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ABSTRACT Recent stealth attacks cleverly disguise malicious activities, masquerading as ordinary
connections to popular online services through seemingly innocuous applications. These methods often
evade detection by traditional network monitoring or signature-based techniques, as attackers frequently
hide Command and Control (C&C) servers within well-known cloud service providers, making the traffic
anomalies appear normal. In this paper, we introduce an application-level monitoring system, Anteater.
Anteater constructs a detailed profile for each legitimate software’s network traffic behavior, outlining the
expected traffic patterns. By scrutinizing a program’s network traffic configuration, Anteater efficiently
pinpoints and intercepts the IP addresses associated with abnormal program access. Implemented in a
real-world enterprise environment, Anteater was tested on a dataset containing over 400 million real-world
network traffic sessions. The evaluation results demonstrate that Anteater achieves a high detection rate for
malware injections, boasting a true positive rate of 94.5% and a false positive rate of less than 0.1%.

INDEX TERMS Malware injection detection, advanced persistent threat, program traffic behavior, network
security, Anteater.

I. INTRODUCTION
Malware has emerged as a significant threat to global cyber-
security. The U.S. Cybersecurity and Infrastructure Security
Agency (CISA) has reported a notable 62% increase in
malware incidents year-over-year from 2021, correlatingwith
a subsequent 20% rise in financial losses [1]. Furthermore,
the 2022 1H Global Threat Landscape Report highlights an
alarming surge inmalware applications, recording an increase
of 1,070% from July 2021 to June 2022 [2].
In the realm of cyber attacks, the complexity of threat

models is escalating as attackers ingeniously exploit trusted,
seemingly harmless applications within client environments.
They embed malware into otherwise benign programs, which
then initiate legitimate-looking connections to communi-
cate with Command and Control (C&C) servers. To the
operating system, these malicious activities are disguised
as normal user operations. Despite Microsoft Windows
having a robust user access control system, it faces inherent

The associate editor coordinating the review of this manuscript and
approving it for publication was Alessandra De Benedictis.

challenges.1 In the initial versions of Windows Vista,
Microsoft implemented stringent security checks to verify
the legitimacy of user actions. However, these measures
often led to user frustration due to frequent prompts
with the Are you sure? dialogue box, resulting in users
hastily disabling the feature or habitually clicking OK
without due consideration. This behavior, coupled with the
elusive nature of fileless access attacks that leave minimal
traces on the host system, leads to defensive shortcomings
and a degraded user experience. Consequently, traditional
host-based antivirus and network intrusion detection methods
face difficulties in pinpointing anomalies associated with
applications [3].

Fileless attacks, often categorized under Low Observable
Characteristic (LOC) assaults, represent a sophisticated form
of cyber threat. Unlike conventional viruses, these stealthy
attacks operate directly in the system’s memory, eluding
most traditional security measures. In a fileless attack, the

1Malware exploits the user’s implicit trust in the Microsoft Windows
operating system to operate effectively.
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malicious payload never resides on the hard disk; instead,
it directly infiltrates the system’s memory. This approach
allows the malware to evade detection since it does not alter
files on the disk. Fileless malware typically leverages trusted,
whitelisted applications to initiate its malicious processes,
exploiting the inherent trust that security applications place in
these whitelisted entities. By doing so, these attacks cleverly
bypass themonitoringmechanisms that usually ignore trusted
programs [4].

To establish a communication profile for legitimate
applications, we gathered over 1 million sets of commu-
nication data and associated processes from the svchost
application in enterprise environments. This data collection
was instrumental in developing the Anteater network traffic
behavior monitoring system. The inspiration for the name
‘Anteater’ comes from the South American mammal known
for extracting ants from tree trunks using its elongated
tongue, symbolizing our system’s capability to unearth
viruses concealed deep within computer systems. To assess
Anteater’s proficiency in detecting anomalies in communi-
cation behavior, we employed Cobalt Strike [5] to simulate
malicious injections into processes initiated by 11 distinct
benign programs. This experimental setup was crucial for
training our machine learning algorithms to distinguish
between normal and malware-compromised communication
patterns of processes.

In this paper, we clarify three fundamental concepts
essential for understanding our discussion:

• Program: This term refers to a binary executable file
that constitutes an application. For example,Chrome.exe
is a representation of a program.

• Process: This is a unique operational instance of a
program, distinguished by its own process ID, initiation
time, and other specific attributes. When the Chrome
application is executed, it generates a process for the
Chrome.exe program. This process persists until the user
exits Chrome. Notably, a single software can spawn
multiple processes.

• Malware-injected process: This occurs when mali-
cious code is inserted into a process originating from a
legitimate software. For instance, a process is deemed
malware-injected if malware targets the Chrome.exe
program and activates harmful operations within it.

In developing the Anteater application for monitoring
communication behavior, we conducted a comprehensive
analysis of the communication patterns of each benign
application to establish their expected communication char-
acteristics. This led to the creation of a metric system known
as conformance ratios.

• We observed that the communication behavior of benign
programs is generally stable, with more than 84% of
these programs exhibiting conformance ratios exceeding
0.96. In contrast, processes compromised by malware,
even when originating from harmless applications, tend
to display erratic behavior and significantly lower

conformance ratios, with approximately 89.8% of such
processes having ratios below 0.2.

• Interactive processes, such as web browsers and email
clients, exhibit more variable behavior (i.e., lower con-
formance ratios) compared to less interactive processes.
The latter’s behavior is predominantly user-driven.

Processes infected with malware are identified and isolated.
The fundamental principle of our approach is that while the
network communication behavior of a benign process aligns
with its established traffic profile, a process compromised by
malware deviates from this normal pattern. These deviations
form additional features that are utilized to train our clas-
sifier, enhancing its ability to detect malware-compromised
processes.

A. OUR MAIN CONTRIBUTIONS
For our experimental analysis, we employed the Cobalt
Strike dataset as our testing ground, while utilizing the
2020 and 2021 datasets for training our random forest
classifier. The results demonstrate that our newly developed
features significantly outperform traditional signature-based
detection methods. We achieved a 94.5% true positive
rate (successfully identifying 93.5% of malware-injected
processes in the test dataset) and maintained a 0% false
positive rate (accurately ensuring no benign process was
misclassified as malicious). This performance is markedly
superior to the 25.8% true positive rate achieved using
previously established features.

• Acknowledging the limitations of Domain Name Sys-
tem (DNS) detection in identifying malicious process
injections, we designed an application-level monitor-
ing system named Anteater. This system is adept at
detecting lateral malware injection attacks.

• Given that attackers frequently use reputable cloud
services to disguise their C&C servers, distinguishing
between normal and abnormal traffic becomes challeng-
ing. Anteater addresses this by efficiently identifying
and intercepting the IP addresses linked to abnormal
program access through detailed analysis of network
traffic configurations.

• Anteater was deployed in a real-world enterprise
environment, analyzing over 400 million network traffic
sessions. The evaluation showcases Anteater’s excep-
tional capability in detecting malware injections, with
a true positive rate (TPR) of 94.5% and a false positive
rate (FPR) of less than 0.1%.

II. RELATED WORK
Attackers are increasingly adopting distributed architectures
for deploying Command and Control (C&C) hosts. To evade
detection and blocking of C&C addresses, they are lever-
aging both host-based and network-based evasion tactics,
along with the use of steganography for updating the IP
addresses of C&C servers used by malware [6]. Traditional
defense mechanisms primarily focus on network-based
and signature-based virus monitoring [7]. However, these
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methods fall short in effectively intercepting and defending
against such threats. The unpredictable nature of malware
behavior poses a significant challenge for monitoring
systems, often leading to their inability to accurately
detect when benign programs are compromised by malware
injections.

Sun et al. Created a fine-grained Application-DNS
profile that described any innocuous program’s normal
DNS behavior. They discovered that the DNS behavior of
malware-infected processes differed significantly from the
Application-DNS profile of benign apps. Then they used a
dataset that contained over 130 million DNS queries from
real-world businesses and 8 million requests from a sample
of malware operating in a sandbox setting to create six
distinct characteristics based on the Application-DNS profile.
compared the new characteristics’ detection performance to
those of previously suggested features and found that they
were capable of recognizing 190 malware-injected processes.
Overall, The findings indicate that fine-grained program-
DNS properties may be used to develop detectors for attack
actions that escape present detection systems [8].

Jin et al. Developed an application registry and DNS
request monitoring based on the They concentrate on these
peculiarities. They offer a software-defined networking
(SDN) and DNS Response Policy Zone (DNS RPZ) based
user terminal anomaly detection system. Outbound traffic ini-
tiated by unknown programs or intended for IP addresses not
obtained through DNS name resolution will be recognized
and banned at the user terminal in the proposed system [9].

In our study, we introduce Anteater, an application-
level monitoring system designed to meticulously profile
each benign program. Anteater achieves this by gath-
ering detailed data on the program’s network traffic,
thereby characterizing the specific nature of its network
activities. Such an application-level monitoring tool as
Anteater is adept at identifying and mitigating stealthy
cyber attacks, a capability that we explore in the following
section.

III. THREAT MODEL AND BEHAVIORAL MOTIVATION
Initially, we focus on illustrating the nature of stealth attacks
and the limitations of current malware detection systems in
identifying these covert threats.

A. EVADE HOST INSPECTION
Attackers often disguise their malicious activities by emu-
lating the behavior of trusted, benign applications, executing
actions through these programs to circumvent standard host
security protocols. A notable instance of this tactic is fileless
malware [10], which embeds its malicious code within
legitimate processes, thereby executing it stealthily [11], [12],
[13]. Such fileless attacks pose a significant challenge to
conventional defensive strategies due to their elusive nature.
In the following section, we delve into the three prevalent
types of fileless attacks.

1) PORTABLE EXECUTABLE INJECTION (PE INJECTION)
Malware can stealthily integrate its malicious code into
an already running process, bypassing the need to specify
a LoadLibrary location. This integration can be achieved
through simple shellcode or by invoking CreateRe-
moteThread. One significant advantage of PE (Portable
Executable) injection is that it eliminates the need for
the malware to write the malicious DLL onto the disk,
a step required in Load Library methods. Instead of creating
a DLL path, the malware embeds its code directly into
the host process using WriteProcessMemory (e.g., through
VirtualAllocEx). However, this technique faces the challenge
of adjusting the base address of the injected image. When the
malware injects its PE into a different process, it is assigned
a new base address, necessitating dynamic recalibration
of the PE’s fixed address. To overcome this, the malware
must locate the relocation table address of the host process
and correctly resolve the absolute address. This method
leaves no files on the hard drive, aligning it with other
fileless techniques like reflective DLL injection and memory
modules [13]. Conversely, methods like memory modules
and reflective DLL injection are notably more challenging
to detect. These techniques operate without the need for
additional Windows APIs, as they execute entirely in
memory, bypassing functions like CreateRemoteThread or
LoadLibrary. Reflective DLL injection involves a DLL that
self-maps into memory during execution, independent of the
Windows loader. The in-memory module approach bears
similarities to reflective DLL injection. However, in this case,
it is the injector or loader that takes on the responsibility of
mapping the target DLL into memory, as opposed to the DLL
mapping itself, as illustrated in Fig. 1.

FIGURE 1. PE injection.

2) PROCESS HOLLOWING
Instead of employing traditional code injection methods like
DLL injection, malware can opt for a technique known
as process hollowing. This method involves the malware
first removing (or ‘hollowing out’) legitimate code from
a target process’s memory. Subsequently, it replaces this
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vacated memory space with a malicious executable, a tactic
often employed with common processes (e.g., svchost.exe).
The malware initiates a new process to accommodate its

FIGURE 2. Process hollowing.

malicious code in a suspended state. As depicted in Fig. 2,
this is achieved by employingCreateProcesswith the process
creation flag set to CREATE SUSPENDED (0× 00000004).
The main thread of this newly created process remains in
suspension until the ResumeThread function is activated.
The malware’s next step involves replacing the original file’s
content with its harmful payload. To unmap the memory
of the target process, it executes ZwUnmapViewOfSection
or NtUnmapViewOfSection, both of which effectively free
the memory associated with the section. Following the
memory unmap, the loader utilizes VirtualAllocEx to allocate
new memory for the malware and WriteProcessMemory to
transfer each segment of the malware into the target process’s
space. Finally, SetThreadContext is used by the malware to
redirect the entry point to the newly inserted code section.

3) THREAD EXECUTION HIJACKING
This approach bears resemblance to the previously discussed
process hollowing technique. Thread execution hijacking is
a type of malware attack that focuses on existing threads
within a process, deliberately avoiding the creation of new,
conspicuous processes or threads. In such scenarios, one
might observe the invocation of CreateToolhelp32Snapshot
and Thread32First, followed by OpenThread, to analyze the
target process, as illustrated in Fig. 3. Upon acquiring a han-
dle to the target thread, the malware employs SuspendThread
to pause the thread, setting the stage for injection. It then
uses VirtualAllocEx and WriteProcessMemory for memory
allocation and code injection. The injected code often
includes elements like shellcode, a pathway to the malicious
DLL, and the address of LoadLibrary.

B. EVADING IPS MONITORING
Intrusion Prevention Systems (IPS) have been fundamental
in bolstering perimeter security. Attackers, in their quest to
bypass IPS monitoring, are increasingly leveraging public

FIGURE 3. Thread execution hijacking.

TABLE 1. Function description.

and widely trusted web services to blend their malicious
traffic with legitimate network activities. A notable instance
of such tactics is the HammerToss malware [14], which
ingeniously employs cloud services, like a Twitter account
or an image hosted on Github [15], to obscure its Command
and Control (C&C) communications. This method is gaining
traction among cyber threats, as evidenced by the Turla
malware [16].
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FIGURE 4. The POSHSPY attack uses the Google cloud service to reach its C&C server by injecting activities through the Windows Management
Interface event.

C. STEALTHY ATTACKS
Given the increased opportunities to reduce their detectable
presence both on the host and within the network, we observe
that attacks integrating the aforementioned methods tend to
be more clandestine.

Fig. 4 depicts the APT29 POSHSPY malware, a paradigm
of an attack designed to elude conventional host and network
detection mechanisms. Following its initial breach, the attack
secures its presence on the compromised system by integrat-
ing a backdoor mechanism within a Windows Management
Interface (WMI) event. It then employs domain fronting
to establish a connection to a Google Cloud-based proxy
server. This connection, while appearing to be a legitimate
interaction with a Google service, actually conceals its true
endpoint within encrypted traffic. Ultimately, this proxy
server facilitates a connection to the attacker’s Command and
Control (C&C) server via the Tor network.

Kazuar [17] stands as another notable instance, a versa-
tile backdoor Trojan that targets explorer.exe and utilizes
authentic WordPress websites for its Command and Con-
trol (CC) operations. Additionally, the Empire framework,
an open-source tool for post-exploitation, includes modules
for cross-process injection such as Invoke-PSInject [18].
Platforms like Dropbox and GitHub are also increasingly
being repurposed as CC servers in these scenarios.

Although various strategies have been developed to
address the issue of malicious code being injected into
benign applications, the majority of detection methods still
predominantly depend on manual analysis and heuristic
approaches [19], [20].

D. THREAT MODEL
obscure their network traffic, attackers may compromise
end-host systems by injecting malicious code into estab-
lished, trustworthy, and seemingly harmless applications.
Additionally, they can configure Command and Control
(C&C) servers in various manners, including the use of
well-known online services as relay points for their C&C
communications. In our research, we operate under the
assumption that the process data sourced from the kernel

space remains unaltered, thus deeming the kernel as a reliable
entity. This assumption aligns with the threat models utilized
in prior studies focusing on system monitoring. Our study’s
purview does not extend to kernel-level attacks that could
undermine security monitoring mechanisms [21], [22], [23].
Nevertheless, we have contemplated the scenario where
an attacker might compromise our data collection systems
and alter the data transmitted to our backend database.
To safeguard the integrity of our data, we corroborate the
information obtained from our collection systems with kernel
logs and local network traffic records.

IV. ANTEATER: PROGRAM NETWORK BEHAVIOR
SYSTEM MODEL
In this section, we focus on the svchost program as a
case study to demonstrate the application of our developed
Anteater system for monitoring application traffic behavior.
We elaborate on the methodology employed for data collec-
tion and provide a comprehensive description of the dataset
utilized. Additionally, this section includes a summary of the
data along with a detailed explanation of our data processing
techniques.

A. ANTEATER: DESIGN SCHEME AND PREMISE
Numerous studies have proposed examining DNS activities
on servers located at different levels of the DNS hierarchy
beyond the host [24], [25]. Notably, when malware com-
municates with its Command and Control (C&C) servers
via legitimate web services, DNS queries (like those for
mail.google.com) might appear benign. Such activities can
easily evade traditional network-based detection methods,
underscoring the need for vigilance. Conversely, various
host-based detection strategies have been developed, utilizing
both static and dynamic analysis to identify malware
[19], [26]. However, the complexity of detecting an attack
increases when malware is injected through an ostensibly
innocent program.

Detecting malware injection attacks that utilize legit-
imate services for Command and Control (CC) server
interactions presents a significant challenge. This situation
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necessitates the exploration of advanced, fine-grained detec-
tion methodologies.

To effectively pinpoint covert attacks, we posit that each
benign application should possess a distinct network traffic
profile, delineating the expected behavior of its processes.
Since the network traffic patterns of a program’s benign
processes are typically consistent with the program’s inherent
logic, we anticipate these patterns to exhibit a high degree
of stability. Conversely, when malware infiltrates a program,
it alters the process’s behavior, leading to deviations from the
program’s established traffic norms.

The network traffic profile for a specific application,
such as svchost.exe, is a critical component in our analysis.
This profile is derived by integrating network-based traffic
statistics with process-level information from the kernel.
The svchost.exe application, upon executing its executable
binaries, initiates multiple processes. These processes are
involved in data transmission and form connections pre-
dominantly with Microsoft’s servers. The analysis of target
ports and IP addresses reveals their associations with specific
countries and organizations. Notably, the network traffic
profile of the svchost process frequently indicates connec-
tions to Akamai and Microsoft registries. To enhance our
understanding, new metrics will be developed to assess the
network traffic profiles of each benign program, as depicted
in Figure 5.

B. ANTEATER: DATA COLLECTION SYSTEM
Our Anteater system, specifically developed to function
on end-host computers, is dedicated to the comprehensive
collection of network data. This includes detailed network
traffic activities and associated process and program-level
information, such as destination ports and IP addresses,
which are crucial for identifying the origins of network traffic
flows. The design and operational framework of Anteater are
depicted in Figure 6.
The operational sequence of our Anteater system is

depicted in several steps within the figure. Initially, in step
(1), the journey begins with a process being initiated by
an executable program, which subsequently commences
transmitting data externally. Following this, in step (2), the
traffic generated by this process is captured and routed to
the Anteater data collection framework. The next phase,
step (3), involves the forwarding of this process data to
the Internet, facilitated by the Anteater agent. A critical
aspect of our methodology is the interception and analysis of
network flows and inter-process communications by our data
collection tools, ensuring accurate association of network
traffic with its originating process.

In the initial stages, specifically steps (1), (2), and (3), the
Anteater system passively captures network traffic activities,
including destination ports and IP addresses. This collection
is intricately linked with process-level data, encompassing
elements such as process ID and start time.

At each endpoint, the Anteater system aggregates the data
accumulated from steps (1) to (3). This consolidated data,

TABLE 2. Summary statistics of benign datasets.

encompassing both network and process information, is then
systematically transmitted to a centralized back-end data
warehouse as outlined in step (4).

The final stage, denoted as step (5), involves the Anteater
machine learning module. This module conducts a real-time
analysis of the data stored in the warehouse. Additionally,
it retrieves registration details of the requested IP addresses
from an external WHOIS server, thereby enriching the
analysis with crucial contextual information.

C. BENIGN AND MALWARE DATA COLLECTION
In a corporate environment, we deployed the Anteater data
collection system across 50 Windows-based workstations.
This system meticulously records the daily network traffic
activities associated with every process on each workstation,
utilized by actual users. The implementation of this data
collection was conducted with the full approval and oversight
of the company’s legal department, ensuring compliance with
all relevant legal and ethical standards.

Our data collection methodology aligns with the orga-
nization’s privacy policies, guaranteeing that the gathered
data is strictly accessed through secure channels and only
by authorized personnel. As detailed in table 2, the data
collection spanned from 2020 to 2022. During this period,
we successfully gathered in excess of 400 million network
session logs, originating from more than 6556 distinct
processes.
Data Integrity: Guaranteeing the security and integrity of

our collected data is paramount. While all end-host systems
are safeguarded by corporate-level firewalls and undergo
continuous surveillance, we adopt additional measures for
enhanced security. This involves the integration of executable
binary signatures (utilizing MD5, SHA-1, or SHA-256
algorithms) for all gathered processes. These signatures
are then meticulously cross-referenced with the VirusTotal
malware databases. Furthermore, to reinforce the reliability
of our data, we conduct thorough manual verifications as an
additional layer of scrutiny.
Malware Dataset: In our study, we employed mal-

ware instances sourced from CobaltStrike [5] to replicate
authentic attack scenarios. These samples were accumulated
over the period from 2020 to 2022. Utilizing VMware
Vsphere [27], we established a controlled experimental setup
where each malware instance was executed in isolation.
This approach was designed to circumvent the activation
of the diverse anti-virus mechanisms inherent in the mal-
ware. In this controlled environment, we integrated an
Anteater data collection framework. This framework was
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FIGURE 5. Program network profile of svchost.exe.

FIGURE 6. Data collection system anteater.

tasked with the collection of malware data, mirroring the
process used for gathering benign data in actual user
workstations.
Malware-Injected Processes: In our experimental setup,

we first documented the standard operational patterns of
benign processes within the sandbox environment. Following
this, malware was introduced into the sandbox, potentially
leading to the corruption of these benign processes through
the injection of malicious code [11]. Our objective was to
compile a comprehensive database of these malware-altered
processes. These processes, while outwardly appearing
innocuous, are in fact manipulated by malevolent logic.
Our focus was on identifying and segregating processes
that deviated from their typical behavior post-malware
exposure. Processes that independently executed malicious
activities were excluded from our study, as their distinct
binary signatures make them relatively straightforward to
identify.

D. DATA PREPROCESSING AND STATISTICS
The ultimate aim of our study is to construct distinct network
traffic profiles for each legitimate program using data derived
from our benign dataset. This will enable us to distinguish
between genuine programs and those compromised by
malware, despite originating from the same benign source.
To achieve this, we engage in a two-step data preparation
process.

• Consolidation of processes under their respective pro-
grams. Each unique executable binary, or program,
can initiate multiple processes. We aggregate these
processes under their originating program, analyzing
their collective behavior. This approach enables us to
formulate a comprehensive behavioral profile for each
application, considering its deployment across various
workstations and users. In our benign dataset, this
method led to the identification of 453 distinct programs.

• Investigating the connection between program activities
and network sessions. Programs typically generate
a multitude of network sessions, each with unique
characteristics. We focus on the correlation between the
program’s network activity and the specific destination
addresses and ports it accesses. For instance, in exam-
ining the network sessions of Skype.exe, we identified
two primary public addresses and a destination port that
characterize its network footprint. The port 443 is iden-
tified as the primary destination port for Skype services,
while the addresses 13.107.42.16 and 52.174.193.75
are recognized as key destination addresses for these
services.

After completing the preliminary processing steps men-
tioned earlier, Fig. 7 illustrates the cumulative distribution
function (CDF) of the average count of unique IP addresses
accessed by the processes of each benign application,
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presented on a logarithmic scale. The data reveals that a vast
majority (98%) of applications initiate queries to no more
than 20 distinct IP addresses, with a significant portion (64%)
limiting their queries to 10 or fewer unique IPs. However, the
CDF demonstrates a pronounced long tail, indicating that a
minority of applications engage with a substantially higher
number of different IP addresses.

FIGURE 7. The average number of different IP addresses searched by
each program’s processes (log scale).

In Fig. 8, a heatmap is presented, utilizing a logarithmic
scale to detail the diversity in IP address connections
among various programs. The data showcases a list of
the top ten applications based on the count of unique IP
addresses they access. Notably, browsers such as Chrome,
Firefox, and Edge are prominent at the top of this list.
This observation underscores the inherent differences in the
types of applications: User-interactive applications, like web
browsers and email clients (e.g., Outlook), tend to exhibit
a broader range of IP address interactions. In contrast,
applications with non-interactive functionalities generally
display more consistent and predictable network behavior.

V. PROFILING PROGRAM NETWORK TRAFFIC BEHAVIOR
Stealth attacks frequently employ the tactic of embedding
malicious code into otherwise harmless software. This
code then mimics legitimate network traffic, effectively
camouflaging its presence [11]. Such strategies ingeniously
establish Command and Control (CC) channels, often using
authentic domain names for concealment [14], [28], [29].
Conventional malware detection techniques, focusing on
matching executable files to known malware signatures
or analyzing DNS requests, may fail to detect these
sophisticated threats, erroneously classifying them as benign.

Our research aims to formulate a unique network traffic
signature for each authorized software application, thus
enabling accurate identification of normal activities versus

FIGURE 8. Top 10 programs in terms of the number of different IP
addresses.

stealth attacks. We hypothesize that even when a pro-
gram leverages legitimate network connections and domain
queries, the pattern of its network interactions under normal
circumstances will be distinctly different from when its
processes are corrupted by malware.

To realize this goal, we propose the implementation of two
novel metrics to construct detailed network traffic profiles
of programs and differentiate between their regular and
malware-infected operations: (1) Varieties of IP Address
Types and (2) Analyses of Frequency Ratios and Consistency
Ratios.

A. FREQUENCY RATIO AND CONSISTENCY RATIO
Most legitimate software applications characteristically reach
out to certain IP addresses with regularity. As demonstrated
in Fig. 5, the svchost software, for instance, predominantly
communicates with IP addresses linked to Microsoft servers.
These servers, affiliated with Microsoft Corp, are distributed
globally, with notable locations including the USA (United
States of America), IRL (Ireland), IND (India), and SGP
(Singapore). Such patterns are typical for svchost processes.
Nevertheless, some processes from nominally benign appli-
cations may engage in less typical activities, like connecting
to specific ad servers, which also warrants monitoring within
these applications’ usual operations.

To accurately map these expected patterns for each
software, our methodology encompasses an analysis of all
activities initiated by benign programs in our database.
We introduce a frequency ratio metric, which gauges the
regularity of specific behaviors, like the frequency of IP
address queries. Following this, we calculate a consistency
ratio to evaluate how aligned a process’s activities are with
the normative behaviors of that software. This involves, for
example, checking whether the process queries IP addresses
that are typically accessed by the majority of benign
processes of the same software. The forthcoming sections
will elaborate on these methods in greater detail.

B. IP ADDRESS CONSISTENCY RATIO
The frequency ratio for an IP address is defined initially as
the proportion of processes in a specific program that queries
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the IP address as follows:

Frequency_Ratioant,ipi

=
# benign processes of ant querying ipi

total # benign program of ant
(1)

In our framework, ant symbolizes the name of a selected
benign program, and ip represents a collection of IP addresses
queried by the benign processes associated with ant .
The Frequency Ratio is computed as follows: Suppose, for

instance, that 90% of valid Svchost processes are observed
to initiate requests to 104.208.16.88. In such a case, the
Frequency Ratio for the pair Svchost, 104.208.16.88 is
assigned a value of 0.9. On the other hand, if no benign
process of ant has ever inquired about ipi, the ratio is set to
one. Similarly, this ratio is maintained at one if there is at least
one query to ipi by any benign process. This metric aims to
quantify the regularity with which an IP address is solicited
in benign operations, offering a precise and effective means
of measurement.

In the case of a single process (whether benign or malware-
injected), we define IP address consistency ratio as the
average of Frequency Ratio ant, ipi for all of the IP addresses
ipi that have been queried by the process, as follows:

IP_Address_Consistency_Ratiopid

=

∑
ipi∈A Frequency_Ratioant,ipi

|A|
(2)

In this context, pid denotes the specific process under
consideration, ant refers to the benign program initiating pid ,
and A symbolizes the set of IP addresses queried by pid .
For instance, if Frequency_RatioSvchost,104.208.16.88 =

0.9, and a Svchost process only queries 104.208.16.88,
then its IP_address_Consistency_Ratio is 0.9. Quite the
opposite, in fact, if a Svchost process only queries
40.119.249.228, where Frequency_RatioSvchost,40.119.249.228
= 0, then its IP_Address_Consistency_Ratio It is possible
that this Svchost process was maliciously begun by a
malware-injected Svchost application, as shown by the value
of 0. The concept behind this metric is to assess how
consistent the behavior of a process is with the behavior of
known benign processes within the same program, which is
based on previous experience.

C. REGISTRANT CONSISTENCY RATIO
We now expand the research to include information about IP
address registration, namely the IP address registrant. This
is to account for potential churn or variation in IP address
inquiries.

For example, if half of the Svchost is dedicated to process-
ing just requests of type 104.208.16.88 and the other half
only queries of 40.119.249.228, then the Frequency_Ratio
Svchost,104.208.16.88 and Frequency_Ratio Svchost,40.119.249.228
will both become 0.5, which is relatively low. However,
we may look at the IP address registrant instead of looking
at the actual IP address. Then we will see that both

104.208.16.88 and 40.119.249.228 have the same registrant,
which is Microsoft Corporation As a result, integrating
registrant data may help to round out the Frequency_Ratio
and Consistency_Ratio analyses.

According to the definition, the fraction of processes
in a single application that query at least one IP address
registered by the registrant is frequency_ratio for an IP
address registrant, as follows:

Frequency_Ratioant,regi

=

# benign processes of ant querying
ip address registered by regi

total # benign processes of ant
(3)

where ant is the name of a particular benign program, and regi
is the IP address registrant of at least one IP address queried
by benign processes inside the program.

In the above example, the Frequency Ratio of Svchost,
Svchost will be one since half of the Svchost processes only
query 104.208.16.88 and the other half of processes only
query 40.119.249.228 and the Frequency Ratio of Svchost,
Svchost will be one, the Frequency_RatioSvchost,Svchost will
be 1. This metric measures how common an IP address
registrant is when a benign process queries an IP address.

Following that, we define the procedure for a certain
process Registrant_Consistency_Ratio (either benign or
malware-injected).Similar to the IP_Address_Consistency_
Ratio, it’s the average of Frequency_Ratioant,reg(ipi):

Registrant_Consistency_Ratiopid

=

∑
ipi∈A Frequency_Ratioant,reg(ipi)

|A|
(4)

It’s worth noting that we’re getting the registrant for each
IP address sought by the process using reg(ipi). If no other
benign approach has been used to identify the registrant, then,
identical to the case of IP address frequency, the registrant’s
Frequency_ Ratio will be 0. However, in exceptional
circumstances, we may be unable to discover any registrant
at all, such as when IP address registration information is
unavailable, or the IP address is a Private IP enquiry. If the
IP address ipi is a reserved IP address that by definition
does not have a registrant, we appoint Frequency_Ratio = 1;
otherwise, we assign 0 if the IP address registrant cannot be
identified on the WHOIS server.

D. COUNTRY CONSISTENCY RATIO
We take into account the country where the IP address
registrant is situated in addition to using IP address
registrant information. The criteria for IP address country
Frequency_Ratio and Consistency_Ratio are fairly similar to
those for IP address registrant:

Frequency_Ratioant,ctyi

=

# benign processes of ant querying
ip address registered by ctyi

total # benign processes of ant
(5)
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Country_Consistency_Ratiopid

=

∑
ipi∈A Frequency_Ratioant,cty(ipi)

|A|
(6)

If the country information for an IP address cannot be
found, country ipi is treated identically to reg ipi.

TABLE 3. Number of programs and processes in each group.

It’s worth noting that we’ve provided a number of different
options Frequency_Ratio and Consistency_Ratio to profile
the program’s IP address habits, use the criteria above,
although other ratios may work as well.

VI. EVALUATION FOR CONSISTENCY RATIOS
From our data, we now analyze the three consistency
ratios. To help you see the distinction between benign and
malware-injected processes, we’ll go through the five types
of processes we’ll be looking at.

• Non-interactive Benign: In the benign dataset, there are
benign processes of non-interactive applications.

• Non-interactive Common (subset of Non-interactive
Benign): In the benign dataset, there are benign pro-
cesses of non-interactive applications; however, in the
malware dataset, the same applications are injected by
malware.

• Non-interactiveMalware: In the malware dataset, mal-
ware injected malicious processes into non-interactive
benign Apps.

• Interactive Benign: In the benign dataset, there are
benign processes of interactive programs.

Please keep in mind that interactive programs include
chrome.exe / firefox.exe / edge.exe all other programs
are classified as non-interactive programs. The number of
programs and processes in each category is shown in Table 3.
Non-Interactive Programs: Fig. 9 shows the IP address

consistency ratios of Non-interactive Benign and Non-
interactive Common processes are pretty high, with more
than 85% of the processes having values greater > 0.96.
Non-interactive Malware, on the other hand, which is the
malware-injected processes of the same 32 applications in
Non-interactive Common, has substantially lower IP address
consistency ratios, with 90% of the processes having values
of < 0.2.

The registrant consistency ratio follows a similar trend
to the IP address consistency ratio, with extremely high
registrant consistency ratios for Non-interactive Benign and
Non-interactive Common processes and very low rates for
Non-interactive Malware processes. Due to the substantially
smaller range of nations, the Non-interactive Malware

procedures have relatively greater country consistency ratios
than the preceding two ratios. They are, however, much
smaller than the ratios resulting from benign processes.
Interactive Programs: The dynamic nature of user-

interactive applications, like web browsers, presents chal-
lenges in modeling their network traffic behaviors. Prior
studies have limited their analysis to network activities within
the initial 120 seconds to mitigate the impact of user-driven
network interactions [30]. However, this approach might
overlook malware that delays its network activity beyond this
window.

In our approach, we introduce an innovative method to
characterize network traffic from interactive applications
using frequency ratios and consistency ratios, tailored at
a more granular user-level. This involves analyzing all
processes for each user and each program, instead of aggre-
gating data across all users for each program. We operate
under the assumption that individual users have distinct
sets of frequently accessed IP addresses. By profiling these
unique network traffic patterns at both program and user-
levels, we can effectively identify and differentiate malware
activities. Notably, our analysis encompasses the entirety of
a process’s actions, not just its initial phase, as illustrated in
Fig. 10.
Observations reveal that while the IP address consistency

ratio for Interactive Benign is lower compared to non-
interactive processes, it still markedly differs from that of
Interactive Malware. Malware-infected interactive processes
tend to exhibit more erratic behavior with a diverse range of
queries.

Additionally, both Interactive Benign and Interactive Mal-
ware show higher values in registrant and country consistency
ratios compared to IP address consistency ratios, due to a
more limited variety of registrants and countries involved.
However, a clear distinction exists between the two. Given
our data collection setting in Macau, Interactive Benign
processes display a significantly high country consistency
ratio, suggesting that despite accessing IP addresses from
various registrants, most IPs are registered within Asia.
In contrast, Interactive Malware processes, not influenced by
such user patterns, demonstrate considerably lower country
consistency ratios.

A. IP ADDRESS TYPE ANALYSIS
Consistency ratios are traditionally derived from IP address
data collected from historical benign processes. However, this
method encounters limitations when a process queries a new
IP address, previously unrecorded in our datasets. To address
this challenge, we employ the Anteater dataset to implement
an IP address type analysis. This innovative approach is
designed to predict the likelihood of an IP address being
anticipated in a benign context, even when it has not been
encountered in prior benign activities. This methodology
provides a more robust framework for evaluating the nature
of newly observed IP addresses, enhancing our ability to
accurately assess unfamiliar network activities.
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FIGURE 9. Consistency ratios for non-interactive processes.

FIGURE 10. Consistency ratios for interactive processes.

We categorize IP addresses into three types:
• Reserved: All IP addresses that are specified as Private
IP are included in this category.

• Owner:Ownership refers to IP addresses that are owned
by the same corporation/entity/organization thatowns
the application. We will present specific methods for
determining and comparing ownership.

• Other: All additional IP address information does not
fall into one of the two categories listed above.

B. IDENTIFY OWNER IP ADDRESS FOR A PROGRAM
The classification of an ‘Owner’ type IP address is applied
when it is registered by the same entity that owns the software.
For instance, IP addresses 52.114.40.58 and 52.113.194.132
are categorized as ‘Owner’ type for Teams.exe, a component
of the Teams framework, developed and authenticated by
Microsoft, who is also the registrant of these IP addresses.
Establishing this link requires access to ‘owner’ details for
both the software and the IP address.
Owner for program. We collate our data from three key

sources: (1) The program’s name itself, like Update.exe,
which suggests a Microsoft association. (2) The code
signature of the program binary, which identifies the
program signer. (3) The application’s file path, such
as C:/Users/Windows 10/AppData/Local/Microsoft/Teams/
Update.exe, indicates Microsoft’s ownership of Update.exe.

Owner for IP address. Our primary source here is the
registrant information from the WHOIS record of the IP
address.

For our analysis, while compiling ‘owner’ information,
we standardize organizational names by omitting common
designations like Corporation, LLC, etc.

C. IP ADDRESS TYPE DISTRIBUTION FOR COMMON
PROGRAMS
The IP address type distributions We examine IP address
type distributions for Non-interactive Common and Non-
interactive Malware processes across 32 standard applica-
tions. The process involves calculating the proportion of each
IP address type (Reserved, Owner, Other) in the total IP
addresses accessed by each process. Then, we aggregate these
proportions across all processes of a given application to
determine the average distribution of each IP address type.
This allows us to make comparative assessments between
benign and malware-infected processes within the same
software.

Furthermore, we categorize programs based on their origin
into (1) system programs, typically pre-installed with the
Windows OS, and (2) user-installed applications.

Our analysis reveals a distinct pattern: malware-infected
processes tend to query a significantly higher propor-
tion of ‘Other’ IP addresses compared to their benign
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TABLE 4. IP address type distributions for all programs.

FIGURE 11. For all processes of non-interactive applications, a fraction of
Other IP address type is used.

counterparts. Additionally, benign processes from system
programs are observed to access fewer non-Reserved IP
addresses (Owner + Other) compared to those originating
from user-installed applications.

Contrastingly, malware-injected processes, whether from
system software or user-installed applications, show a similar
tendency in querying a large number of ‘Other’ IP addresses.

D. IP ADDRESS TYPE DISTRIBUTION FOR ALL PROGRAMS
Our study’s scope has been broadened to encompass
an extensive analysis of both non-interactive benign and
malicious (or malware-infected) applications. This compre-
hensive approach is reflected in Table 4, which presents a
detailed breakdown of the number of applications linked to
each type of IP address distribution, categorizing them into
benign and malicious groups.

Our analysis reveals that a significant portion, exceeding
65%, of benign applications predominantly engage with
either Reserved or Owner IP addresses. This distinct pattern
is notably advantageous, as it facilitates the prediction of
potential IP addresses that might be queried by processes
within these applications. In stark contrast, a mere 6.5% of
malware-infected programs exhibit a similar trend in their IP
address requests.

In Fig. 11, the Cumulative Distribution Function
(CDF) illustrates the variation in the percentage of
‘Other’ IP address types accessed by processes within
non-interactive benign and malicious applications. This
depiction highlights a significant disparity in the frequency

of ‘Other’ IP address usage between benign and mali-
cious processes. Notably, the malicious processes exhibit
a markedly higher reliance on this category of IP
addresses.

VII. DETECTION USING NETWORK TRAFFIC PROFILE
In this research, we have developed a network traffic
profile, incorporating consistency ratios and IP address
types, that effectively discriminates between benign and
malware-infected processes. These processes originate from
the same benign application and exhibit similar program-
and process-level characteristics. This section expands on
how we enhance the utility of the network traffic profile
by converting it into six novel features. These features
are instrumental for training machine learning classifiers to
accurately identify malware-infected processes in real-world
scenarios. Furthermore, we benchmark the detection efficacy
of our newly proposed features against those previously
established in the field [31].

A. DATASET AND FEATURES
Our analysis focuses on processes from 32 commonly used
applications present in both benign and malware datasets
to determine the accuracy of detecting malware-infected
processes. The specifics of the data employed for detection
are outlined in Table 5.

For each malware dataset, we pinpoint the malware-
infected processes initiated by programs also found in the
benign dataset. Concurrently, we identify the corresponding
benign processes initiated by these same programs from
the benign dataset. The column Process Samples in each
dataset enumerates the number of identified benign and
malware-infected processes.

The following six new features are used to detect
malware-injected processes based on network traffic profiles:

1) IP address consistency ratio
2) Registrant consistency ratio
3) Country consistency ratio
4) Percentage of Reserved IP address type
5) Percentage of Owner IP address type
6) Percentage of Other IP address type
We consider two factors while evaluating our new features:
• Cross-validation on each dataset. To validate the
effectiveness of our proposed features, we conduct ten-
fold cross-validation for each dataset spanning the years
2020-2022. Additionally, we analyze the results both
with and without the application of SMOTE [32] to
balance the data.

• Comparison with previously-proposed features. Our
methodology entails using the 2020 datasets for training
purposes and the 2021 and 2022 datasets as test
sets. This approach mirrors real-world scenarios, where
models trained on existing data are subsequently applied
to predict future cyber threats. We also juxtapose the
detection outcomes of our features with those that have
been previously proposed in the domain.
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B. CROSS-VALIDATION USING ANTEATER
We employed the Random Forest classifier to perform ten-
fold cross-validation across datasets from 2020 to 2022.
While Random Forest serves as a primary example to
demonstrate the efficacy of our novel features, it’s worth
noting that other classifiers might also yield similar results.
The effectiveness of various classifiers in comparison will be
discussed in the subsequent section.

In our classification process, we focus on evaluating the
true positive rate (TPR) and false positive rate (FPR). TPR
represents the percentage of correctly identified malicious
processes, whereas FPR is the proportion of benign processes
incorrectly classified as malicious. We visualize this relation-
ship using the receiver operating characteristic (ROC) curve
and the precision-recall curve Fig12.

Post-application of the SMOTE technique for balancing
benign and malicious samples, we observe the ROC curve
and precision-recall curve outcomes from the ten-fold cross-
validation using Random Forest for each dataset. Both
the ROC AUC and precision-recall AUC scores exceed
0.99 for all datasets. Table 6 details the results derived from
datasets with and without SMOTE oversampling. At the
optimal point–where the difference between TPR and FPR
is maximal–we note that the discrepancy between using
datasets with or without SMOTE oversampling is minimal.
Additionally, in most datasets, a high TPR over 99% is
achievable alongside a very low FPR 0.1%.

C. CASE STUDY ON POSHSPY
In this part of our study, we investigate POSHSPY,
a sophisticated malware variant. As outlined in Sec III-C,
POSHSPY employs a Fileless strategy, camouflaging its
backdoor functionality within WMIC events that carry a
PowerShell payload. To elude detection, it utilizes the Meek
Tor plug-in, establishing a connection first to a Tor entry
relay masquerading as a Google Cloud Service, and then
proceeding to its Command and Control (C&C) network.

For experimental purposes, we replicated the POSHSPY
payload using Cobalt Strike and executed the malware in
a controlled environment, closely monitoring the resulting
network traffic. To mimic the attack setting, we allowed the
malware to establish connections to IP addresses associated
with both Azure and Google Cloud.

Analysis of the data revealed that the malware comman-
deered a PowerShell process to execute its queries. This
included twelve separate requests to Azure cloud at one-hour
intervals and four requests to Google cloud spaced three
hours apart. We then applied our trained model, based on
the Section and 2020 datasets, for detection. Our system,
Anteater, successfully identified the malware-compromised
PowerShell process. However, traditional features failed to
detect the malware due to its seemingly benign process
information and network traffic patterns.

The collected data indicated that the malware had injected
commands into a PowerShell process, which made a series

of systematic queries including twelve to the Azure cloud
and four to the Google cloud, with one-hour and three-hour
intervals between the requests, respectively. Detection was
then performed using the model trained on the 2020 datasets.
Anteater detected the malware-infected PowerShell pro-
cess, but conventional baseline features were ineffective,
as they were misled by the process’s ostensibly legitimate
information and network traffic behavior.

VIII. FUTURE RESEARCH DIRECTIONS AND DISCUSSION
In this section, we examine contemporary malware detection
methodologies, including traditional network-based and host-
based solutions, alongside an innovative process-level detec-
tion approach that amalgamates network and process-level
data for enhanced accuracy. Additionally, we delve into
two specific types of malware that embed their malicious
code into legitimate applications and establish Command
and Control (C&C) channels via legitimate IP addresses.
Lastly, we address the complexities associated with detecting
malware that embeds itself into interactive platforms, such as
web browsers.

A. EXISTING DETECTION SYSTEMS
Network-Based Detection Systems: Monitoring and analyz-
ing DNS traffic of Internet servers forms the cornerstone
for combating threats like fast-flux networks, bots, DGA
domains, and spammers. Various studies [33], [34], [35],
[36], [37], [38], [39], [40] have emphasized the importance
of scrutinizing DNS activities at different DNS hierarchy
levels to identify malicious domains associated with diverse
attacks. A comprehensive survey [41] has outlined existing
network-based detection techniques, covering various net-
work traffic aspects like packets and flow size. However, the
key difference between these approaches and ours lies in their
focus on identifying malicious domains, a strategy that falls
short against stealth attacks, where attackers utilize legitimate
online services and domains.
Host-Based Detection Systems: Focusing on malicious

applications and processes, host-based detection methods
employ strategies such as static analysis [42], [43], dis-
assembly, and reverse engineering. Nevertheless, malware
can often evade these techniques [44], [45], [46]. Owing to
the limitations of static analysis, dynamic analysis methods
have been developed, analyzing malware behavior during
execution, including function calls and information flow
tracking [19], [47], [48], [49]. These recommend examining
malware behavior in a controlled environment.

While advanced host-based detection methods are effec-
tive, they often necessitate extensive system monitoring,
which differs from our approach. We aim to introduce a
streamlined yet potent solution that gathers minimal data
fields, focusing on program network traffic behaviors. Our
method could complement host-based detection approaches
effectively.
Integrated Network-Based and Host-Based Detection Sys-

tem: A recent proposal by Sivakorn et al. [30] introduced
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TABLE 5. Detection dataset includes processes initiated by programs that are present across benign and malware datasets.

FIGURE 12. ROC curve and precision-recall curve with ten-fold cross validation using anteater.

TABLE 6. TPR and FPR for each dataset with ten-fold cross validation,
with and without SMOTE oversampling.

Program-DNS, a process-level detection system combining
network-based features (like DNS query name and answer)
with process-based features (such as code signing). This
system provides enriched data context and new integrated
features by merging domain and program information. How-
ever, it analyzes each process separately, lacking a detailed
Program network traffic profile at the program level through
joint process analysis. Consequently, it struggles to detect
stealthy attacks that utilize legitimate programs for network
connections via cross-process injection techniques [11], [50].

B. INTERACTIVE PROGRAM AS A TARGET FOR INJECTION
We have developed a unique program network traffic
profile tailored for interactive applications like browsers
and email clients. While our approach remains effective in
distinguishing between benign processes and those injected

with malware in such interactive applications, the prediction
of their network traffic patterns is inherently challenging due
to the dynamic nature of user interactions. Consequently,
interactive applications may inadvertently become prime
targets for malware injections, enhancing the stealthiness of
an attack.

However, attackers face significant risks when targeting
highly interactive applications for injection. The uncertainty
surrounding the presence or persistence of the target appli-
cation means that any anomalous behavior caused by the
injected malware is more likely to be noticed by users.
To maintain stealth and ensure persistence, attackers might
lean towards targeting long-running background processes
instead [12].

While there are instances of injection attacks on browser
programs [11], aimed at extracting sensitive user data like
passwords and credit card information from browsermemory,
browser developers like Google Chrome and Mozilla Firefox
have actively countered such threats. They have implemented
in-browser security mechanisms to thwart injection efforts by
external processes [51], [52], [53].

C. GENERALIZABILITY AND LIMITATION
Anteater, our innovative detection system, is versatile enough
for a wide array of environments. However, it is crucial
to recognize that the network traffic profiles it generates

VOLUME 12, 2024 8549



Y. Zhang et al.: Anteater: Advanced Persistent Threat Detection

can differ significantly across these environments. Therefore,
directly applying a model trained in a corporate setting to a
different environment, like home networks or data centers,
is not advisable. Instead, it is more effective to construct a new
profile and retrain the model for the specific environment.
An alternative approach could involve employing domain
adaptation techniques to adjust our trained model to new
settings.

Although Anteater is not specifically engineered to thwart
adaptive attackers, it inherently raises the bar for such
attackers targeting our system. For instance, if attackers aim
to remain undetected while injecting malware into programs
with highly predictable behavior patterns, like those never
querying textslnon-owner IP addresses, they face a strategic
dilemma. They must either relocate their Command and
Control (C&C) servers to textslexpected IP addresses, which
are typically limited in number and often high-profile (such
as Azure cloud IPs), or choose different programs as their
injection targets.

IX. CONCLUSION
Our research innovatively employed detailed measures to
create comprehensive profiles of benign program network
traffic. Implementing Anteater in a corporate environment,
we analyzed network sessions from 50 end-host PCs, totaling
over 400 million sessions, coupled with detailed program
and process-level data. Our findings highlight that, within the
same application, the network behaviors of malware-injected
and benign processes are distinct, despite having identical
program- and process-level information and being associated
with legitimate IP addresses. By scrutinizing malware
datasets spanning from 2020 to 2022, we established that our
novel metrics significantly outperform previously established
features, achieving a true positive rate of 94.5%. These new
features successfully detected malware-injected processes in
93.5% of test cases, with a remarkable 0% false positive rate,
a stark contrast to the 25.8% rate observed with previously
suggested features.

In summary, our study sheds light on the nuances of
program-level behavior to identify malware injections and
lays the groundwork for developing more sophisticated
security approaches against advanced malware threats.
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