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ABSTRACT As people’s aesthetic preferences for images are far from understood, image aesthetic
assessment is a challenging artificial intelligence task. The range of factors underlying this task is almost
unlimited, but we know that some aesthetic attributes affect those preferences. In this study, we present
a multi-task convolutional neural network that takes into account these attributes. The proposed neural
network jointly learns the attributes along with the overall aesthetic scores of images. This multi-task
learning framework allows for effective generalization through the utilization of shared representations.
Our experiments demonstrate that the proposed method outperforms the state-of-the-art approaches in
predicting overall aesthetic scores for images in one benchmark of image aesthetics. We achieve near-human
performance in terms of overall aesthetic scores when considering the Spearman’s rank correlations.
Moreover, our model pioneers the application of multi-tasking in another benchmark, serving as a new
baseline for future research. Notably, our approach achieves this performance while using fewer parameters
compared to existing multi-task neural networks in the literature, and consequently makes our method more
efficient in terms of computational complexity.

INDEX TERMS Convolutional neural network, deep learning, image aesthetics, image aesthetic assessment,
multi-task learning, regression.

I. INTRODUCTION
Image aesthetic assessment is a challenging task due to
its subjective nature. Some people may find an image
aesthetically pleasing, while others may disagree. Aesthetic
preferences of individuals are diverse and they can depend
on many factors. Because of the importance and complexity
of the problem, the literature on automated image aesthetic
assessment is extensive [5], [45]. In recent years, deep
learning has become an important part of this literature
based on its substantial impact in many areas. Given that
deep neural networks can already perform tasks that were
previously thought to be exclusive to humans, such as playing
games [36], it is not unreasonable to expect them to be able
to assess the aesthetic value of images as well. Currently,
image aesthetic assessment has a significant impact on many
application areas such as automatic photo editing and image
retrieval.
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In this context, neural networks have become a powerful
tool in computational aesthetics. This interdisciplinary field
of research is of great importance for the automatic assess-
ment of image aesthetics, and has led to the development
of several state-of-the-art models for aesthetics research.
In this study, we aim to evaluate a computational approach
for image aesthetics which considers the overall aesthetic
score as well as individual attributes that can impact aesthetic
preferences. Therefore, we focus on the multi-task setting
to assess the model’s performance across multiple tasks.
We handle the image aesthetic assessment task as a regression
problem, i.e., our aim is predicting the aesthetic ratings
for images. However, predicting overall aesthetic scores
using regression-based approaches is complicated because
aesthetic liking is influenced by a multitude of interacting
factors. Many of these factors are subjective, and their
combined effect is notoriously difficult to predict. This
difficulty is compounded further in a multi-task setting,
making the task even more challenging.

To this end, we propose a multi-task convolutional neural
network (CNN) that predicts an overall aesthetic score
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for a given image while also learning important attributes
related to aesthetics. To demonstrate the effectiveness of our
approach, we evaluate ourmulti-task CNNon two benchmark
datasets in aesthetics research, namely the Aesthetics with
Attributes Database (AADB) [18] and the Explainable Visual
Aesthetics (EVA) dataset [14]. These datasets are unique in
that they provide both overall aesthetic scores and attribute
scores, making them valuable resources for evaluating image
aesthetic assessment models.

Our proposed multi-task CNN performs well for image
aesthetic assessment, while being efficient in terms of
computational complexity. Our multi-task CNN is the first
of its kind applied to the EVA dataset, making it a
new baseline for the multi-task setting on this dataset.
Moreover, it achieves near-human performance on the
overall aesthetic scores of the AADB dataset while having
fewer parameters than the previous studies in the literature,
demonstrating the principle of Occam’s razor in machine
learning.

The rest of the paper is organized as follows. In Section II,
related work is presented. We introduce our multi-task
CNN in Section III. We describe our experimental setup in
Section IV and we discuss our results in Section V. Finally,
the conclusions and outlook are given in Section VI.

A. CONTRIBUTIONS
Our main contributions are summarized as follows.

• We propose an end-to-end multi-task CNN for image
aesthetic assessment and conduct systematic evaluation
of our model on two image aesthetic benchmarks.

• In themulti-task setting, ourmodel achieves the state-of-
the-art result on the overall aesthetic scores of theAADB
dataset, while requiring fewer parameters than previous
approaches.

• On the more recent EVA dataset, we conduct perfor-
mance analysis and our model is the first multi-task
CNN for this dataset, serving as the new baseline.

• Our evaluation shows that the multi-task setting consis-
tently outperforms the single-task setting for the same
neural network architecture across both datasets.

• As a result, we present a simple yet effective multi-task
neural network architecture for image aesthetic assess-
ment and provide a detailed evaluation of it on both
image aesthetic datasets.

B. PROBLEM FORMULATION
In this study, our aim is to develop a model that predicts
aesthetic-related scores of images. We use aesthetic bench-
marks that include images with overall aesthetic scores and
scores for K aesthetic attributes. Our model learns from
the training set of N samples D =

{
(x(i), y(i))

}N
i=1. Here,

each training sample consists of an RGB image x(i) ∈ Rd .
Correspondingly, y(i) ∈ RK+1 is a concatenated vector of the
overall aesthetic score y(i)o ∈ R and scores for K aesthetic
attributes y(i)a ∈ RK . Our model learns from this training data
to accurately predict the aesthetic-related scores of images.

Such problems, where the output is a numerical value, are
known as regression problems. Here, the task is to learn the
mapping from the input to the output. To this end, we assume
a machine learning model of the form

y = f (x|θ ), (1)

where f (.) denotes the model and θ represents its parameters.
Since we have images as input data, we choose the CNN
as the model f (.). We use a CNN in a multi-task setting,
as the target vector y(i) includes overall aesthetic score and
scores for K aesthetic attributes. Our objective is to obtain
a network f : Rd

→ RK+1, where f can simultaneously
predict the overall aesthetic scores and attribute scores from
input images.

II. RELATED WORK
The task of image aesthetic assessment is typically
approached as either a binary classification problem, where
the aim is to classify an image as low or high aesthetics, or as
a regression problem, where a model predicts an aesthetic
score for a given image. Prior studies have investigated
both classification and regression-based approaches to
image aesthetic assessment. Deep learning techniques have
achieved remarkable success in various fields, and image
aesthetic assessment is no exception, as evidenced by the
increasing number of studies exploring the use of deep neural
networks in this area. It is clear that these techniques have
played a critical role in contributing to notable advances
in image aesthetics research. For example, Kang et al. [13]
presented a CNN that predicts image quality, while
Lu et al. [29] proposed an aesthetics classification network
that learns several style attributes. Lee et al. [20] utilized
a Siamese network-based approach in this area. In another
study, Lu et al. [30] developed a deep neural network for
image style recognition, aesthetic quality categorization,
and image quality estimation. A neural network classifier
assesses the aesthetic quality of an image, and this model
can be implemented for contrast enhancement and image
cropping [21]. In some studies, models based on CNNs were
used to predict a single aesthetic score for an image [15], [16].
Inspired by a visual neuroscience model, Wang et al. [43]
introduced a model for image aesthetics assessment that
predicts the distribution of human ratings. Shu et al. [39]
proposed a deep CNN which process aesthetic attributes as
privileged information. In another study, Attribute-assisted
Multimodal Memory Network (AMM-Net) [27] extracts
attributes to model the interactions between visual and textual
utilities.

Assessing the aesthetic quality of images involves numer-
ous factors that contribute to preferences, and while many of
these factors are difficult to quantify, there are some known
aesthetic attributes that influence preferences. Previous
studies have investigated the aesthetic value of images in
conjunction with these attributes. Recently, deep neural
networks based on multi-task learning have been employed
to tackle this task, treating it as a multi-task problem
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that simultaneously predicts an overall aesthetic score and
multiple attribute scores. For instance, Kong et al. [18]
introduced the AADB dataset, which includes overall aes-
thetic scores and scores for eleven attributes of photos.
In their study, Kong et al. [18] developed a multi-task
neural network by fine-tuning AlexNet [19], and training a
Siamese network [3] to predict aesthetic ratings. Subsequent
studies have also utilized the AADB dataset for further
research in this field. For example, Hou et al. [11] applied
the squared earth mover’s distance-based loss for training,
and compared different deep networks including AlexNet,
VGG16 [40], and a wide residual network [44], and found
that fine-tuning a VGG-based model achieved the best
performance. Li et al. [22] proposed amulti-taskmodel which
learns image aesthetics and personality traits. The multi-task
network proposed by Celona et al. [2] is able to predict
aesthetic score as well as style and composition attributes.

Pan et al. [34] proposed a neural network architecture
based on adversarial learning inspired by generative adver-
sarial networks [9]. This is a multi-task deep CNN namely
‘‘rating network’’ which learns the aesthetic score and
attributes simultaneously. While the rating network plays the
role of ‘‘generator’’, a ‘‘discriminator’’ tries to distinguish
the predictions of multi-task network from the real values.
This model outperforms previous approaches and is currently
considered as the state-of-the-art method for predicting the
overall aesthetic scores on the AADB dataset in multi-task
aesthetic prediction.

Since most of the images rated null (neutral) for three
attributes (symmetry, repetition and motion blur) in the
AADB dataset (Figure 3), some studies [1], [24], [31], [35]
have chosen to exclude these attributes from their multi-task
models. For instance, Malu et al. [31] developed a multi-task
CNN based on ResNet-50 [10] which simultaneously learns
the eight aesthetic attributes along with the overall aesthetic
score. They also examined the salient regions for the
corresponding attribute and applied the gradient based
visualization technique [46]. Abdenebaoui et al. [1] used a
deep CNN that predicts technical quality, high-level semantic
quality, and a detailed description of photographic rules.
Reddy et al. [35] proposed a multi-task network based
on EfficientNet [42] for the same purpose, along with a
visualization technique and activation maps generated using
Gradient-weighted Class Activation Mapping (Grad-CAM)
[37] to generate activation maps. Recently, Li et al. [24]
presented a hierarchical image aesthetic attribute prediction
model. Theme-Aware Visual Attribute Reasoning (TAVAR)
model, introduced by Li et al. [26], can predict six attributes
of the AADB dataset.

Besides, Li et al. [23] proposed a multi-task deep learning
framework that takes into account an individual’s personality
in modeling their subjective preferences. Liu et al. [28]
developed an aesthetics-based saliency network in a multi-
tasking setting. The aesthetic evaluation system proposed by
Jiang et al. [12] outputs the image style label and three forms
of aesthetic evaluation results for an image.

More recently, another image dataset, namely the Explain-
able Visual Aesthetics (EVA) [14], has been released,
which includes overall aesthetic scores and attribute scores.
Although there are a few studies that have used this dataset for
aesthetics research, their models only predict overall aesthetic
scores [6], [25], [26], [38]. Therefore, our study is the first
multi-task neural network that can make predictions on the
EVA dataset.

Current multi-task learning approaches have demonstrated
the feasibility of predicting ratings in the AADB dataset by
utilizing all the available attributes instead of excluding some.
In line with this, we employ all the attributes in the AADB
dataset and develop a neural network architecture that is both
efficient and effective in predicting overall aesthetic scores
of images. Moreover, we evaluate our multi-task CNN on the
EVA dataset to further assess its performance. Our multi-task
CNN provides predictions for the EVA dataset, serving as a
baseline for future research in this area.

III. PROPOSED MULTI-TASK CONVOLUTIONAL NEURAL
NETWORK
We propose a deep multi-task CNN that jointly learns the
overall aesthetic score and the aesthetic-related attributes
for images during training. This allows the resulting neural
network to simultaneously predict multiple scores for an
image. We train our deep neural network directly from RGB
images, and it is based on the VGG16 pretrained network to
extract features. The prior multi-task approaches mentioned
in Section II have already proved that using a pretrained
network is a better option than training a neural network
from scratch, since both the AADB and EVA datasets do not
include large numbers of images. We conducted experiments
on several candidate pre-trained CNNs to determine the
optimal architecture for our task, and selected the model
with the highest performance. It’s worth noting that we also
tested the Transformer model as a backbone, but observed
a tendency for overfitting in our application, likely due
to their extensive number of parameters. Consequently,
we prioritized a model that not only performs well but also
maintains computational efficiency.

The proposed neural network takes images as input and
uses VGG16 to extract feature representations, as shown in
Figure 1. We removed the fully-connected layers in VGG16
and used the five blocks of convolutional layers. We added
a global average pooling layer to the output of the last
convolutional block of VGG16. The resulting feature maps
are fed into two fully-connected layers with ReLU activation
function [8], [33], consisting of 128 and 64 hidden units,
respectively. To prevent overfitting, we applied dropout [41]
with a rate of 0.35 to the second fully-connected layer
with 64 hidden units, which precedes the output layer. The
architecture of our neural network consists ofmultiple units in
the output layer, one for predicting the overall aesthetic score
and additional units for predicting attribute scores. For the
AADB dataset, which has 11 attributes, there are 12 output
units in total. On the other hand, the EVA dataset has
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FIGURE 1. The general architecture of our multi-task convolutional neural network.

4 attributes, so our model includes 5 output units. For more
information about the datasets, please refer to Section IV-A.
The output layer applies sigmoid activation function, and
all the output units share the same hidden representation.
Notably, we also designed our multi-task CNN with separate
output layers: one for the overall aesthetic score and one
for each attribute. Interestingly, both architectures perform
similarly for predicting the overall aesthetic score. However,
we found that the architecture with a single output layer
outperforms the one with separate output layers when it
comes to predicting the attribute scores.

IV. EXPERIMENTAL SETUP
A. DATASETS
Both AADB and EVA datasets we use in this study provide
aesthetic attribute scores that are suitable for regression
modeling, in addition to the overall aesthetic scores. The
Aesthetic Visual Analysis (AVA) dataset [32] is another
widely used benchmark in aesthetics research. However,
the AVA dataset only provides binary labels for attributes,
which is not suitable for our proposed framework as it
requires rating scores. Additionally, many images in the AVA
dataset are either heavily edited or synthetic, which limits its
applicability. In contrast, the AADB dataset provides a more
balanced distribution of professional and consumer photos,
as well as a more diverse range of photo qualities [18].
Consequently, we utilize the AADB and EVA datasets for
training and evaluating our multi-task CNN. These datasets
are described below.

1) AADB
We utilize the Aesthetics with Attributes Database (AADB)
[18], an image aesthetic benchmark containing 10,000
RGB images of size 256 × 256 collected from the Flickr
website. Each image has overall aesthetic scores provided by
5 different raters. The scores are on a scale of 1 to 5, with
5 being the most aesthetically pleasing score. Additionally,

FIGURE 2. Example images from the training set of the AADB dataset.
Each image has overall aesthetic score and scores for 11 attributes. (Left)
High aesthetic: An image rated high on overall aesthetic score. (Right)
Low aesthetic: An image rated low on overall aesthetic score.

there are eleven attributes that are known to impact aesthetic
judgments according to professional photographers. In this
dataset, every image has also scores for each attribute. These
attributes are balancing element, interesting content, color
harmony, shallow depth of field, good lighting, motion blur,
object emphasis, rule of thirds, vivid color, repetition, and
symmetry. The raters indicated whether each attribute has a
positive, negative, or null (zero) effect on the aesthetics of
an image, except for repetition and symmetry where only the
presence or absence of the attribute is rated.

To obtain the ground-truth scores for each image in the
AADB dataset, Kong et al. [18] calculated the average
aesthetic scores provided by five different raters. Since only
the average scores are reported, the individual rater scores
are not available in the dataset. Then, the average scores
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are normalized to the range of [0,1], while all the attributes
except for repetition and symmetry are normalized to the
range of [−1,1]. Repetition and symmetry are normalized
to the range of [0,1]. Two sample images from the AADB
dataset, showcasing examples of both low and high aesthetics,
are shown in Figure 2.
The distribution of the attributes is presented in Figure 3.

Among them, the motion blur, repetition, and symmetry
attributes are mostly rated neutral. Therefore, as mentioned
in Section II, some researchers excluded these three attributes
from their multi-task neural networks. However, the motion
blur attribute has both negative (700) and positive (397)
scores, which may still provide useful information. Similarly,
the repetition attribute has 1683 positive scores, while the
symmetry attribute has 771 positive scores. It is worth noting
that raters were not allowed to give negative scores for
repetition and symmetry.

FIGURE 3. Visualization of image attribute data in the training set of
AADB dataset illustrating the distribution of negative, null, and positive
levels for each attribute [18].

The AADB dataset has been split into three subsets:
500 images for validation, 1000 images for testing, and the
remaining images for training, following the official partition
[18]. For our experiments, we use this partition to train and
test our multi-task CNN, allowing for direct comparison with
other approaches.

2) EVA
The Explainable Visual Aesthetics (EVA) dataset [14]
contains 4070 images, each rated by at least 30 participants.
The EVA dataset overcomes the limitations of previous
datasets by including images with 30 to 40 votes per image,
collected using a disciplined approach to avoid noisy labels
due to misinterpretations of the tasks or limited number of
votes per image [14]. Each image has an aesthetic quality
rating with an 11-point discrete scale. The extremes of the
scale are labelled as ‘‘least beautiful’’ (corresponding to 0)
and ‘‘most beautiful’’ (corresponding to 10). The EVA dataset
contains four attributes: light and color, composition and
depth, quality, and semantics of the image. For each attribute,
the images were rated on a four-level Likert scale (very bad,
bad, good, and very good). Two sample images from the EVA
dataset, showcasing examples of both low and high aesthetics,
are shown in Figure 4.

FIGURE 4. Example images from the training set of the EVA dataset. Each
image has overall aesthetic score and scores for 4 attributes. (Left) High
aesthetic: An image rated high on overall aesthetic score. (Right) Low
aesthetic: An image rated low on overall aesthetic score.

In contrast to the AADB dataset, Kang et al. [14] reported
all ratings from the participants. So, we calculated the average
scores for each image. Unlike the AADB dataset, which
has predetermined train-validation-test splits, there is no
official train-validation-test split for the EVA dataset, since
Kang et al. did not use any neural network. However, studies
focusing on predicting only the overall aesthetic scores
(see Section II) on the EVA dataset have utilized different
training and testing splits. For example, Duan et al. [6] and
Li et al. [26] employed a split of 3,500 training images and
570 testing images, while Li et al. [25] used 4,500 training
images and 601 testing images. Similarly, Shaham et al. [38]
utilized a split of 2,940 training images and 611 testing
images.

B. IMPLEMENTATION DETAILS
We initialize the fully-connected layer weights in our
multi-task CNN with the Glorot uniform initializer [7].
We usemean squared error as the loss function on the training
set X to minimize the error between the predictions and the
ground-truth values:

E(W |X ) =
1
n

n∑
i=1

(yi − ŷi)2 (2)

where n is the number of samples in the training set,
yi are the ground-truth scores and ŷi are the predictions
generated by Eq. 1. In our multi-task model, we examined
the implementation of a weighted loss function. However, our
empirical evaluations indicated no significant improvement
in model performance. Consequently, we do not implement a
weighted loss function in our proposed model.

Since both datasets we use in this study do not include
large numbers of images, we apply horizontal flip as data
augmentation. We train our multi-task CNN in two stages.
In the first stage, we apply the Adam algorithm [17] with an
initial learning rate of 0.001 and decay constants of 0.9 and
0.999. The VGG16 pretrained network is composed of five
blocks, each of which includes convolutional and pooling
layers. During the first stage, we freeze the weights for all
five blocks and train the multi-task CNN for 5 epochs, with
a minibatch size of 64. We closely monitor the training and
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validation loss during this stage and observe that the model
is prone to overfitting if we train it for longer, without any
notable improvement in its performance.

In the second stage, we fine-tune the multi-task CNN by
unfreezing the last two convolutional layer in the fourth block
ofVGG16.We apply theAdam algorithm again, but we adjust
its learning rate by using the exponential decay learning rate
schedule. The initial learning rate is 0.0001, and it decays
every 125 steps with a base of 0.50. We fine-tune the model
with this setting for 3 epochs with a minibatch size of 64.

V. RESULTS AND DISCUSSION
In this section, we provide a comprehensive evaluation of our
proposed multi-task CNN on both datasets, with an emphasis
on its efficiency in assessing image aesthetics. We explore the
impact of fine-tuning and analyze the results for both overall
and attribute scores predicted by our model. Additionally,
we compare the performance of our multi-task approach with
a single-task setting for predicting the overall aesthetic scores
of images using the same neural network architecture.

A. PERFORMANCE ANALYSIS ON THE AADB DATASET
1) MODEL EVALUATION AND COMPARISON WITH THE
STATE-OF-THE-ART
Table 1 provides an overview of the performances achieved
by the studies in the literature which use the AADB dataset
to develop multi-task deep neural networks. These neural
networks learn the eleven attributes of the AADB dataset
along with the overall aesthetic score of images.

TABLE 1. Comparison of performances achieved by previous multi-task
neural networks and our proposed multi-task CNN on the test set of the
AADB dataset.

To make a comparison between the previous studies and
our multi-task CNN, we use Spearman’s rank correlation
coefficient (ρ), which is a commonly used metric in this
field. Table 1 summarizes the ρ values reported in each
study, which represent the correlation between the estimated
overall aesthetic scores by the multi-task neural network
and the corresponding ground-truth scores in the test set.
We calculate this correlation using the overall aesthetic scores
predicted by our multi-task CNN and find it to be significant
at p < 0.01. This allows us to compare the performance of
our model to those in the literature.

As shown in Table 1, there has been a slight improvement
in the correlation between predicted overall scores and
ground-truth scores over the years. The approach proposed
by Pan et al. [34] has resulted in the highest correlation

FIGURE 5. Visualization of model predictions: A scatter plot comparing
the actual overall aesthetic scores of test images in the AADB dataset to
the predicted scores generated by our multi-task CNN.

achieved thus far. Their study includes two methods, the
first of which is a multi-task deep neural network that
achieves a Spearman’s rank correlation of 0.6927. The second
one takes the first method one step forward by updating
it with an adversarial setting, as described in Section II.
Compared to thesemethods, ourmulti-task CNNoutperforms
the first method (0.7067 > 0.6927). When we compare
our model with the adversarial learning setting proposed by
Pan et al. [34], we find that our neural network outperforms
theirs again (0.7067 > 0.7041).
In addition to achieving the highest Spearman’s rank

correlation, our multi-task CNN has other advantages over
the state-of-the-art approach proposed by Pan et al. [34].
Table 2 compares the neural network architectures of current
state-of-the-art [34] and our multi-task CNN by taking into
account the number of parameters. While Pan et al. [34]
uses ResNet-50 for feature extraction, we utilize VGG16,
which has fewer parameters for this particular problem.
Furthermore, the fully-connected layers of our model
have significantly fewer parameters compared to those in
Pan et al. [34]. Specifically, our model’s fully-connected
layers have around 15 times fewer parameters in the neural
network compared to their model. Similarly, the output layer
of our multi-task CNN has fewer parameters, too. Moreover,
the adversarial setting used in Pan et al. [34] makes the
training of their neural network more complex.

We also evaluate the predictions made by our multi-task
CNN and investigate the issue of overfitting. Figure 5 shows
that our model can predict overall aesthetic scores across a
wide range.While the ground-truth overall aesthetic scores in
the test data range from 0.05 to 1.0, our model’s predictions
range from 0.26 to 0.90. We also report the frequencies
and percentages of ground-truth overall aesthetic scores in
Table 3 for different intervals in the test data. Based on
these data, our model’s predictions are not very good for
39 samples falling in intervals [0.05-0.10] and [0.10-0.20],
and for 15 samples falling in the interval [0.90-1.00]. In other
words, our multi-task CNN can make successful predictions
for approximately 95% of test data. This indicates that our
multi-task CNN is able tomake predictions for themajority of
the test data, with only a small percentage of samples falling

VOLUME 12, 2024 4721



D. Soydaner, J. Wagemans: Multi-Task Convolutional Neural Network for Image Aesthetic Assessment

TABLE 2. The Number of Parameters for the Multi-Task Neural Network Proposed by Pan et al. vs. Our Multi-Task Neural Network.

FIGURE 6. Comparison of ground-truth overall aesthetic scores and corresponding predictions by our multi-task CNN on the test data of the
AADB dataset. This figure shows the most successful predictions ranging from low aesthetic images to high aesthetic images.

FIGURE 7. Comparison of ground-truth overall aesthetic scores and corresponding predictions by our multi-task CNN on the test data of the
AADB dataset. This figure shows the least successful predictions ranging from low aesthetic images to high aesthetic images.
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outside of its prediction range. These results also indicate that
there is no issue of overfitting.

In order to further evaluate the performance of our multi-
task CNN, we visually examine its predictions and present
the most successful predictions in Figure 6 and the least
successful ones in Figure 7. As shown in Figure 6, our
multi-task CNN exhibits remarkable predictive performance,
with the exception of one low-aesthetic image with the
ground-truth score of 0.15. On the other hand, in the least
successful predictions shown in Figure 7, our model tends
to predict high scores to low aesthetic images, while giving
lower scores to the high aesthetic images.

Overall, our multi-task CNN achieves the highest Spear-
man’s rank correlation for overall aesthetic scores while
simultaneously predicting scores for 11 attributes. Notably,
our approach accomplishes this with fewer parameters,
making it more computationally efficient than the state-of-
the-art method proposed by Pan et al. [34]. By combining
a simplified neural network architecture with superior
predictive performance, our approach represents a significant
advancement in the field of image aesthetic assessment.

TABLE 3. The summary of the frequencies and percentages of
ground-truth overall aesthetic scores falling into specific intervals within
the test data of the AADB dataset.

2) COMPARISON WITH HUMAN PERFORMANCE
In addition to evaluating the performance of our multi-task
CNN in rating image aesthetics, we compare its results with
human performance on the AADB dataset. Kong et al. [18]
previously reported the Spearman’s rank correlation between
each individual’s ratings and the ground-truth average score
on this dataset. A subset of raters was selected based on the
number of images they have rated. In their study, they found
that the more images an individual rated, the more stable
their aesthetic score rankings became. We utilize this data
and compare it to the performance of our model, as shown
in Table 4.
Based on these correlations, we see that when the number

of images rated by the same observer increases, human
performance becomes better. On the other hand, it is also clear
that our multi-task CNN performs above the level of human
consistency averaged across all raters. Only when compared
to the more experienced raters (i.e., the 42 raters who
rated >200 images), our model performs slightly less. Our

TABLE 4. The Comparison Between Human Performance and Our
Multi-Task CNN on the AADB Database.

experiments demonstrate that our multi-task CNN achieves
near-human performance in predicting the overall aesthetic
scores on the AADB dataset. This narrows the performance
gap between machines and humans in this domain.

3) ATTRIBUTE PREDICTIONS AND THE FINE-TUNING EFFECT
Table 5 displays the Spearman’s rank correlations between
the ground-truth scores and the corresponding predictions
made by our multi-task CNN for each attribute. Moreover,
we investigate the effect of fine-tuning and include those
results in Table 5. As described in Section IV-B, we train our
multi-task CNN, and then we fine-tune the model by unfreez-
ing the last two convolutional layer in the fourth block of
VGG16 (block4_conv2 and block4_conv3). After fine-tuning
our model, we observe an increase in the correlations for
all attributes except symmetry. We also observe an increase
in the correlation for the overall aesthetic score. Moreover,
we aim to gain insight into the two convolutional layers that
we fine-tune. To this end, we illustrate the activation maps
generated using Grad-CAM [37] in Figure 8 for two images
from the test set of AADB dataset, one with a low aesthetic
score and the other with a high aesthetic score.

TABLE 5. Spearman’s rank correlations between the ground-truth scores
for each attribute and the predictions by our multi-task CNN in the test
data of the AADB Dataset. This table shows the correlations after training
and after fine-tuning separately, in addition to the correlations for the
overall aesthetic score.

We report the Spearman’s rank correlations on the AADB
dataset in Figure 9. This figure shows the correlations for the
ground-truth scores of all dataset on the left side, whereas on
the right side, we present the correlations for the predictions
on the test data made by our multi-task CNN. Our model’s
highest correlations among all attributes are for the light
(ρ=0.96) and content (ρ=0.95) attributes. This finding is
consistent with the AADB dataset, where content has the
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FIGURE 8. The activation maps for two input images from the test set of AADB dataset. These maps highlight the regions of the input image that
contributed the most to the neural network’s prediction. The heatmap is overlaid on top of the input image to provide a visualization of which
areas of the image are most relevant for the task.

FIGURE 9. Spearman’s rank correlations between the overall aesthetic scores and the attribute scores on the AADB dataset. (a): The
ground-truth scores on all dataset, (b): The predictions by our multi-task CNN on the test data.

highest correlation with overall aesthetic scores (ρ=0.70) and
light follows in second place (ρ=0.58). Furthermore, when
we compare the top-five correlations for our multi-task CNN
(light, content, color harmony, vivid color, and rule of thirds
attributes), we see the similar results in the AADB dataset
indicating our model can capture the relationships between
the overall aesthetic scores and the attributes. On the other
hand, when we examine the lowest correlations in Figure 9,
we find that our model also exhibites lower correlations
for the motion blur, symmetry, and repetition attributes,
consistent with human data. Accordingly, we can conclude
that the predictions made by our multi-task CNN closely
match human interpretation.

4) SINGLE-TASK VERSUS MULTI-TASK SETTING
We wondered what would happen if our proposed model
were a single-task neural network instead of a multi-task one.
In this case, the neural network just learns the overall aesthetic
score, not the scores for attributes. We report our result in

Table 6 and compare it to those of Pan et al. [34]. In terms
of single-task networks, the Spearman’s rank correlation of
our method is slightly higher than Pan et al. on the test set
of AADB dataset. This indicates that our neural network
performs slightly better in the single-task setting while
utilizing fewer parameters, highlighting the effectiveness
of our approach. Furthermore, we also add the multi-task
setting results for both model to make a comparison with the
single-task one. Both models show that multi-task learning
improves the neural network performance, as the Spearman’s
rank correlations between the predicted aesthetic scores and
ground-truth overall aesthetic scores are consistently higher
for the multi-task neural networks than for the single-task
ones.

B. PERFORMANCE ANALYSIS ON THE EVA DATASET
1) MODEL EVALUATION
The second benckmark we use in this study, the EVA dataset,
provides access to all participant’s ratings. To investigate the
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TABLE 6. The performance comparison between single-task and
multi-task neural networks in terms of Spearman’s rank correlations.

performance of our multi-task CNN on this dataset, first,
we calculated the average score for each image with respect
to each attribute and overall aesthetic score. Table 7 reports
the minimum and maximum averages for each attribute and
overall aesthetic score in the EVA dataset.

TABLE 7. The summary of the averages for the ground-truth overall
aesthetic scores and attribute scores in the EVA dataset.

Since there are four attributes in the EVA dataset (light and
color, composition and depth, quality, semantics), we modify
the output layer of our multi-task CNN to include five
units (one for the overall aesthetic score and one for each
attribute). Consequently, the output layer of our multi-task
CNN consists of 325 parameters for the EVA dataset.
We applied dropout [41] with a rate of 0.25 to the second
fully-connected layer with 64 hidden units, which precedes
the output layer. Also, since there is no official train-test
split for the EVA dataset, we follow the two studies [6],
[26] which use 3,500 images for training and 570 for testing.
Table 8 presents the performance of our multi-task CNN on
this dataset, also highlighting the effect of fine-tuning. This
table summarizes the Spearman’s rank correlations between
the estimated overall aesthetic scores by our multi-task CNN
and the corresponding ground-truth scores in the test set.
We also evaluated the model’s performance in the single-task
setting and observed that the multi-task setting outperforms
it. Consistent with the findings in Section V-A4, we note that
predicting the attributes along with the overall aesthetic score
has a positive effect on the overall score for the same neural
network architecture.

TABLE 8. The performance of our multi-task CNN on the test set of the
EVA dataset and comparison with the single-task setting in terms of
Spearman’s rank correlations. The table presents the results obtained
after training and after fine-tuning.

Similar to the evaluation of the AADB dataset in the
previous section, we evaluate the predictions made by our
multi-task CNN and investigate the issue of overfitting.

We compare the actual overall aesthetic scores of test images
in the EVA dataset to the predicted scores generated by our
model in Figure 10. While the ground-truth overall aesthetic
scores in the test data range from 2.46 to 9.0, our model’s
predictions range from 5.09 to 8.13. We also report the
frequencies and percentages of ground-truth overall aesthetic
scores in Table 9 for different intervals in the test data. Based
on these data, our model’s predictions are not very good
for 83 samples falling in interval range [1.70-5.00], and for
some samples falling in the maximum intervals. In other
words, our multi-task CNN can make successful predictions
for approximately 85% of test data. This indicates that our
multi-task CNN is able to make predictions for a majority of
the test data, with only a small percentage of samples falling
outside of its prediction range. These results also indicate that
there is no issue of overfitting.

FIGURE 10. Visualization of model predictions: A scatter plot comparing
the actual overall aesthetic scores of test images on the EVA dataset to
the predicted scores generated by our multi-task CNN.

We visually examine our model’s predictions and present
the most successful predictions in Figure 11 and the least
successful ones in Figure 12. As shown in Figure 11, our
multi-task CNN exhibits remarkable predictive performance
for images in the test set of EVA dataset. However, it has more
difficulty in predicting scores for the low aesthetic images
compared to theAADBdataset. On the other hand, in the least
successful predictions shown in Figure 12, our model tends to
predict high scores for the low aesthetic images, while giving
lower scores to the high aesthetic ones. This behavior of the
model is consistent with the results obtained from the AADB
dataset.

2) ATTRIBUTE PREDICTIONS AND THE FINE-TUNING EFFECT
Table 10 displays the Spearman’s rank correlations between
the ground-truth scores and the corresponding predictions
made by our multi-task CNN for each attribute. Moreover,
we investigate the effect of fine-tuning and include those
results in Table 10. This time, for all the attributes,
the correlations increase after fine-tuning. Similar to the
evaluation in the AADB dataset, we illustrate the activation
maps generated using Grad-CAM [37] in Figure 13 for two
images from the test set of AADB dataset, one with a low
aesthetic score and the other with a high aesthetic score.
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FIGURE 11. Comparison of ground-truth overall aesthetic scores and corresponding predictions by our
multi-task CNN on the test data of the EVA dataset. This figure shows the most successful predictions ranging
from low aesthetic images to high aesthetic images.

FIGURE 12. Comparison of ground-truth overall aesthetic scores and corresponding predictions by our
multi-task CNN on the test data of the EVA dataset. This figure shows the least successful predictions ranging
from low aesthetic images to high aesthetic images.

Lastly, we report the Spearman’s rank correlations on the
EVA dataset in Figure 14. This figure shows the correlations
for the ground-truth scores of all dataset on the left side,
whereas on the right side, we present the correlations for the
predictions on the test data made by our multi-task CNN.
Our model’s highest correlations among all attributes are for
the composition and depth (ρ=0.97) and semantics (ρ=0.95)
attributes. This finding is consistent with the EVA dataset,
where composition and depth has the highest correlation with
overall aesthetic scores (ρ=0.89) and semantics follows in
second place (ρ=0.87). The lowest correlation belongs to
the quality attribute, which is consistent with human data.

Based on our evaluation, we can conclude that the predictions
made by our multi-task CNN closely align with human
interpretation in the EVA dataset as well.

C. CROSS-DATASET EVALUATION
In the final part of our analysis, we investigate the gener-
alization capability of our multi-task CNN by conducting a
cross-dataset evaluation. Firstly, we examine the performance
of our model trained on the AADB dataset when tested on
the test set of the EVA dataset. Subsequently, we reverse the
process and evaluate the performance of our model trained
on the EVA dataset when tested on the test set of the AADB
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FIGURE 13. The activation maps for two input images from the test set of EVA dataset. These maps highlight the regions of the input image that
contributed the most to the neural network’s prediction. The heatmap is overlaid on top of the input image to provide a visualization of which areas of
the image are most relevant for the task.

FIGURE 14. Spearman’s rank correlations between the overall aesthetic scores and the attribute scores on the EVA dataset. (a):
The ground-truth scores on all dataset, (b): The predictions by our multi-task CNN on the test data.

dataset. The results of these cross-dataset evaluations are
summarized in Table 11. These results show the Spearman’s
rank correlations between the ground-truth overall aesthetic
scores and the predictions made by our multi-task CNN.

TABLE 9. The summary of the frequencies and percentages of
ground-truth overall aesthetic scores falling into specific intervals within
the test data of the EVA dataset.

Given the subjective nature of human aesthetics pref-
erences, we acknowledge that the generalization of our
multi-task CNN across datasets may be limited. However,
interestingly, we find that when our model is trained on the
EVA dataset and tested on the AADB dataset, it outperforms

TABLE 10. Spearman’s rank correlations between the ground-truth
scores for each attribute and the predictions by our multi-task neural
network on the test set of the EVA dataset. The table presents the results
obtained after training and after fine-tuning.

TABLE 11. Spearman’s rank correlations between the ground-truth
overall aesthetic scores and the predictions by our multi-task CNN for the
cross dataset evaluation.

the vice versa scenario (ρ = 0.441> ρ = 0.321). One possible
explanation for this observation is that the EVA dataset
benefits from a larger number of ratings per image compared
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to the AADB dataset. This highlights the significance of
high-quality human data and suggests that the availability
of additional image aesthetic benchmarks could contribute
to the development of models with improved generalization
capabilities. Such models could offer valuable insights
into understanding aesthetic preferences and uncovering
underlying patterns associated with them.

VI. CONCLUSION
Over the past decade, deep neural networks have achieved
remarkable advancements in various domains, ranging from
computer vision to game playing. Today, they have become
an essential component of computational aesthetics. In this
study, we present a simple yet effective multi-task CNN
which simultaneously learns both the overall aesthetic scores
and attribute scores of images.

Through systematic evaluation, we have demonstrated
the effectiveness of our neural network on two widely
used image aesthetic benchmarks. Notably, our multi-task
CNN surpasses existing approaches in the literature for
the AADB dataset, establishing itself as the new state-
of-the-art method for predicting overall aesthetic scores.
Remarkably, our model achieves this superior performance
while requiring fewer parameters compared to previous
approaches. Furthermore, our study pioneers the application
of a multi-task CNN on the EVA dataset, making it the first
of its kind in this context.

Moving forward, we envision further advancements in
computational aesthetics, facilitated by the integration of
deep neural networks and the exploration of additional
image aesthetic benchmarks. These developments have the
potential to unlock deeper insights into the understanding and
modeling of aesthetic preferences.
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