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ABSTRACT In recent years, considerable effort has been directed towards non-contact Wi-Fi sensing
applications such as fall detection and vital sign monitoring. For emerging technologies in healthcare,
it is essential to assess the validity and repeatability of new measurement instruments before real-world
implementation. However, the existing literature has not addressed the clinical validity and repeatability
of respiration rate measurements obtained from Wi-Fi CSI. This study draws on medical instrumentation
statistics to address this research gap by investigating the validity and repeatability of Wi-Fi sensing
in measuring respiratory rates. For this purpose, we first implement a non-contact Wi-Fi Channel
State Information respiration rate sensing system using off-the-shelf ESP32 devices and signal processing
methods. Then, we evaluated the validity of the Wi-Fi sensor’s respiration rate measurement against
respiration belt NUL-236 as a ground truth. The Bland-Altman method provided homoscedastic results
across the standard range of respiration rates of older adults [12, 28] BPM achieving a validity of [1.29,
1.06] BPM, allowing us to analyze measurement repeatability at a single point. Hence, we assessed the
measurement repeatability at 14 BPM using the spread of the data and the implications of random error in
the measurements. The Wi-Fi CSI measurements dataset and corresponding belt data were made available for
the validity and repeatability experiments. By providing appropriate measurement validity and repeatability
metrics, care professionals can make informed decisions about the acceptability and generality of non-contact
Wi-Fi sensing systems in measuring respiratory rate.

INDEX TERMS Care, clinical acceptability, medical device evaluation, non-contact sensing, reliability,
repeatability, respiration rate, validity, vital sign measurement, Wi-Fi sensing.

I. INTRODUCTION

In most countries, including the United Kingdom, medical
and public health advancements have contributed to an
increase in life expectancy and the quality of life over the past
few decades [1], [2]. However, the population ages 65 and
over suffer the highest morbidity and mortality rates due to
geriatric disorders, such as illness and functional decline,
as well as injury-related conditions [3]. In response to the
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ageing population’s needs, there is an increasing demand for
health services and monitoring solutions.

With the use of emerging technologies, we are able to
move away from traditional hospital settings and provide
patient-centric care. The ability to remotely monitor patients
would have a positive impact on older people’s quality of life,
as they prefer to age in place and remain independent [4].
Additionally, the resulting continuity in patient records can
provide higher resolution data in terms of health status,
thereby helping to detect and predict health disorders [5].
It has been demonstrated that continuous monitoring of
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patient health status in hospital wards is more effective than
manual assessments during nursing rounds in identifying
deteriorating patients [6]. Incorporating sensing technology
into everyday objects and the environment in order to monitor
the health status of older individuals can alleviate the strain
placed on the health system. A sustainable alternative to some
aspects of traditional care could exist as a result of connected
systems and the Internet of Things.

An individual’s physiological parameters include body
temperature, blood pressure, heart rate (HR) and respiration
rate (RR), which provide a general picture of their health
status [7]. An investigation has found that RR and HR
changes are more reliable indicators of cardiopulmonary
arrest than any other vital sign [8]. In addition, the changes in
RR and HR correlate with illnesses such as sleep disorders,
cardiovascular disease, neurodegenerative disease, fall risk
and mental stress.

Traditionally, vital signs have been monitored using
wearable sensors, but these are not convenient for long-
term monitoring. The current gold standard device for
RR monitoring is the Capnograph, which uses a nasal
probe or a respiratory mask on the patient [9]. RR can
also be determined by monitoring thoracic exhalations
using a sensing belt [10]. The use of these solutions may
be considered obtrusive and restrictive for older persons;
contact-free vital sign monitoring solutions are therefore
preferred for continuous long-term care.

The validity and repeatability of non-wearable sensors play
a critical role in their long-term usability. If an instrument
contains significant errors, it is unlikely to serve its purpose
or provide accurate data for making important decisions. It is
therefore imperative that a health care professional determine
the amount of error that is acceptable between an intrusive but
accurate device versus a non-intrusive but less accurate device
that will not interfere with their care decision-making for
older patients. Previous studies have evaluated the validity of
wearable sensors for RR measurements [11], [12]; however,
no research has yet been conducted to ascertain the validity
and repeatability of Wi-Fi sensing as a method of RR
measurement. Previous studies have focused on system
implementation rather than on measurement assessment for
clinical and care use [13], [14] [15]. This study addresses
this research gap by developing methods to investigate the
validity and repeatability of Wi-Fi sensing measurements for
respiration rate estimation in older adults.

This study aims to contribute to the growing field of Wi-Fi
sensing research by introducing an analytical framework
and experimental measurement methodology for assessing
the viability of Wi-Fi-based sensing as an instrument for
respiratory monitoring in care. The main contributions of this
study are as follows:

o The experimental design and evaluation of the validity
of non-contact Wi-Fi Channel State Information (CSI)
sensing using a low-cost ESP32 Microcontroller Unit
(MCU). This was done for the resting RR range for
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older adults against a ground-truth respiration belt
logger NUL-236 by the Bland-Altman method. The
validity of respiration rate measurements has been
previously evaluated for wearable devices, but no work
has addressed this for non-contact Wi-Fi sensing, which
is vital for assessing its measurement robustness for
clinical adaptation [11], [12].

o The development of an experimental evaluation tech-
nique to assess the repeatability of Wi-Fi sensing-based
RR measurements accordingly. Since the Bland-Altman
method produced homoscedastic results, this enables
the examination of the repeatability of measurements
at a single point in the respiration range of 14 BPM.
Although previous studies have addressed accuracy
metrics [13], [14], [16], [17], there has been no detailed
examination of the repeatability of RR measurements
using Wi-Fi CSI sensing to date.

For the aforementioned experiments, a comprehensive
dataset of Wi-Fi CSI measurements paired with the cor-
responding belt data was collected and made available on
IEEE Dataport for research reproducibility purposes [18].
The accompanying signal processing code will be made
available in the repository upon the completion of the project.

Il. RELATED WORKS

A. UNOBTRUSIVE SENSING

It is the purpose of unobtrusive vital sign monitoring to obtain
long-term data collection without encumbering users with
wearables by integrating sensors into everyday environments
and objects [19]. Hence, vital signs can be continuously
measured or over time without interfering with the patients’
daily lives, which enables the detection of physiological
anomalies and data-informed prediction of disorders [5].

In terms of unobtrusive sensing, we only discuss Radio
Frequency (RF)-based sensing methods for RR for brevity.
RF-based techniques consist primarily of radar and Wi-Fi
sensing implementations.

The types of radars that are used for vital sign mea-
surements are Doppler Continuous Wave (CW), Frequency
Modulated Continuous Wave (FMCW), and Impulse Radio
Ultra Wide Band (UWB-IR). CW radar sensing methods
are dependent on cardiorespiratory displacement. They are
based on the Doppler frequency shift incurred due to target
movement between the transmitted and received signal of a
radar transceiver [20]. Additionally, a Doppler-based sleep
monitoring system was proposed and evaluated in [21] for
sleep stage classification based on vital signs and on-bed
movements.

Unlike CW radars, which measure only the Doppler
frequency at the target, FMCW also measures the range using
chirp signals. In [22], low-power FMCW sweeping from
5.46 GHz to 7.25 GHz they used every 2.5 milliseconds
to extract vitals through walls and multi-person scenarios.
FMCW has a lower resolution for relative motion than
CW-Doppler. Hence, since CW and FMCW utilise the

6401



IEEE Access

A. Alzaabi et al.: Non-Contact Wi-Fi Sensing of Respiration Rate for Older Adults in Care

same hardware, [23], [24], [25] use a hybrid approach to
achieve an absolute distance accuracy of less than 4 cm and
millimeter-scale accuracy for relative motion at the 5.8 GHz
ISM band.

Alternatively, the UWB-IR measures the target range by
transmitting short pulses, computing the time delays in the
received pulse amplitudes, and extracting vital signs using
distance information. It has the advantage of having a smaller
size and lower power consumption than the CW Doppler
radar [26]. In [27], a method based on autocorrelation was
used to extract RR and HR periodic waveforms, as well as
subject location. Vitals signs extraction in the presence of
random body movement was studied in [28], using active
motion cancellation by direct signal fusion from two RF
Sensors.

Although radar-based methods are effective and precise for
Line-of-Sight (LoS) detection and even through walls [22],
they require expensive customized hardware which prevents
wide-scale deployment [13], [29].

B. WI-FI SENSING

The most widely adopted wireless access globally is Wi-Fi
in terms of devices and infrastructure. This proliferation
has been enabled by the widespread use of Wi-Fi chipsets
in laptops and smartphones, and ease of configuration
and low maintenance of W-Fi [30]. This has led to the
ubiquity of Wi-Fi in homes, offices, and public environments.
Furthermore, Wi-Fi’s use of unlicensed spectrum bands has
unhindered wide-ranging IoT devices and solutions from
emerging [30].

Ubiquitous Wi-Fi sensing and monitoring systems have
gained significant attention from researchers in the past
few years for smart home applications, including vital sign
detection [13], [16], [29], [31], [32], activities of daily living
(ADL) recognition [33], fall detection [33], [34] and gait
analysis [35], [36], gesture recognition [37], [38], sleep
monitoring [14], [15], [39], to emotion recognition [40].

Earlier Wi-Fi sensing studies used the Received Signal
Strength Indicator (RSSI), which measures the total received
power at the receiver. It provides coarse-grained information
and is bounded by the sum of the power of each element
of the CSI matrix. RSSI has been used for coarse gesture
recognition [41] and for RR estimation [42], and also presents
a module for sleep apnoea detection.

However, RSSI measurements fluctuate because they are
sensitive to environmental noise [39]. The patient must be
close to the LoS of the transceivers to achieve a good
estimate. Thus, limiting vital signs monitoring in practical
applications. Meanwhile, CSI allows for the examination of
each subcarrier’s amplitude and phase information separately,
allowing for a finer-grained and wider sensing area [39].

1) WI-FI SENSING IN CARE
An activity and fall recognition system using CSI amplitude
was proposed in [33], which differentiates between sitting,
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standing, walking and falling, and could be utilized in
ambient assisted living as an initial phase to analyze the
behaviour of the older people. For older adults in independent
living, approximately 50% of their falls occur at home; hence,
RT-fall [34] implements real-time activity segmentation using
CSI phase difference to detect fall events starting from
standing or walking positions. Since gait is an effective
biomarker in assessing functional decline, GaitWay [35] was
designed to unobtrusively capture gait speeds while walking
using CSI, extract gait features, as well as recognize the
gait of different users. Furthermore, the CSI phase difference
between antennas was used to detect nocturnal seizures
in [43] to support patients with epilepsy and caregivers.

2) WI-FI SENSING FOR VITAL SIGN MONITORING

A model of respiration detection using Wi-Fi CSI was
introduced in [29] leveraging the Fresnel Zone model
and Wi-Fi radio propagation, which has informed the
RR extraction performed in our work. Micro-movements
can be extracted from Wi-Fi CSI signals, including those
induced by respiratory and cardiac activities. Together with
macro-movements such as falls and rollovers during sleep,
they help provide more information about an individual’s
health status. For instance, Liu et al. [39] used CSI amplitude
information to extract RR during sleep, as well as sleeping
posture and rollover events during sleep. Multi-person
respiration monitoring during sleep has been implemented
in [44] on three persons, suggesting that a respiration state
analysis would be necessary to map measurements to each
target subject, assuming that each subject follows a different
respiratory pattern. This has then been achieved in [45] by
modeling CSI-based multi-person respiration sensing as a
blind-source separation problem using multiple antennas.
A sleep-stage recognition program was implemented for
in-home sleep monitoring using respiratory data in [15].
In addition to RR, body movements during sleep were used
in [14] for sleep monitoring using deep learning and prior
knowledge of sleep medicine. Indeed, combining vitals with
movement information enables advanced health analyses
previously unavailable for unobtrusive modalities.

Beyond the vital signal extraction mechanisms, the effect
of practical conditions on the quality of the extracted signal
is a crucial domain to examine. For example, in [46], RR and
HR were extracted during sleep while evaluating the effect of
transmitter-to-receiver distance, sleeping posture, obstacles,
and packet transmission rate. Furthermore, in [47], the CSI
phase difference between two antennas was exploited to
track RR and HR, and the effects of Non-LoS tracking,
transmitter-to-receiver distance, and packet transmission rate
were analyzed.

Furthermore, signal processing techniques can be
exploited to improve the quality of the extracted vital signs.
For instance, the CSI phase difference was used in [32] with
directional antennas where the most informative subcarriers
were fused to obtain HR estimates to improve the signal
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quality. Expanding further on the aspect of signal fusion,
the complementarity of the CSI phase and amplitude was
exploited in work by Zeng et al. [48] to achieve full area
coverage without leveraging multiple subcarriers. Published
studies, however, are yet to address the robustness of
measurements across RR ranges and different breathing
depths.

Diverse RRs naturally result in inversely proportional
breathing depths when measured on the same subject. This
is attributed to fixed physiology and individual respiratory
mechanics. In the context of respiratory motion, the antero-
posterior displacement of the chest exhibits a range of 4.2 to
5.4 mm, whilst the mediolateral dimension demonstrates
variability between 0.6 and 1.1 mm during conventional
inhalation and exhalation procedures [13], [49]. The motion
due to the chest displacement gives rise to variations in
the dynamic path of the CSI. The ability of a tool to
accurately measure respiration regardless of the rate and
the corresponding depth is a mark of its universality and is
crucial for the clinical setting. There are undoubtedly various
concerns to address within Wi-Fi-based vital signs extraction;
however, none of the previous works tried to address the
validation of the non-contact instrument as a medical device
which we aim to consider in this work.

3) WI-FI CSI SENSING MEASUREMENT DEVICES AND TOOLS
Even though CSI has been included since IEEE 802.11n [50],
the access to CSI directly from Wi-Fi chipsets is limited to
specific hardware and software tools. For example, the first
CSI collection tool is the Linux 802.11n CSI tool [51], which
is based on an Intel 5300 Network Interface Card (NIC).
However, it only collects up to 30 subcarriers and requires
firmware modifications [50]. On the other hand, the Atheros
CSItool [52] works with Atheros 802.11 NICs and obtains all
the 56 subcarriers for 20 MHz bandwidth without tampering
with the firmware. Nonetheless, the aforementioned NIC
based solutions do not support standalone operation and
remain impractical for large-scale deployment [53].

The Nexmon CSI extractor utilizes the Broadcom chipset
in the Nexmon 5 Android smartphone to obtain CSI data
from all the 56 subcarriers in the 20 MHz bandwidth as
a standalone solution [54]. The Nexmon-based solution
requires modification and may interfere with the warranty
of the device. Alternatively, the ESP32 CSI toolkit [55] and
the Wi-ESP tool [53] are based on the ESP32 MCUs and
exhibit the least hardware-software dependency [50], [53].
They provide a flexible, low-cost Wi-Fi sensing solution that
enables large-scale deployment [56].

The ESP32 CSI sensing capabilities have been previ-
ously explored for applications such as crowd-counting and
occupancy monitoring [57], [58], human presence and fall
detection [56], as well as human activity recognition [55].
However, to the best of our knowledge, no study has been
conducted to date that has implemented an ESP32-based
respiratory rate measurement instrument nor evaluated its
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measurements to the acceptability of its use as a medical
device. Thus, we aim to address this gap in research
by developing a Wi-Fi CSI-based RR sensing system
using commercial off-the-shelf (COTS) ESP32 MCUs and
investigating its measurement validity and repeatability in the
context of the care of older people.

C. VALIDATION OF NEW MEDICAL INSTRUMENTS
Medical laboratories are often required to assess the degree
of agreement between two measurement techniques [59].
In order to validate a new technology for application in clin-
ical medicine, it needs to be compared with older and more
established methods [60]. We may wish to determine whether
anew inexpensive and unobtrusive technique produces results
that are comparable to a well-established method with
sufficient agreement for clinical purposes [61]. The Bland
and Altman method is essential for method comparison
studies with the aim of validating new medical devices [61].
Using this approach, measurement instruments that capture
continuous variables measuring the same construct can be
assessed [62].

For the Bland and Altman method, the statistical limits
of agreement between the two measurement methods were
constructed based on the mean and standard deviation of
the difference in measurements. The limits of agreement are
defined as [c_i —1.96s,d + 1.96s], where d is the bias or mean
difference, and s is the standard deviation of the difference.
Given enough samples collected, if the error distribution
can be determined to be normal, 95% of the differences
will lie between those limits of agreement [61]. Normality
of the distribution of differences is a prerequisite for this
analysis [61].

Previous studies have evaluated the validity of wearable
sensors for RR measurements [11], [12], where several
devices were assessed for their validity, and the most
reliable device was adopted for extended investigations.
Furthermore, medical staff evaluated a non-intrusive manual
device, such as a stethoscope, for its measurement validity
during assessment [63]. Nevertheless, no work has been
conducted to date that addresses the clinical validity of non-
contact Wi-Fi sensing as an RR measurement device, which
is the gap we aim to target in this study.

D. REPEATABILITY OF MEASUREMENT INSTRUMENTS

The importance of investigating measurement errors from
random and non-random sources lies in determining the
appropriateness of the measurement method and instrument
for different contexts [64]. A crucial aspect of the usability
and the long-term implementation of non-wearable sensors is
the measurement repeatability of the instrument. An instru-
ment riddled by enormous random errors is most likely not
fit for its purpose, let alone be a suitable variable for making
important decisions. For instance, in real patient scenarios,
the risk of obtaining an erroneous estimate of RR is high
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because it is related to the patient’s health condition, and an
instrument with reliable measurements is required [64].

The repeatability of the Wi-Fi sensors can be determined
by measuring the spread of the data around the sample mean,
calculating the standard deviation [61], [64], and obtaining
the confidence intervals for repeated measurements. The
more consistent the repeated measurement results are, the
higher the repeatability of the measurement process. In a
repeatability study, variations in measurements taken on
the same subject can be attributed only to errors in the
measurement process [64]. To quantify the repeatability
of the measurements, the experimental conditions of the
study must remain constant using the same measurement
method [64].

Previous studies on non-contact RR sensing have assessed
the repeatability of acoustic-based sensors [65] and polymer
humidity sensors [66]. However, to the best of our knowledge,
no study has examined the repeatability of non-contact Wi-Fi
sensing for RR monitoring which we address in this work.

lll. METHODS

A. HARDWARE DESCRIPTION

We used two ESP32-DevKitC-VE embedded devices in our
work as Wi-Fi sensors. One ESP is programmed to act as the
Access Point or Transmitter (TX), and the other is set as the
Receiver (RX). The development kit supports the §02.11n
protocol and allows access to CSI data without hardware
tampering [53].

The data are transmitted and captured with the built-in
omnidirectional PCB antenna in the development kit, where
the transmission power is 20 dBm (100mW) at 2.4 GHz
abiding by the IEEE and ETSI standards. The data were sent
from the RX to a PC through a universal serial bus (USB)
cable to a USB to universal asynchronous receiver-transmitter
(UART) bridge with a maximum transmit rate of 3 Mbps.

We used an additional measurement device as a
ground-truth signal for respiration: a scientific grade Neulog
Respiration Monitor Belt logger sensor (NUL-236). A belt
logger wrapped around the chest and measured the air
pressure in the belt, which varied with the subject’s breathing.

To minimize human error while maintaining a constant
RR throughout the experiment, a metronome application was
used as a guide for respiratory movements. The metronome
guided the participant to inhale and exhale with alternate
beats, where the beat rate of the metronome was set to double
the intended RR.

B. DATA ACQUISITION

1) SOFTWARE TOOLS AND SETTINGS

We use the esp32-CSlI-tool to obtain CSI data using the IEEE
802.11n 2.4 GHz Wi-Fi communication standard [55]. The
USB baud rate was set to 1843200 bits per second, and the
wireless packets were transmitted at 120 packets/s (PPS).
Subsequently, the Wi-Fi CSI data were collected by a MacOs
laptop, is time-stamped with UNIX epoch time, and saved in
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a.CSV file format. We processed the saved complex CSI data
once the data for the experiment were acquired.

A software application is provided as part of the NUL-
236 respiration belt logger, which facilitates the visualization
and data collection of the respiration waveform. There is no
standard unit of measurement for the waveform data obtained
from the sensor, and it can be rescaled. Samples captured by
the NUL-236 were labeled against time and saved in a.CSV
format, with a sampling rate of 100 samples/s.

2) EXPERIMENTAL DESIGN

Essentially, an experiment consists of a series of measure-
ments aimed at testing the relationships between several
variables. With respect to our particular study, we aimed to
investigate the relationship quality between Wi-Fi CSI and
the micro-motion of the chest and abdomen as a result of
breathing. The validity of a measurement device is its ability
to demonstrate that the experimental process successfully
measures the quantity with little to no systematic error.
Furthermore, a reliable instrument must minimize random
error in its measurements by providing consistent results of
repeated readings.

We designed an experimental procedure to measure the
validity and repeatability of RR measurements using the
Wi-Fi CSI amplitude. A test space of 3 m x 3 min a testing
environment closely replicating a standard care living room
setting for individual older persons monitoring where such
a device would be most beneficial. The TX and the RX
are placed 3 m apart at a height of 0.85 m perpendicular
to the ground, with a LoS distance of the TX-RX crossing
the middle of the test space. The participant was seated
approximately 0.9 m away from the middle of the LoS of the
TX-RX pair. The labeled setup is shown in Fig.1 resembling
the setup illustrated in Fig. 2. The TX and RX were carefully
placed in the test space based on the study’s requirements.
The test subject was advised to remain stationary during the
testing period to control the variable of motion and isolate
breathing chest movements from the effect of motion artifacts
for the purpose of the datasets.

In this study, we collected two datasets, one for validity
and one for repeatability [18]. To test the validity of the
Wi-Fi CSI RR sensing system, we performed the experiment
17 times with RRs ranging from 12 to 28 breaths per
minute (BPM). Although our system captures RR ranging
from [9, 37] BPM expected from humans, [12, 28] BPM
is considered the expected RR range during rest for older
adults as described in [67] including Tachypnea and hence
the choice of RR range in this study. The duration of
each data capture experiment was 120 seconds. Breathing
slower than 12 BPM is indicative of Bradypnea, while faster
than 24 BPM is of Tachypnea. Sample durations of 30-,
60- and 120-seconds were assessed to evaluate the effect of
window width. This was done similarly to work in [68], where
30-seconds was considered common in clinical practice, 60-
seconds as the ideal counting duration, and 120-seconds as a
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FIGURE 1. Experimental set-up.

@)

FIGURE 2. Independent living scenario: Seated in a living area.

larger sample. For repeatability, we evaluated the consistency
of our measurements through experiment repetition with the
RR set to 14 BPM. It is repeated for 30 times with all the
factors controlled for, as n = 30 is the Large Enough Sample
Condition. The accuracy of the instrument was also assessed
based on the repeatability experiment data, which is another
form of validity.

C. SIGNAL PRE-PROCESSING AND RR EXTRACTION

Python 3 was used to implement the pre-processing and RR
extraction from the raw CSI data in this study. The signal
processing workflow is illustrated in Fig. 3. First, we obtained
the CSI Amplitude data from the complex CSI, as shown in
Fig. 3 (a), after extracting them from the.CSV timestamped
file. Time indexing is essential in RR tracking applications.
Unfortunately, due to packet loss, transmission delays, and
other processing delays, the received packets are not evenly
distributed over time. Hence, we interpolate and downsample
the signal from 120 PPS to a rate of 40 PPS, using the
Fourier method, as shown in Fig. 3 (b). Resampling and
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interpolation help in outlier removal by reducing the spurious
effects occurring from hardware-introduced errors. It also
evenly distributes the incoming signal over time and reduces
the computational complexity, preparing it for the Discrete
Wavelet Transform (DWT).

We use a DWT-based filtering technique in contrast to the
Fourier-based finite impulse response filters, in which the
latter would require additional signal conditioning. Signal
conditioning techniques such as the Hampel filter [69],
Savitsky-Golay filter [44], and median or mean filters
are used to remove the noise. To prevent hardware or
environmental noise from interfering with the performance
of the Fourier-based filter, it is necessary to complete this
step before implementing the filter. However, this signal
conditioning may distort the signal [70]. On the other hand,
this conditioning is not required before applying the DWT
introducing fewer distortions to the signal [70]. Furthermore,
wavelet analysis is used on the time-series of Wi-Fi sensor
data; it is used for data which is non-stationary in nature, and
it preserves any sharp transitions in the signal better than other
types of filters [71].

The down-sampled CSI data are transformed to the wavelet
domain using the DWT with a ‘db4’” wavelet, as it is the
most appropriate wavelet for extracting RR signals, further
reducing the effect of outliers [72]. We apply a 7-level
decomposition and maintain the sixth and seventh detail
coefficients while nullifying the approximation coefficients
and the lower-level detail coefficients. This wavelet filtering
technique only reconstructed frequencies from [0.15625,
0.625] Hz, corresponding to [9.375, 37.5] BPM. This
range includes the typical RR for older adults of [12, 28]
BPM, which we used to evaluate the sensing system. The
reconstructed signal containing the frequencies of interest is
shown in Fig. 4 (¢).

Principal Component Analysis (PCA) helps separate respi-
ratory body movements from noise, as movement causes cor-
related effects across subcarriers. Subcarriers experiencing
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the most variance due to movement are considered the
most sensitive to movement, hence the variance is preserved
using PCA [73]. Principal Components (PCs) capture the
primary features of respiration movement data, suppress
noise, and reduce dimensionality [69]. Furthermore, since
they preserve only the correlated data due to variations in
the dynamic path of the CSI, they ensure the generality of
our system in measuring RR independent of the shape and
size of the subject. Using this method ensures that we can
recover CSI change patterns independent of phase offset
potentially introduced by hardware and software errors. The
first PC captures highly correlated noise due to hardware
imperfections; therefore, we used the second PC because
it contains more of the respiration waveform without the
noise corresponding to the internal state changes in the
hardware [74], [75].

The combination of the DWT filter and PCA ensures
that regular movements such as walking, tremors, and
restless leg syndrome are not picked up by our system as
they are not regular enough periodicity-wise or lie outside
of the frequency range. The extracted respiration signal,
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in comparison to the respiration belt, can be seen in Fig. 4 (d)
and Fig. 4 (e). To extract the final RR estimate, we obtained
the peak of the power spectral density of the second PC,
as demonstrated by Fig. 4 (f). The data pre-processing and
RR are illustrated in Fig. 4 and are implemented for 20 BPM
and a 120-second analysis window. A zoomed-in comparison
between the W-Fi CSI obtained respiration versus the belt
data is displayed in Fig. 5, where we can see the peaks from
both modalities coincide.

IV. RESULTS

A. VALIDITY

1) AGREEMENT: A METHOD-COMPARISON STUDY

In Fig. 6(a), we can note that 95% of the differences in
measurement between the Wi-Fi sensor and the respiration
belt for a 30-seconds sample duration are accounted for with
limits of agreement ranging between [—6.05,4.66] BPM
with a bias of —0.70 BPM between the two instruments.
Whereas in Fig. 6(b) we can note that 95% of differences in
measurement between the Wi-Fi sensor and the respiration
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FIGURE 5. Comparing the respiratory waveform obtained using Wi-Fi CSI
and the respiratory belt for 20 BPM between [60,80] seconds.

belt for a 60-seconds sample duration are observed within
limits of agreement ranging between [—1.29, 1.06] BPM
with a bias of —0.11 BPM between the two instruments.
Finally, for the 120-second time window in Fig. 6(c) we can
note that 95% of differences in measurement between the
Wi-Fi sensor and the respiration belt are accounted for with
limits of agreement ranging between [—0.27,0.21] BPM
with a bias of —0.03 BPM between the two instruments.

In addition, we find from the Bland-Altman plot that there
is no proportional bias; therefore, the scatter of the plot
is homoscedastic. Homoscedasticity was observed because
the bias did not vary with increasing mean difference
values, nor did the scatter change in variance with the
mean difference values. Consequently, we can apply absolute
statistics to obtain the instrument’s repeatability from a
single point along the expected respiratory scale for older
adults of [12,28] BPM. Furthermore, since the RR value
obtained is consistent with the behaviour predicted by theory
and that measured by the respiration belt, this agreement
proves construct validity [62]. The Bland-Altman plots and
calculations obtained in this study used the Pingouin package
in Python 3, which is based on Pandas and NumPy libraries,
specifically the pingouin.plot_blandaltman() function [76].

2) ACCURACY

Accuracy metrics supporting the results of the validity of
the Wi-Fi sensor for RR measurement in older adults are
presented in this section. In Table 1., the results of the
accuracy and error metrics for each sample duration are
presented. The accuracy results were obtained based on the
data set of 30 repeated experiments for 14 BPM RR since
the data set is larger. A 120-second sample duration results
in a smaller Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) and more accurate results than using a
60-second or 30-second sample duration. With the inclusion
of more data points in the analysis window, the accuracy of
the measurements increased.
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FIGURE 6. Validity: Bland and Altman plots for the Wi-Fi sensor and the
respiration belt.

The error cumulative density function (CDF) is calculated
using the Wi-Fi obtained data as observation and the belt
data as ground truth, while the error is smoothed with a
gaussian filter with o = 1. In the graph of the error CDF
in Fig. 7, we can see that we obtained approximately 80%,
72% and 68% of error below 1 BPM for 120-seconds,
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TABLE 1. Accuracy results.

TABLE 2. Repeatability results.

Sample Standard Confidence Inter- | Interval

Duration Deviation | val Width
(BPM) (BPM)

30 seconds 3.04 14.1,15.2 1.10

60 seconds 2.48 13.7,15.0 1.29

120 seconds 1.04 13.6,14.4 0.79

Sample MAE RMSE Accuracy
Duration (BPM) (BPM) (%)
30 seconds 1.38 3.10 90.11
60 seconds 0.85 2.5 94.40
120 seconds 0.434 1.04 96.90
Error CDF
109 — 2min
1min /
30s
o o I
08 r/-—-"ﬁ; ["
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FIGURE 7. Error CDF for different sampling duration.

60-seconds, and 30-seconds respectively. This result is in line
with our expectation since a longer sample duration captures
smaller magnitudes of errors than a shorter sample duration.
By providing the accuracy and error metrics per sample
duration for the Wi-Fi sensor, we can assess the validity of
the measurements.

B. REPEATABILITY

The repeatability of Wi-Fi as an RR measurement instrument
was evaluated by making 30 measurements for a RR
of 14 BPM, each with a duration of 120-seconds. The
choice of RR of 14 BPM was subjective, based on the
participant’s most comfortable breathing rate. Depending
on the homoscedasticity of the previously obtained Bland-
Altman plot, it appears that it is appropriate to select a
single point of RR for analysis. Hence, any point within the
range of [12, 28] BPM is suitable to select for analyzing the
repeatability statistics.

Table. 2 displays the results of repeatability for sample
durations of 30-seconds, 60-seconds and 120-seconds —
which is calculated using the standard deviation of the
Wi-Fi CSI RR measurements, and the associated confidence
interval with a 95% confidence level. We can note that the
confidence interval width for the 60-second sample duration
is double that of the 120-second sample duration. These
results are expected because the resolution of the Fourier
Transform increases as the duration of the sample window
increases, where Tlg x 60 is the resolution in BPM [22].
Although the 30-second sample duration obtains a smaller
interval width than the 60-seconds duration, the confidence
interval does not contain the expected RR value of 14 BPM;
hence, the sample mean does not equal 14 BPM at the level of
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0.05 significance. We conclude that a wider sample duration
yields more repeatable results attributed to obtaining a
smaller standard deviation and narrower confidence intervals.

V. DISCUSSION

In general, an experiment is valid if it measures the
quantities it intends to measure. In previous studies, quality
evaluations of Wi-Fi respiration sensors have mostly focused
on comparing it to a ground-truth device and evaluating
the correlation [77], [78]. However, correlation is limited to
investigating the strength of the linear relationship between
two variables. Correlation is not regarded as a measure of
agreement; it is a measure of association [61] and cannot
be used to evaluate the interchangeability and validity of the
device, which is necessary for clinical evaluation.

Our objective is to determine whether the RF sensor and the
respiration belt can be used interchangeably if the readings of
the two devices agree within acceptable limits. This type of
comparison is frequently conducted for medical instruments
when a new measurement method is less precise but less
invasive or more affordable than the ground-truth or gold
standard [61]. This is the first work of its kind to determine the
limits of agreement between a Wi-Fi sensor and a respiration
belt to assess how the two devices agree on measurements.
To provide markers for evaluating the suitability and the
generality of implementing Wi-Fi sensing in the context of
health care, experiments were conducted for the normal RR
range of older adults.

We apply the Bland-Altman method to different sampling
durations of 30-, 60- and 120-seconds to examine the effect
of window width on the validity of the Wi-Fi sensor. It is
evident from Fig.5 that the Limits of Agreement as well
as the bias decrease as the sample duration for the time
window increases, indicating an improvement in validity and
hence the reliability of the Wi-Fi sensor’s measurements.
An acceptable range for the limits of agreement must be
determined a priori by the clinical or care staff before
implementation, which could depend on patient risk and
health conditions. Typically, inter-observer variability of
respiration in a clinical setting may account for a difference
of 2-6 BPM [68].

For the set of measurements taken in a lab setting, the
performance was on par with the wearable and contact sen-
sors discussed in [11] and [12] for the 30-second time widow
Wi-Fi sensor, and exhibited better performance when 60- an
d 120-seconds windows were used. In [11], the narrowest
limits of agreement obtained are [—5.6, 6.4] BPM with a
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TABLE 3. Validity results.

Device Bias | Limit of | Unobt- | Ground Truth
Agreement
rusive

Chestband [12] | —1.60[ [-9.99,6.8] | No Cardiac

Test

Facemask
Accelerometer —2.18] [-8.63,4.27] | No Cardiac
[12] Test

Facemask
Massimo [11] +0.2 [ [-4.7,4.4] No Thoracic
(Acoustic patch) Impedance

Pneumography|
EarlySense [11] [ 4+0.4 [ [-3.9,4.4] Yes Thoracic
(Embedded Impedance
Mattress) Pneumography|
Camera [12] —3.21[ [-12.71,6.30]| Yes Cardiac

Test

Facemask
ESP32 —0.11] [-1.29,1.06] | Yes NUL-236
(Wi-Fi) (Belt Logger)

bias of 0.4 BPM using a mattress embedded sensor against
thoracic impedance pneumography. Meanwhile, in [12] the
best agreement was obtained using a chest band sensor with
limits of [—9.99, 6.8] BPM with a bias of -1.60 BPM against
a cardiac test face mask. While for we obtain limits of
agreement of [—1.29, 1.06] BPM with a bias of —0.11 BPM
for the Wi-Fi sensing system against the NUL-236 respiratory
belt using a 1-minute window analysis. A summary of the
comparison of the results of our device against some of
the best-performing devices mentioned in [11] and [12] is
listed in Table. 3. While our study’s findings are confined
to controlled laboratory conditions, they exhibit significant
potential.

The Bland-Altman method obtains the limits of agreement,
but it cannot determine whether these limits are acceptable.
The acceptability of the limits of agreement between these
two devices must be defined a priori by a clinical or a
professional, with the health risk of older patients in mind.
For instance, the limits of acceptability can be predefined as
43 BPM, as in [11]. If the limits of agreement are found to
be clinically insignificant, we may say that the two devices
are interchangeable [59]. Interchangeability demonstrates
the instrument’s validity and acceptability according to
predefined criteria. Although the results of this study cannot
evaluate device interchangeability, the validity and agreement
are assessed for the range of standard RR of older adults,
providing an appropriate analysis for Wi-Fi’s use as a medical
device for RR measurement for older people.

The second form of validity concerns the accuracy of
the device. We applied the accuracy and error metrics
to the repeated RR values of the experiments. These
metrics evaluate the closeness of the measured value to the
ground-truth value and hence can be mostly attributed to
systematic errors. Accuracy was also evaluated for varying
window widths and showed improved metrics with increasing
sample duration. Presenting accuracy metrics is essential
as systematic error tolerance must be determined before
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implementing the Wi-Fi sensor for RR estimation, and the
sensor must be calibrated to an acceptable degree fit for use in
the care of older persons per patient risk and health condition.
Since the Bland-Altman plot is homoscedastic, the repeata-
bility of the plot can be determined using absolute statistics.
The standard deviation and confidence intervals characterize
the spread of the measurements around the mean value and
uncertainty in the Wi-Fi sensing device. As expected, the
uncertainty around the mean value decreases with increasing
sample duration, as does the confidence interval width. The
RR inversely influences the breathing depth, and due to
the homoscedasticity of the plot, the model is generalizable
across RRs in range and their corresponding breathing depths.
The precision of the Wi-Fi sensor for RR estimation informs
clinicians and care professionals regarding the degree of
random errors present in the sensor. Prior to implementing a
monitoring system, a random error tolerance assessment must
be similarly conducted for repeatability on a wider participant
pool because it can affect important healthcare decisions.

A. CLINICAL IMPACT
Nurses usually manually assess vital signs during ward
rounds, a situation in which the monitoring frequency is
low and adverse events are often missed [79]. Manual
counting methods suffer from high inter-observer variability.
Two simultaneous observers measured the RR and obtained
considerably wide Limits of Agreement of [—4.2, 4.4] [80].
However, continuous or automated monitoring devices would
help capture adverse events in patients more effectively.
Rubio et al. [12] presented a comparison of four wear-
able devices worn simultaneously against a ground-truth;
however, ill patients found the sensors to be intrusive,
which would affect patient adherence. Using an unobtrusive
alternative, such as Wi-Fi sensing, provides a more acceptable
alternative for older patients.

This validation method comparison study performed with
a Wi-Fi sensor against an RR belt offers an evaluation and
interpretation of the instrument agreement. Furthermore, the
use of correct statistical methods to evaluate the accuracy
of a measurement device will provide the end-user with a
better understanding of the implications of adopting a new
measurement methodology. In this case, the Bland-Altman
method is discussed in the medical statistics and instrumen-
tation literature as a metric for validity and interchangeability.
Additionally, this study was one of the first to assess the
clinical acceptability of using Wi-Fi sensing as a non-contact
tool to measure RR in the context of care of older adults.

VI. CONCLUSION

This study aimed to conduct the first investigation on the
validity and repeatability of Wi-Fi Channel State Information
(CSI) sensing for respiratory rate measurements in the context
of caring for older adults as a medical device. As a first
step, we validated the performance of the ESP32 Wi-Fi
sensor against the respiration belt logger NUL-236 as a
ground-truth device within the typical respiratory range for
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older individuals, from 12 to 28 breaths per minute, using the
Bland-Altman method thus confirming the generalizability of
the model across the respiratory range. Furthermore, as the
validity results are homoscedastic in nature, we can evaluate
the repeatability of the measurements at a single point.
These repeated measurements were also used to measure
the precision and accuracy of the Wi-Fi sensor against the
ground-truth respiration belt to determine the effects of
random and systematic errors. The dataset of Wi-Fi CSI
measurements, along with the corresponding belt data, was
collected and made available for the validity and repeatability
experiments.

The interchangeability of a medical device depends
on its acceptance by clinical or care staff. Providing an
appropriate appraisal of a measurement device would support
professionals in adapting and deploying non-contact Wi-Fi
sensing in older patients in care. This study addresses these
points by providing validity and repeatability assessments to
facilitate the interchangeability of Wi-Fi CSI sensing as a
medical respiratory rate device for older adults. As this study
was conducted in a controlled laboratory environment, data
collection was limited to an independent living scenario with
one quasi-stationary subject. Further investigations should
be conducted to include a longitudinal multi-participant
study informed by this work to better understand the
interchangeability between Wi-Fi CSI respiration sensing
and ground-truth devices. Future work will address different
multi-sensor placements to explore optimal sensor locations
for data fusion in the context of care of older adults, as well
as abnormal respiration pattern detection during sleep to
monitor health conditions and pathologies.
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