FN
(28)

OA =
TP+ TN

TP+ FN + TN + FP
(29)

E. COMPLEXITY AND PERFORMANCE EVALUATION
We propose a novel change detection method. It ingeniously
integrates the Transformer with convolutional neural net-
works for encoding, and innovatively introduces several
useful modules such as Local Feature Capture Unit, Image
Augmentation Mechanism, and Scale Adaptive Decoder
Mechanism. Inevitably, these modules have a negative impact
on model light-weighting. To control model complexity and
maintain reasonable runtime, we introduced a lightweight
self-attention mechanism and optimized the fusion strategy,
reducing the layers of the model. As a result, the cur-
rent parameter and computation load of the VisionTwinNet
network are acceptable. While maintaining superior per-
formance, VisionTwinNet operates with a shorter runtime
compared to IFNet and ChangeFormer and boasts a smaller
parameter count than ChangeFormer. In TABLE 5, we evalu-
ate the model performance with two complexity indicators,

which is the number of parameters and the number of
floating-point operations (FLOPs). Despite implementing a
lightweight self-attention module, optimizing fusion strate-
gies, and incorporating gating mechanisms, our model still
possesses the second-highest number of parameters com-
pared to other methods due to the addition of numerous
modules. However, its computational complexity remains
acceptable within an academic context. Most crucially, the
accuracy of our model has improved significantly.

F. ABLATION STUDY
In the ablation study section of this paper, we discuss
the impact and roles of different modules on performance.
We further delve into the effects of various encoders and
decoders on the performance, as well as the influence of dif-
ferent fusion strategies and datasets on the model’s efficacy.

1) IMPACT OF MODULES ON PERFORMANCE
In this paper, ablation experiments based on LEVIR-CD
dataset is carried out to assess the contributions of different
modules of our VisionTiwnNet to its overall performance.
By removing or combing components of the model, we can
discuss effectiveness and significance of each module in
this network. As illustrated in TABLE 5, we present the
quantitative results of the ablation study for various model
components. Additionally, to provide a more intuitive under-
standing of the impact of these components, Figure. 8 offers
a visual comparison. Within the figure, ‘‘W/O’’ is an abbrevi-
ation for ‘‘without’’, indicating the absence of the respective
component.

The comparison between (2) and (4) in TABLE 6 confirms
that the Gated EnhanceClearNet (GECN) Module has no
significant effect on standard datasets, such as the LEVIR-
CD dataset. As shown in TABLE 3, this module does enhance
change detection (CD) performance and accelerates training
for low-light datasets. From the visualization in Figure. 8,
it can be observed that VisionTwinNet without the Gated
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FIGURE 8. Accuracy comparison of ablation. (1)-(5) denote Base, VisionTwinNet, W/O LFCU, W/O GECN, W/O Conv, respectively.

TABLE 6. Analysis of ablation study on different modules.

EnhanceClearNet Module shows a difference in accuracy
only in the early stages of training compared to the complete
VisionTwinNet. However, throughout the training process,
the IoU accuracy curve remains consistent with the full
VisionTwinNet. Moreover, the final F1 and IoU accuracies
only differ by 0.3% and 0.01% respectively. This shows
that the module does not affect the accuracy of our change
detection algorithm under conventional scenarios. Its primary
utility is evident in scenarios where the dataset image quality
is suboptimal, highlighting its robust capability for change
detection under adverse imaging conditions.

And the comparison between (2) and (5) in TABLE 6 vali-
dates that the high-level features captured by the Conv Block
contribute significantly to the spatial information recovery of
feature maps in VisionTwinNet, leading to enhanced change
detection performance with F1 and IoU enhancing 2.17% and
2.03% respectively. This is further confirmed by the training
accuracy curve shown in Figure. 8.

The comparison between (2) and (3) in TABLE 6 shows
that VisionTwinNet with the Local Feature Capture Unit
improves change detection performance. Specifically, F1
scores improved significantly from 89.70% to 91.88%, while
IoU scores increased from 81.99% to 84.04%. As shown in
Figure. 8, the Local Feature Capture Unit (LFCU) is adept
at comprehensively capturing local features and contextual
information to improve CD performance. Moreover, it also
compensates for the common shortcoming of the Transformer
architecture, which might overlook local details when cap-
turing long-distance information. As a result, during training,
the curve is smoother and reaches a gentler curvature more
rapidly. Additionally, as illustrated in Figure. 9, it aids Vision-
TwinNet in recovering more hierarchical and detailed spatial
information. From these figures, it can be observed that
networks equipped with LFCU can predict changes more
accurately, reducing the occurrence of erroneous change
detections. In summary, this paper separately discusses the
impacts of the IAM, LPCU, lightweight-attention, and Conv
Block modules on overall performance.

2) IMPACT OF FUSION STRATEGIES ON PERFORMANCE
To optimize our experimental performance, we carried out
a comparative analysis between our proposed fusion strate-
gies: early fusion and late fusion, based on the LEVIR-CD
dataset. The findings, as illustrated in TABLE 7, reveal that
the early fusion approach underperforms. Employing early
fusion tends to ignore intricate feature details, hindering the
extraction of more profound insights. On the other hand, late
fusion ensures that each data type or feature set is initially
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TABLE 7. Comparison of fusion strategies.∗

FIGURE 9. Visualization results of VisionTwinNet and W/O LFCU on
LEVIR-CD datasets. (a) and (b) denote VisionTwinNet and W/O LFCU,
respectively. Red indicates FN, blue indicates FP.

processed separately. This ensures the preservation of the
unique attributes of eachmodality, preventing prematuremix-
ing or inadvertent loss of details. Thus, in this study, we opt to
fuse the features extracted from various modules during the
later stages, enabling the network to capture more detailed
feature information.

V. CONCLUSION
In this work, we introduced a novel two-stage approach,
VisionTwinNet, that combines image enhancement and
change detection for remote sensing images taken at differ-
ent times. This not only addresses the limitations of using
transformers in a brute-force manner in the computer vision
domain and the high complexity of self-attention but also
enhances the efficiency and flexibility of the model. It also
ensures that the overall performance of the model is ele-
vated without compromising visual quality. The proposed
VisionTwinNet architecture utilizes both CNN and trans-
former to capture local and global information, enhancing
the network’s representation capability. Additionally, through
the Lightweight Multi-Head Self-Attention mechanism, the
model can process multiple distinct attention heads in parallel
across different subspaces, which enhances the representation
capability of the model. This, coupled with the innova-
tive attention mechanism design that individually optimizes
the key-value (k/v) dimensions, greatly enhances computa-
tional efficiency and reduces computational load. Notably,
the VisionTwinNet structure incorporates an adaptive image
enhancement strategy based on a gating mechanism. The core
idea of this strategy is to automatically decide, based on the
quality of the input image, whether image enhancement and
degradation removal are required, significantly boosting the

model’s adaptability and performance for images of vary-
ing quality. Extensive experiments on three public datasets:
LEVIR-CD, DSIFN-CD, and WHU-CD, demonstrate that
our proposed VisionTwinNet performs well in terms of com-
prehensive performance. While this research has enhanced
robustness to different illumination conditions and simulta-
neously improved the model’s flexibility and performance,
the real-time performance of the model remains a challenge.
Although the computational cost of transformers is relatively
low, their application in real-time change detection scenarios
and handling vast change scenarios is still an area requiring
further development. Our future work will aim to simplify the
network structure and design more efficient architectures to
refine remote sensing image change detection results.
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