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ABSTRACT This paper presents a novel approach for enhancing autonomous drone mobility control using
deep reinforcement learning (DRL), primarily aimed at improving autonomous navigation in challenging
environments. Our research tackles the significant issue of real-time obstacle avoidance, a critical aspect
in drone control. This is achieved through the integration of sensing-aware nonlinear control mechanisms,
facilitating advanced trajectory optimization. A notable contribution of our work is the incorporation of
real-time human-in-the-loop feedback through human-computer interaction (HCI), which is crucial when
pre-trained DRL models encounter environments they are not fully adapted to. Combining autonomous
DRL control and HCI feedback equips our system with the flexibility to handle unforeseen scenarios
effectively. Furthermore, the paper showcases a comprehensive software demonstration employing Unity
3D for visualization. This demonstration highlights the practical application of our sensing-aware nonlinear
control and the HCI-based feedback system, using keyboard interfaces for real-time interaction. The
accompanying demonstration video distinctly exhibits the ability of our proposed algorithm.

INDEX TERMS Autonomous mobility control, drone, reinforcement learning, unity, HCI,
human-in-the-loop.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs), commonly referred to
as drones, possess a wide array of applications across
numerous industries. Due to recent advancements in bat-
teries and other complementary technologies, drones have
become increasingly adaptable and competent, expanding
their roles in surveillance, delivery, and passenger transport
functions. Specifically, drones are progressively employed
for surveillance purposes, particularly in security and smart
city operations [1]. These devices offer aerial perspectives
over extensive areas, capturing high-resolution images and
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videos valuable for situational awareness, monitoring crowd
behaviors, and identifying potential threats. By utilizing
advanced sensors and machine learning algorithms, drones
can undertake more complex surveillance tasks, such as
pinpointing and tracking specific individuals or vehicles.
Drones have found application in the delivery of goods,
especially in areas that are challenging to access or where
conventional transportation methods prove unfeasible. These
devices can transport a variety of goods, encompassing
medical supplies, emergency equipment, and consumer
goods [2]. Delivery drones are particularly beneficial in dis-
aster or war zones, where traditional means of transportation
may be disrupted or unavailable. Furthermore, drones have
recently been investigated as a potential means of passenger
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FIGURE 1. Scenario that the drone avoiding obstacles and reach to the target.

transport. Passenger drones present several advantages,
including extended operation time as well as decreased
traffic congestion [3]. Nevertheless, substantial technical and
regulatory obstacles must be overcome before passenger
drones can emerge as a viable transportation option [4].

Drones designed for military purposes have emerged as
essential tools in contemporary warfare, offering capabilities
such as surveillance, military supply delivery, and targeted
strikes [5], [6]. These drones possess the advantage of operat-
ing in environments that may be too hazardous or inaccessible
for human pilots. Nonetheless, employing military drones
effectively necessitates the use of advanced technologies
and sophisticated algorithms to ensure their safety and
performance. One promising approach involves applying
machine learning techniques, particularly reinforcement
learning (RL), to enhance the autonomy and decision-making
abilities of these systems. RL allows military drones to learn
from their experiences and adapt their behavior to suit diverse
environments and mission requirements.

In real-world applications of DRL-based autonomous
drone mobility control, drones may encounter obstacles such
as buildings or structures while en route to their target destina-
tions. Consequently, it becomes vital to develop autonomous
drone mobility control that incorporates near-field situation
sensing for obstacle avoidance. As such, autonomous mobil-
ity control algorithms are devised and executed using a range
of methods to meet these requirements.

A promising approach for designing and implementing
algorithms for autonomous drone control across various
use-cases involves employing deep reinforcement learning
(DRL) methodologies. These methodologies constitute a
stochastic decision-making control process aimed at maxi-
mizing expected utility [7], [8]. Yun et al. conducted a study
where they jointly optimized the location of drone taxis

and passengers’ destinations using reinforcement learning
based on G2ANet [7]. Also, Tarekegn et al. achieved
reasonable performance in terms of communication coverage
and network throughput by optimizing the air-to-ground
channel using deep Q-learning when deploying drone base
stations for wireless communication services [8]. Unlike [7]
and [8], the proposed method in this paper does not
optimize the overall trajectory but rather deals with the
drone’s movement as an action, making it more detailed
in terms of control. The application of DRL methods can
also enhance the performance of military-purpose drones in
tasks such as target detection and tracking while minimizing
the risk of accidents and tactical damages. Research on
autonomous drone mobility control using DRL [9], [10],
[11] has been extensively and actively pursued for a wide
range of applications in order to fully leverage the potential
of drone-related technologies. These applications include
surveillance [12], mobile cellular access services [13], [14],
[15], and loitering munition [6], [16].

A. RELATED WORK
RL is a category of machine learning techniques wherein
an agent makes decisions to maximize its reward through
interaction with its environment. This process involves trial
and error, as the agent learns from its experiences and
adapts its behavior accordingly. In essence, the agent receives
feedback in the form of a reward signal, which it utilizes to
update its policy or strategy. Recent advancements, such as
DRL and model-based RL, have contributed to substantial
improvements in complex decision-making processes for a
variety of real-world problems, including robotics [17], [18],
game-playing [19], and mobility services [20]. One of the
key challenges in controlling moving objects is ensuring
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that the object is aware of its surroundings. In real-world
environments, this can be accomplished with the use of
sensors like cameras or light detection and ranging (LiDAR)
that supply information about the object’s environment [21].
Nevertheless, training an RL agent directly is challenging.
Therefore, the RL agent is trained in a simulated environment
where it can learn to navigate through various scenarios [17].
Numerous 3D tools are available for the visualization and
performance evaluation of RL.MuJoCo, a physics simulation
engine, caters to a wide range of robotic environments [22].
This engine offers a flexible and intuitive framework for
designing and implementing control algorithms for intricate
systems. Gazebo is a 3D simulation environment extensively
employed to test and assess a diverse array of robotic systems,
including those trained with RL [23]. Gazebo supports
integration with various robot middleware frameworks, such
as the robot operating system (ROS) and open robot control
software (OROCOS), which are beneficial for simulating
robots. Unity is a gaming engine capable of modeling the
physical real-world environments for simulation purposes.
It encompasses innovative tools for creating andmanipulating
3D objects and environments, as well as a variety of visual-
ization tools. Notably, Unity has recently been extensively
utilized for drone-based simulations [24], [25]. However,
while [24], [25] employed Unity for observations via drones,
they did not carry out any learning processes. In this research,
Unity ML-Agents is used, a Unity plugin that enables RL
simulations in 3D environments [26].

B. CONTRIBUTIONS
This paper presents the 3D visualization using Unity for
autonomous mobility control with run-time control using
sensing-awareness, which has not been studied before, to the
best of our knowledge [20], [27], [28], [29]. In [27], humans
intervene in the process of training the policy, whereas our
proposed method does not involve direct intervention in
the policy. Rather, it adds human input when the trained
model is making inferences in the simulation environment.
Applying human intervention to a drone in flight using
a fully trained RL algorithm can significantly enhance its
avoidance and attack success rates, as clearly demonstrated
through experiments. For algorithm validation through 3D
visualization, utilizing the Unity platform is essential.
In addition, other related research is confined to specific
scenarios, such as UAV base stations, which distinguishes
them from the problem we propose. On top of DRL, sensing-
aware nonlinear control and real-time HCI-based human-
in-the-loop intervention/feedback are essential to deal with
unexpected situations and emergency scenarios.

II. HUMAN-IN-THE-LOOP FEEDBACK FOR AUTONOMOUS
MOBILITY CONTROL
A. ALGORITHM DESIGN CONCEPTS
Among various DRL-based algorithms for nonlinear
autonomous drone mobility control, deep deterministic

FIGURE 2. Total reward of the algorithm.

FIGURE 3. Problem scenario: Buildings and Raycast sensing.

policy gradient (DDPG) is particularly beneficial since it
is designed to handle continuous action spaces [30]. Fig. 2
illustrates the reward in relation to the training step of Soft
Actor-Critic (SAC), Proximal Policy Optimization (PPO)
algorithm, and DDPG, which serves as the base algorithm
applied. Two reasons support the choice of DDPG as the
base algorithm when comparing these three methods. Firstly,
it demonstrates the most stable performance, as evidenced
by the unstable performance of SAC and PPO algorithms in
Fig. 2. Second, the algorithm operates with a fast running
time. Table 1 presents the average number of steps processed
by each algorithm per second. While the PPO algorithm’s
training speed is over three times faster than DDPG, it is
crucial to consider the time required to achieve a performance
level comparable to DDPG. Furthermore, since DDPG’s
training speed is triple that of SAC, it is well-suited for
learning in rapidly changing battlefield environments. This
result is also depicted in Fig. 4.

To address unexpected situations, supplementary methods
are required to augment the DDPG-based autonomous
drone mobility control. Specifically, these methods include
sensing-aware nonlinear control and real-time human-in-
the-loop intervention. Sensing-aware nonlinear control aims
to provide automated situational awareness during drone
flights. For implementation, a Unity-based 3D visualization
for sensing-aware nonlinear control is realized [26], and
situational/sensing-awareness is considered using built-in

VOLUME 12, 2024 1729



H. Lee, S. Park: Sensing-Aware DRL With HCI-Based Human-in-the-Loop Feedback

FIGURE 4. Average learning steps per second.

TABLE 1. Comparison of average steps for three algorithms per second.

functions. Despite the utilization of sensing-aware nonlinear
control, complete automation of mobility control remains
challenging due to buildings and obstacles in dense urban
environments. Consequently, human-in-the-loop intervention
is additionally considered to enable direct drone agent control
by users. To achieve this, a Unity-based implementation is
conducted to facilitate efficient human-computer interaction
(HCI) for controlling the drone agent while in flight in
real-time. The roles of humans/users in interacting with
drones are actively researched, as they can significantly
enhance system flexibility and situational awareness [31].
The proposed algorithm in this paper is fundamentally
based on DRL; furthermore, HCI-based human-in-the-loop
feedback is added to achieve i) sensing-aware nonlinear
control and ii) real-time human-in-the-loop intervention. The
DRL-based autonomous drone mobility control is designed
and implemented using DDPG, notable for its application in
continuous-domain action selection [32]. In the considered
drone mobility control, the action is defined based on moving
directions (i.e., x-, y-, and z-axes), and the degrees of the three
moving directions should be defined within a continuous
domain. As a result, the DDPG-based algorithm design is
deemed essential. Building upon this foundation, i) sensing-
aware nonlinear control and ii) real-time human-in-the-loop
interventions are discussed in the following section.

B. ALGORITHM DESIGN CONSIDERATION FACTORS
1) SENSING-AWARE NONLINEAR CONTROL
The considered drone agent has basic state information,
which includes i) the distance to the target, ii) the drone’s
velocity, and iii) the drone’s angular velocity. In practical
scenarios, the drone gets the information by using built-in

range, velocity, and gyro sensors. In simulations, these values
are obtained with the Unity ML-Agents built-in function
Sensors.VectorSensor.AddObservation, which
is the function of the sensory input. ML-Agents toolkit
enables all communication exchanges between the agent
and the simulation environment, facilitating interactions
for information sharing. Based on the reward function
established in the proposed DDPG-based algorithm, the
drone agent determines its autonomous mobility control as
follows: i) it flies in a direction where the distance between
the drone and the target decreases (based on reward settings);
ii) it maneuvers around obstacles to avoid collisions. The
detailed reward design for mobility control dynamics is
described in Sec. III-A. To detect obstacles, Raycast is
employed as additional state information. The Raycast is a
built-in function in Unity that casts rays and obtains distance
and direction information of nearby obstacles using the
reflection data from the rays, as depicted in Fig. 3. If the rays
hit obstacles, the DDPG reward value accumulates additional
negative rewards, which are inversely proportional to the dis-
tances between the drone and the obstacles (i.e., the absolute
additional negative reward increases as the distance becomes
closer). Ultimately, it is confirmed that the drone agent flies
directly towards the target using the DDPG-based DRL.
Moreover, Raycast is leveraged for sensing-aware nonlin-
ear control to enable adaptive avoidance of nearby obstacles.

2) REAL-TIME HUMAN-IN-THE-LOOP INTERVENTION
As the considered drone agent navigates towards its tar-
get using the proposed DDPG-based DRL in real-time,
unexpected situations may arise. For example, avoidance
capability may diminish in unanticipated environments with
a high density of obstacles. To enhance obstacle avoidance
performance, HCI-based human-in-the-loop feedback is
integrated with the DDPG-based DRL. For the human-
in-the-loop feedback, the first-person shooter concept
is employed, where feedback is provided using keyboard
directional keys (i.e., up-arrow for moving up vertically,
down-arrow formoving down vertically, left-arrow, and right-
arrow, respectively) and four pre-defined WASD controls
(i.e., W, S, A, and D represent moving forward and backward
horizontally, left, and right, respectively). The influence of
the human factor reflects 1.25 times more potent than that of
the RL algorithm in the simulation to ensure that even if the
algorithm’s output produces suboptimal behavior, it can be
corrected through user intervention. Ultimately, through this
HCI-based human-in-the-loop feedback, real-time control of
the drone agent’s flight movement can be achieved, resulting
in successful mobility control.

C. ALGORITHMIC PROCEDURE
1) APPLICATION DOMAIN
The considered application involves a novel autonomous
defense system using aerial drones. The drone agent is
advantageous in this specific context for several reasons:
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• Easy to Access:The drone agent can reach its destination
or target through aerial routes, making it more accessible
compared to ground mobility platforms [33], [34].

• Easy to Control: The drone agent enable effortless
control using various DRL algorithms [20], [35], [36],
enabling easy management of 3D aerial movement.

• Easy to Deploy: The drone agent can be deployed
in various environments due to its cost-effectiveness.
If drone agents were expensive, they would not be
disposable. However, drone agents are actively used for
loitering munition in modern battlefields because the
drone platforms are affordable [37].

Utilizing this drone agent, which offers easy access,
control, and deployment, a novel autonomous defense
system is designed to employ disposable drone agents
for the destruction of incoming enemy tanks. In addi-
tion to DRL-based training and inference, mission-specific
functionalities for recognizing and avoiding obstacles in
urban building regions are essential. When drone agents
initiate movement upon detecting enemy tanks, autonomous
mobility control techniques are crucial since humans cannot
constantly monitor the battlefields. Following this initial
movement of drone agents, additional adjustments are
necessary to address unexpected situations, such as unpre-
dictable nonlinear movement changes of enemies or unex-
pected environmental alterations. To this end, the proposed
algorithm introduces i) sensing-aware nonlinear control
and ii) human-in-the-loop intervention using HCI-based
feedback.

2) PROBLEM SCENARIO
Fig. 3 illustrates the urban environment with high-density
buildings. The entire demonstration setup and organi-
zation are implemented using Unity. Through Unity-
based implementation, numerous buildings can be arranged
with 3D visualization. Additionally, the function called
Raycast is employed for sensing-aware nonlinear mobility
control.

3) DRL ALGORITHM ARCHITECTURE AND TRAINING
DESCRIPTIONS
TheDDPG algorithm structure is depicted in Fig. 5. The actor
network serves as the policy function in the proposed DDPG-
based framework. Its primary role is to map the observed
states to continuous actions, enabling the drone agent to
interact effectively with the environment. The architecture
of the actor network is a feed-forward neural network
comprising three layers. The input has a size corresponding
to the dimensionality of the state space. The network includes
two hidden layers, each consisting of 128 neurons. The
activation function used for these hidden layers is the rectified
linear unit (ReLU). The output layer utilizes a hyperbolic
tangent (tanh) activation function, ensuring that the output
action values are normalized between -1 and 1.

In contrast, the critic network approximates the state-action
value function. The input accepts a state vector and passes
it through a hidden layer comprising 128 neurons with
ReLU activation. Following this, the network concatenates
the action vector a to the resultant state embeddings before
forwarding them through the second hidden layer, which
also consists of 128 neurons. The final layer of the critic
network outputs a single real-valued number, representing the
estimated Q(s, a) value without any activation function.

D. ALGORITHM PSEUDOCODE
The pseudocode for the proposed algorithm is presented in
Algorithm 1. Firstly, the weights θ and φ of the actor/critic
networks, along with the weights θ ′ and φ′ of the target
network, are initialized. Subsequently, a replay buffer is
initialized at the end of each episode. For each minibatch,
ϕ states are generated randomly, and an appropriate set of
actions a ∈ A is assigned for each state s. The drone agent
utilizes the Raycast observation method to detect obstacles
in its surroundings for situation-aware DRL computation,
storing this information in the state space s (line 6). To handle
exploration in a continuous action space, an Ornstein-
Uhlenbeck (OU) noise N is applied to the selected action a.
OU noise is a typical method for DDPG, which is commonly
used in exploration strategies for reinforcement learning.
Unlike white noise, which is completely random, OU noise
exhibits temporal correlation. This means its current value
is influenced by its previous values, giving it a degree of
smoothness over time. Next, the state-action pairs (s, a) are
input into the pre-designed drone environments, obtaining
the corresponding reward set R for each pair and observing
the next state s′. The actor network takes the state received
from the drone as input and generates an appropriate action
as output through two fully connected layers. The drone agent
then executes the corresponding action a in the environment
and acquires the next state s′. The observed transition pairs
from the drone agent are stored as a minibatch V .

In phase 2, the actor and target networks are updated.
If the timestep falls within the update period, a random
minibatch V is drawn without replacement from the replay
buffer D at each time step. In the policy decision process,
learning can be conducted on samples within the replay
buffer to mitigate the correlation issue between samples,
thereby enhancing the learning outcomes. The equation for
computing the network’s temporal difference (TD) target is
provided in (line 16) of Algorithm 1. The randomly sampled
tuple delivered to the replay buffer then serves as input for the
networks. Ultimately, this algorithm updates the target critic
and target actor networks during T timesteps and concludes
the computation procedure.

Utilizing target networks can improve learning stability.
The process sequence of updating the critic network and
the two target networks through the loss function and the
policy gradient method aims to maximize the expected
reward, thereby generating more suitable actions for the actor
network.
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FIGURE 5. DDPG algorithm structure.

TABLE 2. Hyperparameters of the proposed model.

III. PERFORMANCE EVALUATION
A. SETUP AND EVALUATION SETTINGS
In the application software, the following versions of the
programs and APIs were utilized: Unity ver. 2021.2, Python
ver. 3.9, PyTorch ver. 1.12.1, and Unity ML-Agents ver.
2.0.1 along with their respective packages. Although it is
possible to work with other versions, using different versions
might lead to errors or compatibility issues.

A city environment that replicates an urban military
battlefield was created using the Unity Asset Store. Drone
and tank assets were added to the environment scene, with
the drone serving as an agent and the tank-shaped target as
a game object. The learning computation was executed for
100,000 steps, followed by 10,000 test steps. The batch size
for each neural network was set to 128, and a discount factor
of 0.9 was applied for each step. The size of the replay buffer

was set to 10,000, respectfully. The critic network aimed to
reduce the difference between predicted and target values by
updating the Q-function. Meanwhile, the policy of the actor
network was updated through two fully connected layers to
maximize the objective function. The learning rate of the
critic network was set to 5e-4, while for the actor network,
it was set to 1e-4. The hyperparameters of the proposed
model are detailed in Table 2. Agents and targets were
generated randomly within a designated area, and the target
moved forward at a constant speed. To discourage the agent
from remaining stationary, a continuous default reward of -
0.01 was applied. A compensation function was incorporated
to encourage the drone to approach the target gradually,
reflecting the differences in distances. The drone received a
reward of+1 upon reaching the target and a reward of−1 for
being too far away or colliding with an obstacle, which also
ended the episode. A negative reward was provided when
the drone identified a nearby obstacle using Raycast (i.e.,
situation-awareness) to promote learning of obstacle avoid-
ance. The proposed situation-aware autonomous nonlinear
drone mobility control algorithm outperformed conventional
DDPG-based DRL algorithms by utilizing information about
surrounding obstacles. For human-in-the-loop feedback, the
force exerted on the agent through keyboard input was
configured to be 1.25 times the force with which the drone
moves autonomously.

B. EVALUATION RESULTS
We aimed to create an environment as close to reality as
possible using Unity. 3D visualization is not only necessary
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Algorithm 1 Proposed Sensing-Aware DRLWith Human-in-
the-Loop Feedback
1: Initialize the critic and actor networks
2: Initialize the target networks as: θ ′← θ, φ′← φ

3: for episode = 1, E do
4: Phase 1. Initialize the replay buffer D
5: ▷ Randomly generate ϕ states s ∈ S
6: ▷ Observe surrounding obstacles through Raycast

function and store to the states s to aware situation
7: ▷ Get corresponding set of actions with OU noise a =

µ(s|φ′)+N , a ∈ A for each s
8: ▷ Input the state-action pairs to predefined drone

environments and get a set of reward R for each pair,
and observe the next set of states s′ ∈ S

9: ▷ Store the transition pairs (s, a,R, s′) as a minibatch,
which composes D.

10: end for
11: Phase 2. Update neural networks periodically
12: for time step = 1, T do
13: If time step is update period, do followings:
14: ▷ Sample a random minibatch V = (sj, aj,Rj, s′j)

without replacing from D
15: ▷ Set yi = Rj

i + γQµ′ (s′ji , µ(s
′
i|φ
′)|θ ′)

16: ▷ Update the θ by applying stochastic gradient
descent to the loss function of critic network, which can
be obtained as 1

V
∑

i (yi − Q
µ
i (s
′j
i , a

j
i|θ ))

2

17: ▷ Update the φ by applying stochastic gradient
ascent concerning the gradient of actor network:

18: ∇θJ ≈ 1
ϕ

∑
i ∇θQ(sj, aj|θ )∇φµ(s|φ)|s=si,a=µ(ai|φ)

19: ▷ Soft update θ ′ and φ′ as follows:
20: θ ′← γ θ + (1− γ )θ ′, φ′← γφ + (1− γ )φ′

21: end for
22: Phase 3. Human-in-the-loop feedback
23: If the performance is not satisfactory during run-time

operations, the experimental results can be adjusted
through keyboard manipulation as human-in-the-loop
intervention.

for assessing the algorithm’s performance but also crucial for
human-in-the-loop feedback. Additionally, the actual flight
route of the drone can be more clearly represented in a
3D environment than in 2D. Fig. 6 displays the step-by-
step flying movement procedure of the proposed algorithm.
From Fig. 6(a) to Fig. 6(h), the algorithm demonstrates
efficient nonlinear mobility control that can avoid obstacles
and buildings.

Fig. 7 presents the numerical results of successful attacks
depending on obstacle density, where the obstacle density is
defined as the level of difficulty of the map. At 0% obstacle
density, there are no obstructions. For every increment of
10%, a building is randomly placed in the space between
the drone agent and the target, culminating in a total of
10 buildings at 100% obstacle density. A high success rate
in environments with high obstacle density represents the

TABLE 3. The number of successful attacks per 20 trials based on
obstacle density through nonlinear drone mobility control.

TABLE 4. The number of successful attacks per 20 trials based on
obstacle density through linear drone mobility control.

robustness of the considering algorithm. In the simulation
environment, each experiment was repeated for 10 rounds
and 20 times in each environment, estimating the number of
successful agent target reaches or destructions in each round.
Table 3 and Table 4 show the results of each round in Fig. 7 in
detail. The agent successfully reaches the target in all trials if
no obstacles are present. Nonetheless, despite the application
of a well-trained algorithm, the success rate diminishes when
the density of obstacles increases, occasionally necessitating
passage through extremely narrow spaces. In the experiments
where human feedback was added to the existing algorithm,
it was observed that the number of successful trials increased,
even when the obstacle density was very high, as depicted in
Fig. 7. This finding suggests that the incorporation of human-
in-the-loop intervention enhances the performance of the
autonomous drone mobility control algorithm, particularly in
complex environments with high obstacle densities. Human
intervention helps the drone navigate challenging scenarios
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FIGURE 6. Top-down view of drone agent flying movement.

FIGURE 7. The number of successful attacks per 20 trials according to obstacle density.

FIGURE 8. Human-in-the-loop feedback for nonlinear mobility control.
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and avoid obstacles more effectively, leading to a higher
success rate in reaching the target. Fig. 8 illustrates the
human-in-the-loop feedback for nonlinear mobility control
of the agent. In a well-trained environment, the agent may
struggle to reach the goal if there are too many obstacles,
as demonstrated in Fig. 6. Human intervention is applied to
the trained model to enhance the success rate in reaching the
target. When the agent is about to collide with an obstacle
or the ground, the user can help the agent avoid the obstacle
by moving the drone up, down, left, or right using the
direction key input. However, the probability of success may
vary significantly depending on the operator’s proficiency,
so the operator may need extensive training in the simulation
environment before applying the technique in the real world.
Lastly, the demonstration video of the proposed algorithm is
available at https://youtu.be/GrZ_HMX1xms.

IV. CONCLUDING REMARKS
This paper presents the design and implementation
of novel autonomous drone mobility control based
on DDPG-grounded DRL algorithms. Two additional
approaches are considered to achieve more realistic and
real-time drone trajectory control, i.e., (i) sensing-aware
nonlinear control and (ii) HCI-based real-time human-
in-the-loop intervention/feedback. Based on the imple-
mentation using Unity ML-Agents, sensing-aware control
is implemented through the built-in Raycast function,
which is an essential part of autonomous nonlinear control.
In addition, HCI-based human-in-the-loop feedback is also
introduced for real-time adjustment after executing the
model in 3D environment. Our experimental results and
demonstrations confirm that the proposed sensing-aware
autonomous nonlinear mobility control algorithm, combined
with HCI-based human-in-the-loop feedback, performs as
expected, enhancing drone mobility control in complex
environments.

Although this paper focuses on a single drone agent
attacking a single target, the potential exists for further
scalability. This is due to the opportunity for operating a
greater number of drone agents or encountering multiple
targets in real-world scenarios. Regarding adaptability, the
same algorithm can be sufficiently applied to different
scenarios. For example, when operated by the military, this
framework appears readily applicable for tasks involving
transporting supplies while avoiding obstacles.
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