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ABSTRACT Traffic flow prediction is a crucial aspect of Intelligent Transport Systems, offering a
scientific foundation for urban transport system management and planning. However, predicting traffic
flow becomes challenging due to its susceptibility to diverse static and dynamic external factors, such as
the presence of emergency vehicles that necessitate priority treatment in the road network. To tackle this
issue, this paper introduces an Emergency Vehicle Priority Scheduling Model based on Heterogeneous
Feature Fusion in Graph Convolutional Networks (EVHF-GCN). This model concurrently considers road
network and emergency vehicle information, dynamically adjusting signal control strategies based on
traffic flow prediction outcomes. This approach ensures the prioritized passage of emergency vehicles
and mitigates traffic congestion. The model utilizes a heterogeneous feature fusion mechanism within a
Graph Convolutional Network (GCN) to propagate features and aggregate information from intersection
nodes. It also integrates a Gated Recurrent Unit (GRU) network to capture dynamic traffic flow features.
Additionally, we propose a Dynamic Signal Control Strategy (DSCS) that determines intersection green light
durations based on prediction results and selects different control strategies as per the situation. Experimental
results demonstrate that the model enhances traffic flow prediction accuracy and improves traffic system
efficiency and safety in scenarios with and without emergency vehicles.

INDEX TERMS Graph convolutional network, priority movement of emergency vehicles, spatiotemporal
models, traffic flow forecasting.

I. INTRODUCTION
Traffic flow prediction constitutes a pivotal facet of Intel-
ligent Transportation Systems (ITS), serving as a scientific
foundation for urban transportation system management and
planning [1], [2], [3], [4], [5]. Traffic flow prediction aims
to estimate future traffic patterns based on historical data [6].
Nevertheless, achieving precise traffic flow prediction poses
a formidable challenge, given its dependence on historical
states and the influence of numerous external factors, both
static and dynamic. Among the dynamic factors that impact
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traffic flowwithin a road network, the presence of emergency
vehicles and their need for priority access stand out [7], [8].
Emergency vehicles, comprising ambulances, fire engines,
and police vehicles, are required to reach their destinations
quickly during emergencies. To expedite response and rescue
times, priority is accorded to emergency vehicles when cross-
ing intersections or road segments. These principles have
been elucidated in previous studies [9], [10]. However, in cur-
rent urban road situations, the effective implementation of
priority measures for emergency vehicles may face difficul-
ties due to traffic congestion, signal control, and interactions
with other vehicles, potentially resulting in mission delays or
disruptions.
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To address the limitation of traditional models that fail
to integrate traffic flow prediction and emergency vehicle
priority scheduling, we propose an Emergency Vehicle Pri-
ority Scheduling Model (EVHF-GCN) based on the fusion
of GCN heterogeneous features. In contrast to existing
approaches that depend on singular data sources or homo-
geneous networks, our approach manages both the nodes and
relationships within the road network and emergency vehi-
cles. Furthermore, it dynamically adapts the signal control
strategy based on traffic flow prediction results to prioritize
emergency vehicle scheduling and mitigate traffic conges-
tion. The methodology not only enhances the accuracy of
traffic flow prediction but also improves the efficiency and
safety of the traffic network.

The paper’s main outcomes include the following:
• In this paper, we introduce a new traffic schedul-

ing model, named EVHF-GCN (Emergency Vehicle Pri-
ority Scheduling Model Based on Heterogeneous Feature
Fusion in Graph Convolutional Networks). This model
improves traffic flow prediction by integrating emergency
vehicle-related factors into the prediction framework. Con-
sequently, our system can provide more precise traffic
congestion predictions and improve intersection efficiency.

• The EVHF-GCN model utilizes a graph convolutional
network to leverage the features of both emergency vehi-
cles and heterogeneous road network nodes. This integrated
approach effectively addresses road network congestion and
prioritizes emergency vehicle routes. By utilizing the GCN
network to propagate features and aggregate information
from intersection nodes, in addition to implementing theGRU
network to model evolving traffic flow features, our model
significantly improves traffic flow scheduling by seamlessly
integrating congestion status information from road networks
and emergency vehicle data.

• In this paper, we present a Dynamic Signal Control
Strategy (DSCS) designed to calculate the most effective
duration for green lights at intersections. Achieving this
goal necessitates accurate traffic forecasting and the dynamic
adjustment of signals to improve traffic flow and mitigate
congestion.

We conducted comprehensive experimental assessments
encompassing various scenarios. Our approach commenced
by leveraging SUMO software for simulation, coupled with
authentic traffic flow data to curate an exclusive dataset.
Comparative analyses were performed against the baseline
model. The outcomes of these experiments unequivocally
establish the supremacy of our model in the domain of traffic
prediction. Moreover, ablation experiments were diligently
executed to validate the efficacy of the heterogeneous emer-
gency vehicle fusion network. By seamlessly amalgamating
diverse graph networks and incorporating emergency vehicle
factors with a dynamic signal light control strategy, our model
furnishes a precise and efficacious framework for trafficman-
agement. This framework optimizes both traffic flow and the
efficacy of emergency vehicle passage.

II. RELATED WORKS
Traffic forecasting holds a pivotal role within the realm of
intelligent transportation, playing a critical role in urban
traffic management and advancement. Traffic prediction
methods have traversed distinct stages of development. Tradi-
tional prediction models fall under the category of parametric
models, predominantly relying on mathematical statistics
to predict traffic conditions. Among them, the Historical
Average model (HA) leverages historical average data for
predictive outcomes. While the calculations are straightfor-
ward, their predictive accuracy remains suboptimal [11].
Time series models like ARIMA [12] and its various adapta-
tions [13] utilize the interplay between current and historical
data to anticipate future trends. While conventional paramet-
ric models deploy straightforward algorithms, they rest on the
assumption of time series stability, limiting their ability to
capture abrupt shifts in traffic flow. Non-parametric models
offer a remedy to these constraints, with examples includ-
ing Support Vector Regression (SVR) [14], Support Vector
Machines (SVM) [15], Bayesian Networks [16], and Neural
Network models.

Traffic prediction is influenced by many factors, encom-
passing road network configuration, traffic regulations, driv-
ing behaviors, weather conditions, and the presence of
emergency vehicles. Consequently, traffic data exhibit a
marked degree of nonlinearity and complexity. In the pursuit
of refining traffic prediction accuracy and real-time efficacy,
GCN-based methodologies have emerged in recent years,
classifiable into two primary paradigms: those predicated on
spatial graph convolution. This category involves generating
a spatial graph, leveraging traffic sensors or specific areas
within the road network as nodes, while their interconnec-
tivity or relative distances form the edges. The application
of GCN facilitates the acquisition of spatial attributes of
these nodes. These attributes are then harmonized with time-
series models, such as recurrent neural networks (RNN)
or long-short-term memory networks (LSTM) [17], includ-
ing a variant known as the gated recurrent unit (GRU)
[18]. These frameworks are adept at capturing the tempo-
ral nuances of the nodes. Subsequently, the synthesis of
spatial and temporal attributes engenders traffic prediction
outcomes. Representative methodologies within this class
encompass STGCN [19], ASTGCN [20], ABSTGCN-EF
[21], and T-GCN [22]. On the other hand, the spatiotemporal
graph convolution-based techniques construct a spatiotempo-
ral graph by aggregating observations from traffic sensors
or different temporal snapshots of road network areas, with
nodes symbolizing these instances and edges representing
their spatiotemporal affiliations. The concurrent incorpora-
tion of GCN is instrumental in assimilating the spatial and
temporal facets of nodes, culminating in the generation of
traffic prediction outputs. Noteworthy approaches include
ADST-GCN [23], STSGCN [24], and LSGCN [25].

All the aforementioned researchers have extensively inves-
tigated the spatiotemporal characteristics of traffic patterns.
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Nevertheless, an excessive focus on these features can inad-
vertently overshadow other vital heterogeneous data aspects.
For instance, the impact of emergency vehicles on traffic flow
prediction has often been disregarded. Meanwhile, conven-
tional GCN techniques primarily center around isomorphic
graphs, characterized by uniform nodes and edges. Conse-
quently, their efficacy diminishes when confronted with the
intricacies of heterogeneous graphs. The latter exhibits a
more intricate and extensive graph structure, encompassing
multiple node and edge types, thereby offering an improved
portrayal of intricate real-world relationships. In recent years,
a plethora of strategies for managing heterogeneous graph
data have arisen, encompassing Heterogeneous Graph Con-
volutional Network (HGCN) methodologies that leverage
the power of attention mechanisms. This mechanism is
designed to automatically assign significance weights among
diverse inputs. Notably, R-GCN [26] hinges on a relationship
type-based attention mechanism, assigning distinct weight
matrices to individual relationship types, thus assigning
weightage to features of various neighbor nodes. Meanwhile,
HAN [27] employs a hierarchical attention mechanism. Ini-
tially, it gauges node similarity at the metapath level to
compute node similarity. Subsequently, it determines the sig-
nificance between a node and its neighbors at the node level.

In the domain of emergency vehicle prioritization, several
intelligent technology approaches have emerged in recent
years, predominantly centered on optimizing road networks.
This optimization is achieved by reducing the travel time
of emergency vehicles, either through meticulous trajectory
planning or by adjusting the speed and direction of other
vehicles to create temporary emergency lanes. For instance,
the Emergency Vehicle Lane (EVL) [28] strategy is a proac-
tive preclearance approach that grants priority to emergency
vehicles on regular road segments through micro-cooperation
with surrounding vehicles. The cooperative driving challenge
is formulated as a mixed-integer nonlinear programming
problem, with the primary objective of ensuring the desired
speed of emergency vehicles while minimizing disruptions
to surrounding traffic. Furthermore, the Emergency Vehicle
Priority (EVP) [29] introduces an intelligent urban priority
control strategy for emergency vehicle access. This strategy
leverages IoT sensors and edge computing to reduce incident
clearance time by assigning priority levels to emergency
vehicles.

In conclusion, current methodologies inadequately address
the intricate relationship between emergency vehicle plan-
ning, spatiotemporal traffic flow, and their impact on traffic
prediction. To bridge this gap, we propose a novel trafficman-
agement approach, EVHF-GCN (Heterogeneous Emergency
Vehicle Traffic Signal Control with Graph Convolutional
Networks), employing a graph convolutional network with
heterogeneous feature fusion. This model establishes a more
efficient traffic scheduling framework. By integrating various
nodes from the road network and emergency vehicle dynam-
ics within a unified graph convolutional network, our model
excels in precise traffic prediction and adeptly manages

the priority scheduling dynamics associated with emergency
vehicles.

III. METHOD
In the writing of this section, we have adhered to a linear
logical progression. We initiate with a clear definition of
the problem, ensuring the precise expression of the research
framework and methods. Subsequently, we delve into the
GCN module for spatial feature extraction, followed by an
introduction to the attention mechanism for capturing emer-
gency vehicle features and the temporal features within the
GRU module. We then describe the GRU model for han-
dling changes in dynamic traffic flow, introduce dynamic
traffic signal control strategies, and conclude by presenting
the model’s loss function and optimization objectives.

A. PROBLEM DEFINITION
This study introduces emergency vehicles as a novel factor
in the established traffic prediction framework, offering a
fresh perspective andmethodology to this task. By integrating
the distinct characteristics of emergency vehicles into the
congestion prediction model, our objective is to improve
the accuracy and efficiency of traffic flow management,
ultimately optimizing the operation of the transport system.
In the subsequent sections, we provide a comprehensive
explanation of traffic flow prediction and traffic signal control
challenges, accompanied by the definition of relevant ter-
minology and symbols. This approach ensures a transparent
presentation of our research framework and methodology.
Definition 1: Road network G: We have selected a con-

gested road network, consisting of multiple intersections,
as the basis for our congestion prediction and control sce-
nario. Each intersection is managed with traffic lights to
regulate traffic flow, with directed lanes linking every two
intersections together. To represent the data for each inter-
section, we use a node-indexed representation, wherein
each intersection is assigned a distinct integer index value.
We depict the road network’s topology as an undirected
weighted graph G = (V ,E), Where V = {v1, v2, . . . , vn}
represents the set of nodes and N represents the total number
of nodes. The set E of linked lines indicates the connec-
tivity between nodes. The adjacency matrix A ∈ RN×N

stores the overall connectivity details. The adjacency matrix
is calculated according to (1). Each element in the matrix
represents the connectivity between corresponding road seg-
ments. Where di,j represents the

Ai,j = Aj,i = {

1
di,j

, di,j ̸= 0
0, di,j = 0

(1)

distance between i and j, and matrix A encompasses only two
distinct types of values: when two nodes lack a connection,
the element’s value is 0. However, in cases where a connec-
tion exists, the value becomes a non-negative number. This
value signifies the degree of correlation (weight) between the
two nodes. Thus, matrixA reveals that as the distance between
two nodes decreases, the degree of correlation increases.
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Definition 2: Identity matrix XN×P: We incorporate the
count of vehicles within a specific road segment as a fun-
damental attribute of a network node, employing a feature
matrix denoted as X ∈ RN×P. Here, P signifies the count
of features characterizing the attribute of the node, reflecting
the extent of the historical time series. Xt represents the traffic
volume across all road segments at t instance.
Definition 3: Eigenvector matrix of emergency vehicles

K . This paper introduces emergency vehicles as heteroge-
neous data, offering a comprehensive exposition of their
essential attributes and behavioral characteristics within a
traffic system. These feature vectors can be used to compose
matrix K = {K1,K2, . . . ,Kl} herein l designates the categor-
ical index corresponding to the feature vector parameters of
the emergency vehicle.

In summary, the emergency vehicle priority scheduling
problem, contingent upon congestion prediction, can be for-
mulated as the acquisition of upcoming-period traffic insights
denoted by T . This pursuit is realized by devising function f ,
derived from the road network’s topology denoted as G, the
feature matrix represented by X , and the emergency vehicle
feature vector matrix, denoted asK . The manifestation of this
concept is depicted in (2):

f (G,X ,K ) = [xt−m, . . . , xt−1, xt ] (2)

B. GCN MODEL
As traffic information can be viewed as graphical signals,
numerous researchers have leveraged graph neural networks
in traffic flow prediction to capture the spatial features of road
networks. To adapt standard convolution techniques for graph
structures, researchers have employed the Fourier transform
to convert the convolution operation into a spectral domain
convolution, often referred to as spectral graph convolution.
In this study, we use a spectral domain-based graph convolu-
tional network to investigate profound spatial dependencies
within neighborhood graphs. The spectral convolution can be
defined as the product of the graph signal x and the convolu-
tion kernel θ . The constructive graph convolution operator is
specified in the Fourier domain as follows:

θ × x = Uθ (∧)UT x = θ (U ∧ UT )x = θ (L)x (3)

Here, L represents the normalized Laplace matrix, L = In −

D−1/2WDD−1/2, while U signifies the Fourier basis matrix
comprising the eigenvectors of L, where In is the unit matrix
and D is the diagonal matrix. 3 is the diagonal matrix of
the eigenvalues of L. Furthermore, we elevate the vector x
to an eigenmatrix denoted as X ∈ RN×C , where C denotes
the number of features.

Given a feature matrix X and an adjacency matrix A, GCN
can capture the spatial characteristics of the graph by incor-
porating both the graph nodes and their first-order adjacency
domains, enabling spectral convolution operations instead of
the conventional convolution operations employed in CNNs.

The GCN model can be represented as:

H (l+1)
= σ (D∗−(1/2)A∗D∗−(1/2)H (l)W (l)) (4)

Here, A∗
= A + IN represents the adjacency matrix with

a self-connected structure, IN denotes the identity matrix, D∗

stands for the degreematrix,H (l) signifies the output of the lth
layer,W (l) represents the parameters of the lth layer, and σ (-)
is the activation function employed for nonlinear modeling.

GCN captures spatial dependencies by encoding the road
network based on the topological relationships among road
segments and their associated attributes. The GCNmodel was
previously explored and learned through the GCN model,
as documented in prior research [30].

C. ATTENTION MODEL
1) HARD ATTENTION
This paper utilizes an attention module comprising both a
hard attention mechanism and a soft attention mechanism as
its fundamental components. Firstly, the hard attention mech-
anism selects and prioritizes emergency vehicles within the
road network, aligning with the objective of granting priority
passage to these vehicles in this study. The paper’s fusion
of GCN and heterogeneous emergency vehicle features is
significantly influenced by the hard attention mechanism.

In our model, when emergency vehicles are detected,
the system should automatically prioritize them by imple-
menting an appropriate scheduling strategy. This objective
is achieved by utilizing a hard attention mechanism within
the model, explicitly selecting the focus of attention. This
mechanism ensures that emergency vehicles receive preferen-
tial treatment and special consideration in traffic scheduling.
Specifically, the hard attention mechanism adjusts the feature
propagation and information aggregation of the GCN model
within the road network based on the presence or absence of
emergency vehicles and their associated characteristics. This
enables the GCN to allocate greater attention to the status
and requirements of emergency vehicles by assigning higher
attention weights to the nodes representing these vehicles.
In the decision-making process for traffic scheduling, the
use of GCN and the diverse features of emergency vehicles
through the hard attention mechanism ensures priority access
for emergency vehicles. This mechanism effectively captures
the correlation between emergency vehicles and the road
network, incorporating this correlation information into the
model’s decision-making process to achieve priority schedul-
ing for emergency vehicles.

In particular, the input feature matrix H combines both the
road network features and the emergency vehicle features.
Assuming we have the input feature matrix H ∈ RN×D for
the road network, where N signifies the number of nodes,
and D represents the feature dimension for each node. The
hard attention weights can be computed using the following
expression:

αi =

{
1, if i = argmax(hTi W )
0, otherwise

(5)

In the given equation, hi represents the feature vector
of the ith node, while the weight matrix is denoted as W.
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By calculating the dot product between the feature vector
and weight matrix for each node, we can determine the node
with the highest product value, which corresponds to the node
representing emergency vehicles in the road network. This
approach ensures that priority access is granted to emergency
vehicles in traffic scheduling.

2) SOFT ATTENTION
In this study, we employ the soft attention mechanism to inte-
grate dynamic features from traffic flow time series with other
attributes, thereby enhancing the performance and accuracy
of our traffic scheduling model. The amalgamation of the soft
attention mechanism extends the expressiveness and flexibil-
ity of our model, resulting in an enhanced traffic scheduling
solution. By dynamically adjusting feature weights, we can
capture traffic flow changes and trends more accurately, thus
improving the prediction and optimization of traffic conges-
tion. The soft attention mechanism is particularly adept at
flexibly handling inter-feature relationships, which enhances
our model with a more comprehensive and precise informa-
tion base.

Consider a matrix T composed of n time-steps of traf-
fic flow attributes, where each row of the matrix denotes
a feature vector for one time-step, resulting in a total of n
rows. To model the traffic flow time series, we implement the
GRU model, which yields a hidden state matrix H . The GRU
model effectively captures both temporal information and
traffic flow dynamics. The soft attention mechanism adjusts
the significance of features by computing the attention weight
vector A. The calculation of the attention weight vector A is
presented by the following mathematical expression:

A = softmax(W ∗ (H ∗ U )^T ) (6)

Here,W is a matrix containing learnable attention weights,
and U represents characteristics of flow. The transpose oper-
ation of the matrix is indicated with the symbol ^T. The
soft attention mechanism computes the attention weight
vector A by performing matrix multiplication between the
hidden state matrix H and the learnable parameter matrix
U . This is followed by a linear transformation of the
parameter matrix W and normalization using the softmax
function.

Then, we can weigh and aggregate the hidden state matrix
H using the attention weight vector A to derive the weighted
feature representation Z:

Z = A ∗ H (7)

In the expressionmentioned above, Z signifies the dynamic
characteristic representation of the dynamic characteristic
of the traffic flow time series, incorporating the atten-
tion weights. By employing the soft attention mechanism,
we adjust the importance of features based on the dynamic
properties of traffic flow, enabling us to discern changes and
patterns in traffic flow with greater precision.

FIGURE 1. Overall framework.

D. FRAMEWORK
By amalgamating a spatiotemporal graph convolutional net-
work with heterogeneous features and a dynamic signal
control strategy, we introduce a novel traffic scheduling
model (EVHF-GCN). This model enhances traffic flow
scheduling by incorporating considerations for traffic con-
gestion within the road network and emergency vehicle
information.

The structure of our research is presented in Figure 1,
comprising three key components: a network for fusing het-
erogeneous features using graph convolution, modeling of
spatiotemporal dependencies and prediction through atten-
tion mechanisms, and a strategy for controlling dynamic
signal lights.

E. DSCS
In this paper, we introduce a Dynamic Signalization Control
Strategy (DSCS) that employs the EVHF-GCN model for
predicting traffic flow and assessing the state of road network
congestion. The predictive outcomes guide decisions regard-
ing the duration of green lights at intersections, categorized
according to the presence or absence of emergency vehicles.
Distinct signalization control strategies are selected based on
the prevailing circumstances and transmitted to the traffic
signalization controllers.

When emergency vehicles are not present at an inter-
section, the projected duration of the green light using the
expected number of incoming vehicles. Specifically, we uti-
lize the expected number of incoming vehicles to compute
the green light duration, ensuring that all upcoming vehicles
in the specified direction can pass through the intersection,
while also minimizing the green light duration to avoid traffic
congestion. This approach empowers the traffic signal con-
troller to adapt the current green light duration dynamically
in response to the expected influx of vehicles, effectively
addressing potential traffic congestion. Our control strategy
efficiently clears the roadway and creates space for incom-
ing vehicles by carefully selecting the green light duration.
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As traffic approaches a congested state, we opt for longer
green light durations in that direction to ease traffic flow,
thereby preempting congestion. Additionally, we strive to
minimize excessive durations as they would be ineffective
and counterproductive.

The feature vector of an emergency vehicle serves as a crit-
ical numerical representation to depict its travel information.
In this study, we treat emergency vehicles as heterogeneous
data. When an emergency vehicle is present at an intersec-
tion, we introduce an eigenvalue to determine its passage
status, assigning a value of 1 for presence and 0 for absence.
Through the use of a hard attention mechanism, the alloca-
tion given to emergency vehicles is considerably boosted,
ensuring appropriate prioritization. In situations involving
multiple concurrent emergency vehicles, we introduce a
‘‘priority’’ attribute value and establish corresponding regu-
lations. We adjust the signal phase based on the priority of
each emergency vehicle to maintain order, safeguard traffic
flow, and prevent chaotic situations. Please refer to Table 1
for the priority rules.

TABLE 1. Priority rule list.

F. EVHF-GCN NETWORKS
The EVHF-GCN employs a graph convolution-based net-
work that integrates heterogeneous features, incorporating
data from emergency vehicles and information on traffic
congestion to improve traffic flow scheduling.

We employ diverse emergency vehicle feature data to
tackle the challenge of collecting emergency vehicle infor-
mation features at intersections. We use SUMO simulation
software to create a scenario that is consistent with a real
street, define the behavior of the emergency vehicle in
SUMO, run SUMO to produce additional pertinent data,
including the emergency vehicle, and use the output func-
tion of SUMO to extract features such as the vehicle speed,
position, route, timestamp, and set priority features (as shown
in Table 1) from the data of the emergency vehicle as

FIGURE 2. Heterogeneous emergency vehicle data fusion diagram.

FIGURE 3. The architecture of GRU model.

heterogeneous feature data. The composition of heteroge-
neous emergency vehicle features is illustrated in Figure 2.
To harmonize the feature matrix through GCN, we integrate
a hard attention mechanism. By leveraging the fusion output
of the hard attention mechanism, we feed it into the GRU to
enable the model to capture temporal dependencies.

A spatiotemporal congestion prediction model is devel-
oped by integrating Graph Convolutional Networks (GCNs)
and Gated Recurrent Units (GRUs). The design receives m
historical time series traffic data as input and generates m
hidden states (h), which capture the spatiotemporal features
and are known as {ht−m, . . . , ht−1, ht}. The GRU model is
comprised of a reset gate and an update gate, as depicted in
Figure 3. Specifically, let’s consider the gate at time t. The
reset gate (rt ) combines the previous traffic state (ht−1) with
the representation of the road segment at time t to compute the
candidate hidden state (ct ). Conversely, the update gate (ut )
determines the relevance of the previous traffic states (ht−1)
to discard and incorporates new information about ct to derive
the final hidden traffic state (ht ). In this process, W and b
represent the weights and biases, respectively, involved in
the training process, whileGCsignifies the graph convolution
process. The mathematical formulation of this process can be
represented as (8), (9), (10), (11):

ut = σ (Wu × [GC(A,Xt , ht−1)] + bu) (8)

rt = σ (Wr × [GC(A,Xt , ht−1)] + br ) (9)

ct = tanh(Wc × [GC(A,Xt , (rt × ht−1))] + bc) (10)

ht = ut × ht−1 + (1 − ut ) × ct (11)
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Subsequently, the hidden states are utilized as inputs
for the soft attention model to incorporate the dynamic
characteristics of the traffic flow time series and integrate
them with other features, thereby enhancing the performance
and accuracy of the traffic scheduling model. Specifi-
cally, the weight assigned to each hidden state, denoted as
{at−n, . . . , at−1, at }, is computed using the Softmax function.
The significance of global traffic features is determined by a
weighted sum. Finally, the prediction results are acquired by
employing a fully connected layer. These prediction results
are then utilized to determine the current duration of the green
light at the junction and select appropriate signal control
strategies based on the prevailing conditions.

In summary, we introduce EVHF-GCN, a framework
designed to forecast and schedule the movement of emer-
gency vehicles. The urban roadway system is represented
as a graph network, capturing the topological properties of
the road network using GCN to account for spatial depen-
dencies. Additionally, distinct feature vectors are employed
to characterize the attributes of emergency vehicles. GRUs
are used to capture real-time variations in node features,
enabling the acquisition of temporal dependencies. Further-
more, an attentionmodel is incorporated to capture the overall
trend of traffic state changes, thereby facilitating accurate
traffic forecasting.

G. LOSS FUNCTION
We used the following loss function. Firstly, we employ the
mean square error (MSE) loss function, as defined in (12),
to measure the disparity between the predicted (P) and actual
(A) number of vehicles present at an intersection. To assess
the prioritization of emergency vehicles, we introduce the
time error as a metric, as expressed in (13). Here, Tactual
represents the time taken for actual emergency vehicles to tra-
verse the junction, while Tpredicted signifies the time required
for the model-predicted emergency vehicles to do the same.
To strike a balance between these two aspects, we combine
them and introduce the hyperparameters λ in (14). Adjusting
the hyperparameter λ allows for control over the model’s
focus on traffic flow prediction accuracy and the priority of
emergency vehicles. During optimization of this loss func-
tion, the model accurately predicts the duration of green
lights at intersections and selects appropriate signal control
strategies based on real-world conditions.

Ltraffic = (A− P)2 (12)

Lpriority = (Tactual − Tpredicted )2 (13)

Ltotal = λ · Ltraffic + (1 − λ) · Lpriority (14)

IV. EXPERIMENTS
A. DATASETS
For dynamic analysis, prediction tests on diverse data (com-
prising traffic flow data and information about emergency
vehicles) by utilizing the subsequent sets of data:

• Traffic Data: The real dataset utilized in our study was
taken from the Caltrans Performance Measurement System

(PeMS) [31], specifically the PEMSD4 dataset. This dataset
comprises raw detector data obtained from more than 18,000
vehicle inspection stations located across the motorway sys-
tem, encompassing major metropolitan areas of California,
spanning the period from 2001 to 2019. The data collection
involved diverse sensors such as induction loops, side-shot
radar, and magnetometers. Samples were recorded at a fre-
quency of every 30 seconds and aggregated into 5-minute
intervals. Specifically, the PEMSD4 dataset was collected
from the San Francisco Bay area and consists of data from
307 sensors, covering the period from January 1st, 2018,
to February 28th, 2018.

• Emergency Vehicle Information: A dedicated dataset
encompassing emergency vehicle factors for traffic flow pre-
dictions is not readily available. Therefore, we employed
the SUMO simulation software to generate our dataset by
integrating the aforementioned traffic flow characteristics.
SUMO (Simulation of Urban Mobility) is an open-source
microscopic traffic simulation software extensively used
for modeling and analyzing urban transportation systems.
It accurately replicates the movements and interactions of
vehicles, pedestrians, and other entities within road net-
works. Furthermore, SUMO incorporates various aspects
such as traffic signal control, vehicle travel patterns, traf-
fic flow dynamics, and emergency vehicle deployments,
among others, enabling comprehensive simulations of real-
world scenarios. By leveraging SUMO, we were capable
of mode-ling and capturing the intricate details necessary
to account for emergency vehicle considerations in our
research. We employed SUMO’s output functionalities to
extract data related to emergency vehicles, encompassing
information such as vehicle speed, position, route, times-
tamps, and designated priority features. We subsequently
integrated this emergency vehicle data, generated by SUMO,
with the PeMSD4 dataset. Ensuring temporal alignment
between the two datasets was of utmost importance, as it
allowed for the seamless integration of emergency vehicle
data with actual traffic flow data. This alignment significantly
contributes to the universality of our model.

To facilitate congestion prediction in EVHF-GCN, we per-
formed data preprocessing. Initially, we categorized the data
based on the presence of emergency vehicles. Subsequently,
we extracted significant characteristics such as the average
speed per five-minute interval, total traffic flow, and average
lane occupancy. Data points that were not associated with the
prevailing road conditions were eliminated from the analy-
sis. This preprocessing step ensured that the input data for
the EVHF-GCN model captured relevant information and
focused solely on factors that directly influenced congestion.

B. FORECASTING TASKS
We conducted dataset processing by capturing data on traffic
flow and emergency vehicles at five-minute intervals. Our
research aims to forecast the sixth data point using the pre-
ceding five records. More specifically, we predict the traffic
flow data for the next five minutes based on a comprehensive
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FIGURE 4. The influence of the selection of epochs on the MAE.

analysis of the preceding sixty minutes’ data. To handle the
historical data, we calculate themaximum number of vehicles
in each lane every minute, which we use as input for our
model. The model generates the projected maximum number
of vehicles for the following five minutes, establishing the
optimal duration of the green light. Finally, we evaluated the
effectiveness of our proposed traffic flow prediction module
by comparing the real and forecasted information, specifi-
cally in the presence of emergency vehicles.

C. EVALUATION METRICS
To evaluate the forecasting ability of the model put forward,
the subsequent metrics are employed.

1) RMSE

REMS = [(1
/
n)

∑n

t=1
(yt − ŷt )

2]
1
2 (15)

A smaller RMSE value indicates a smaller prediction error,
reflecting improved model performance.

2) MAE

MAE =

∑n
i=1 |yt − ŷt |

n
(16)

A smaller RMSE value indicates a smaller prediction error,
reflecting improved model performance.

3) MAPE

MAPE = (100
/
n)

∑n

i=1
|yt − ŷt

/
yt | (17)

MAPE is utilized for evaluating prediction error, which
denotes the mean percentage variance between predicted and
actual outcomes. It is a frequently employed indicator of
performance, ideally suited for evaluating the efficiency of
predictive models in datasets of varying sizes.

D. EXPERIMENTAL SETTINGS
All experiments were performed on a computer with 32 GB
of memory, an Intel Core i7 CPU, and an NVIDIA GeForce
RTX 3060 GPU. The hyperparameters were set as follows: a

FIGURE 5. The influence of the selection of epochs on the RMSE.

FIGURE 6. The influence of the selection of units on the MAE.

FIGURE 7. The influence of the selection of units on the RMSE.

learning rate of 0.0001, a batch size of 128, and a range of
epochs evaluated on the test set, spanning from the options
[1000, 2000, 3000, 4000, 5000, 6000], to analyze the vari-
ability in the model’s performance. The evaluation results for
Figure 4 and Figure 5 under different training configurations
are shown.With the increasing duration of the training period,
the assessment metrics gradually stabilize and exhibit an
inflection point around the 5000th epoch. Subsequently, for
a fixed training period of 5000, we select the number of
candidate GRU hidden units from the options [8, 16, 32, 64,
100, 128]. As depicted in Figure 6 and Figure 7, the model
demonstrates consistent performance when the number of
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units reaches 100. Consequently, we have decided tomaintain
the training period at 5000 and the number of hidden units at
100.

To exhibit the superiority of the model, we compared it to
six other algorithms:

•HA (Historical Average): This statistically-based method
calculates traffic flow parameter averages to generate a
forecast.

• ARIMA (Autoregressive Integrated Moving Average) is
a conventional time series forecasting technique that includes
an autoregressive element and a moving average element.

• GRU [18] (Gate Recurrent Unit) is a model that removes
the forgetting gates from LSTM and is comprised solely
of update and reset gates. It requires fewer parameters and
converges more easily than LSTM.

• T-GCN [22]: This model is a time series neural network
with a GRU-GCN structure, where GCN deals with spatial
dependence and GRU deals with temporal dependence.

• Bi-LSTM [32]: This study introduces a novel hybrid
deep learning framework that incorporates GCN to capture
the spatiotemporal dependency and periodicity of traffic data.
The proposed model partitions the time series into recent,
daily cycle, and weekly cycle components.

• PDFormer [33]: This article presents PDFormer, a novel
deep learning model that utilizes a time series neural
network with a Propagation Delay-aware dynamic long-
range transformer structure. The model incorporates a spa-
tial self-attention module specifically designed to capture
dynamic spatial dependencies.

E. PERFORMANCE COMPARISON
Initially, we conducted a comparative analysis between our
proposed algorithm and six other prediction algorithms to
assess its accuracy. Upon confirming the effectiveness of
our algorithm, we proceeded with ablation experiments to
investigate the impact of the heterogeneous emergency vehi-
cle data fusion network within the algorithm. Subsequently,
we validated the secondary development of the dynamic
signal control strategy for SUMO-simulated junctions and
developed a simulation program for emergency vehicle pri-
oritization at junctions to substantiate the effectiveness of the
strategy.

1) OVERALL COMPARISON
Table 2 presents the results of the overall performance com-
parison. The RMSE, MAE, and MAPE do not differ in this
study regarding their ordering. For consistency, we will main-
tain an ordered structure throughout the paper. This statement
is to prevent any reader misunderstanding. Lower values of
RMSE and MAE indicate higher prediction accuracy. While
the traditional method based on historical averages is more
practical than other approaches, its evaluation metrics do not
surpass those of the other methods. This simplistic algorithm,
however, fails to handle complex, variable, and real-time traf-
fic flow data. The ARIMA method focuses on the regularity

and stability of traffic flow data in the temporal dimension,
leading to outperformance over traditional machine learn-
ing methods, albeit with limited accuracy. GRU exhibits
improved performance compared to ARIMA. However, nei-
ther GRU nor ARIMA accounts for spatial dependency.
Conversely, T-GCN effectively addresses both spatial and
temporal relationships, resulting in superior overall perfor-
mance. Although both Bi-LSTM and PDFormer take into
account the spatiotemporal characteristics of the data, further
improvement can be made as they do not consider emergency
vehicles. The study highlights that the proposed hetero-
geneous graph convolutional network achieves the most
comprehensive performance, with MAE, RMSE, and MAPE
measuring at 17.2961, 26.3557, and 13.2429%, respectively.

To visualize the performance differences among vari-
ous methods, we constructed bar charts based on Table 2,
as depicted in Figure 8. The horizontal axis represents the
model names, while the vertical axis displays the values of
the evaluation metrics RMSE, MAE, and MAPE (%). From
Figure 8, it is evident that neural network models, such
as GRU, T-GCN, Bi-LSTM, PDFormer, and our proposed
model, exhibit higher prediction accuracy compared to tradi-
tionalmodels likeHA andARIMA.HAdisplays significantly
higher RMSE, MAE, and MAPE values of approximately
107.44%, 117.19% and 103.16%, respectively, compared
to our model. Similarly, ARIMA displays approximately
72.50% higher RMSE, 121.39% higher MAE, and 62.07%
higher MAPE than our model. These results primarily stem
from the suboptimal non-linear fitting capabilities of HA
and ARIMA when dealing with complex and dynamic traffic
data. The utilization of ARIMA is challenging for long-
term non-stationary data. Additionally, ARIMA leverages the
averaging of errors across different segments, which may
result in significant fluctuations in data for specific seg-
ments, leading to increased overall errors and lower predictive
accuracy.

Compared to our model, GRU exhibits higher RMSE,
MAE, and MAPE by approximately 64.63%, 73.75%, and
49.93%, respectively. The reason our model maintains lower
predictive errors than GRU is that GRU considers only tem-
poral features. Given the complexity of traffic situations
at intersections, this can lead to a decrease in predictive
accuracy. Our model’s advantage lies in its consideration
of spatial features in addition to temporal features. T-GCN
displays RMSE, MAE, and MAPE approximately 27.49%,
68.23%, and 18.20% higher than our model. T-GCN has
been a classic spatiotemporal traffic flow prediction model in
recent years, as it incorporates both temporal and spatial fea-
tures through the GRU-GCN architecture. Bi-LSTM exhibits
RMSE, MAE, and MAPE approximately 28.15%, 26.23%,
and 9.89% higher than our model. Bi-LSTM is a hybrid
deep learning model that combines GCN and Bidirectional
LSTM. It considers both spatiotemporal features and places
a particular emphasis on capturing periodic features. Our
model outperforms PDFormerwith an approximately 16.14%
higher RMSE, 8.28% higherMAE, and 0.57% higherMAPE.
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TABLE 2. Performance comparison of different models.

PDFormer can capture long-range spatial dependencies and
explicitly models the temporal delay in spatial informa-
tion propagation, improving predictive accuracy. However,
PDFormer requires substantial computational resources and
a large amount of historical traffic data for training, which
may limit its performance in emerging or data-limited areas.
T-GCN, Bi-LSTM, and PDFormer have demonstrated excel-
lent performance in prior research, making their performance
more closely comparable to our model. Nonetheless, these
models possess unique strengths and may be better suited to
specific scenarios. However, none of these models consider
the influence of other factors on traffic prediction accuracy,
which can affect their generalizability. In contrast, our model
exhibits uniqueness, particularly in considering factors such
as emergency vehicle-related features and spatiotemporal
characteristics. A detailed analysis of experimental results
and graphical representations confirms that the newly pro-
posed algorithm outperforms the other six methods in overall
predictive performance.

It is important to emphasize that the consistent linear
descent observed in Figure 8 from the HAmodel to the model
proposed in this paper does not imply a mere enhancement
of its predecessor. On the contrary, this consistent trend
reflects a standardized metric employed in the performance
comparison of different models to facilitate a more compre-
hensive evaluation of their performance. The improvement
and development of each subsequent model are driven by
distinct objectives and improvement points.

2) ABLATION COMPARISON
To examine the crucial role of a heterogeneous emergency
vehicle data fusion network in enhancing accuracy, we con-
ducted ablation experiments by systematically removing
specific components from our proposed network. We have
opted to validate models T-GCN, Bi-LSTM, and PDFormer,
as they have demonstrated outstanding performance in
previous research and utilize similar evaluation metrics.
To maintain conciseness in the paper, we have selected a few
high-performing models for validation. We have presented
the findings of these experiments in Table 3, where ‘Ours∗’
denotes the prognostication outcomes of the emergency vehi-
cle data fusion network absent the heterogeneous structure.
It is evident that the accuracy of Ours∗ is significantly lower
compared to the full structure, indicating the substantial

FIGURE 8. Performance comparison charts.

TABLE 3. Performance comparison for ablation experiment.

impact of this structure on the overall framework and its
essential role in enhancing accuracy.

3) SIMULATION VERIFICATION
In this paper, we employ SUMO’s TraCI (Traffic Control
Interface) interface to extract simulated object data and
dynamically modify their behavior based on real-time access
to the ongoing road traffic simulation. Furthermore, we estab-
lish control over SUMO through a client/server architecture
implemented using TCP (Transmission Control Protocol).
The control mechanism is also TCP-based. By utilizing a
collaborative control methodology implemented in Python,
we can effectively manipulate SUMO to exert command over
the traffic simulation.

In the simulation model, social and emergency vehicles are
defined and utilized in the construction of an intersection to
display the efficiency of the proposed model. By analyzing
the delay time of emergency vehicles at the intersection when
implementing the proposed model versus not implementing
it, the effectiveness of the model for improving emergency
vehicle passing is demonstrated in this paper.

The proposed dynamic signal control strategy and method
for granting priority access to emergency vehicles at inter-
sections were implemented and simulated using SUMO.
To uphold the simulation’s credibility, emergency traffic flow
was set at 20 pcu/h. Comprehensive operational data was
collected from all vehicles, and the average output value
was calculated. The average delay experienced by emer-
gency vehicles was compared under various flow conditions,
as illustrated in Figure 9, where the x-axis represents the
traffic volume (pcu/h) and the y-axis represents the average
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FIGURE 9. Comparison of Average Delay at Emergency Vehicle
Intersections.

duration of delay (s) experienced by emergency vehicles at
the intersection.

As shown in Figure 9, the implementation of the prioritiza-
tion strategy has resulted in a significant reduction in the aver-
age delays for emergency vehicles. Specifically, the strategy
achieves reductions of 67.1501%, 68.8939%, 69.8711%, and
59.6321% for intersection flows of 1400 pcu/h, 2000 pcu/h,
2500 pcu/h, and 3000 pcu/h, respectively. Notably, the delays
for emergency vehicles remain relatively consistent until the
intersection flow reaches 2500 pcu/h. However, beyond this
flow threshold, the effectiveness of the optimization benefits
diminishes significantly. This phenomenon occurs due to
increased traffic volume, resulting in heightened interference
between vehicles and a rise in factors influencing priority
control.

V. CONCLUSION
In summary, the introduction of the EVHF-GCN model
opens up new possibilities for addressing the limitations
of traditional traffic flow prediction models in the context
of emergency vehicle prioritization. Through the synergistic
integration of heterogeneous feature fusion, graph convolu-
tional networks, and dynamic traffic signal control strategies,
this model not only achieves more accurate traffic flow pre-
dictions but also caters to the needs of emergency vehicle
prioritization. Comparative evaluations with other meth-
ods in this study demonstrate the significant advantages of
the EVHF-GCN model in enhancing traffic efficiency and
providing priority access for emergency vehicles. The intro-
duction of this model offers novel insights and methods for
improving intelligent transportation systems, providing sub-
stantial support for urban traffic management and planning.
Our future work will focus on additional real-world sce-
nario validations, further refinement, and enhancement of the
model to boost its performance and applicability continually.
Building upon this study, we intend to integrate emergency
vehicle route planning with graph neural networks, add an
emergency vehicle prioritization module, consider the impact
of other factors on traffic flow prediction to enhance predic-
tion accuracy and explore the incorporation of algorithms like

DQN for more intelligent traffic signal control to optimize
green signal resource utilization.
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