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ABSTRACT Smishing (SMS phishing) is a cybercrime in which criminals send fraudulent messages,
including malicious links, to steal the victims’ private data or cause financial losses. The damage caused by
smishing has become more severe, particularly with the proliferation of mobile devices. In smishing, a major
difficulty faced by victims is discrimination between normal and smishingmessages. To resolve this problem,
we present an on-device smishing classifier based on a deep-learning model. In real-world scenarios, access
to a substantial, authentic dataset is crucial. We trained and evaluated the classifier using real SMS datasets
containing approximately 250,000 smishing messages and 950,000 normal messages obtained from victims
in Korea. To ensure privacy, the classifier operates solely on mobile devices without externally transmitting
any data. It utilizes a lightweight method that does not require significant computing power on mobile
devices. We explored several models to determine a suitable model for mobile devices and optimized it using
real datasets. Furthermore, our statistical analysis of actual smishingmessages revealed that 98% of smishing
messages are variants of previously sent messages. To address the prevalence of variant smishing messages,
we propose a text evasion attack tool called EVA that is capable of generating pseudo-variant messages from a
given message using an adversarial attack approach.We used this tool to evaluate and enhance the robustness
of our classifier against various messages. Our classifier exhibited exceptional classification accuracy (0.99)
while being lightweight (at 127 kB) and robust against variant smishing messages (attack success rate
of 0.41).

INDEX TERMS Phone scams, smishing, classification, adversarial attacks, adversarial training.

I. INTRODUCTION
Phishing is a type of social engineering attack that aims
to deceive people through various communication channels,
such as email, voice calls, and SMS messages. Smishing
(SMS phishing) is a type of phishing that involves scammers
sending numerous bait messages by impersonating legitimate
organizations or government institutions. They deceive
people into clicking on malicious links, which leads to the
downloading and installation of malicious applications (e.g.,
Android application packages). These apps are disguised as
well-known applications such as banking, delivery, or shop-
ping apps. Once installed, these malicious apps can steal
the victim’s private data, which can then be used to commit
fraud or other cybercrimes, such as stealing the victim’s
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money or launching a voice/messenger phishing attack
based on the victim’s contacts. The world is experiencing
a rapid increase in the direct and indirect crimes caused by
smishing. The number of phishing websites is on the rise
every year, as reported by the Anti-Phishing Working Group
(APWG) [1]. Notably, the United Nations (UN) reported a
350% increase in the number of phishing websites during
the pandemic in the first quarter of 2020 [2]. The frequency
and severity of smishing attacks are also on the rise, with
Proofpoint’s report showing a staggering 700% surge in
smishing attacks in the first half of 2021 when compared
with that in the latter half of 2020 [3]. South Korea, known
as an IT powerhouse, has witnessed various smishing attack
patterns owing to the widespread use of smartphones. The
severity of these attacks is comparable to that observed in
global smishing trends. In 2022, the Korea Communications
Commission (KCC) stated that 93.4% of Koreans own
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FIGURE 1. Pipeline for generating an on-device smishing classification model.

smartphones [4]. According to the Statistics Research
Institute, the number of smishing-related incidents, including
messenger phishing, increased from 2,963 in 2019 to 17,841
in 2021, with the damage amounting to 1,265 billion won in
2021, up from 587 billion won in 2020 [5].
Various detection methods have been proposed for reduc-

ing the damage caused by smishing [6], [7], [8], [9],
[10], [11], [12]. Moreover, banks, financial institutions,
antivirus software companies, and telecom providers have
introduced commercial solutions/services to control smishing
attacks [13], [14], [15], [16], [17], [18]. These include
rule/learning-based detection, URL reputation checks, mal-
ware clustering, and attacker behavior analysis. Most meth-
ods have demonstrated considerable success in identifying
smishing messages accurately. However, they have certain
limitations. To create a reliable smishing classifier that
can be used in real-world situations, access to numerous
recent smishing datasets is essential. Unfortunately, it is
not easy to collect such data continuously from victims.
Previous studies did not use sufficient and up-to-date real
smishing datasets for training and evaluation [6], [7], [8].
Alternatively, some researchers have explored the use of
phishing URLs with a short lifespan [19], [20], [21], [22],
[23] as well as spam messages resembling smishing [9], [10],
[11]. These resources can be accessed through open-source
intelligence (OSINT). However, the effectiveness of these
methods for smishing classification in real-world scenarios
remains unclear. Second, some commercial solutions for
detecting smishing messages involve sharing targeted mes-
sages with cloud services [13], [14], [15], [16], which might
overlook user concerns about potential privacy leakage. The
importance of privacy is growing among users, and most
users hesitate to exchange messages with cloud services.
Privacy protection has become an essential consideration for
frequent mobile-device users. Hence, solutions to identify
smishing should protect the privacy of users as much as
possible. Third, our analysis of the smishing dataset reveals
that the majority of smishing messages are variants of
previous messages (III-A). These variants typically involve
changes in the URLs or minor modifications to the text.
Previous studies have not considered methods to effectively

detect such variants. To effectively combat the ever-changing
characteristics of smishing attacks, it is crucial to build a
robust detection solution that is capable of identifying these
variations.

This paper presents an on-device smishing classifier
that addresses the aforementioned limitations in combat-
ing smishing in the real world. The classifier adopts a
learning-based approach and locally analyzes the content
of the messages to identify potential smishing attempts.
To construct an effective smishing classifier for practical
use, we relied on our established partnership with the
Korean Internet and Security Agency (KISA) to obtain the
most recent smishing messages. Although our classifier is
based on the Korean language, strategies to address the
above limitations can be applied to other cultures and
languages. To ensure privacy, our solution operates solely
on mobile devices and does not transmit data externally.
This approach inevitably requires a lightweight method
that does not impose any burden on mobile devices.
We explored several machine/deep learningmodels discussed
in previous smishing detection studies to find a suitable
model for mobile devices and optimized it with real datasets.
To achieve robustness against variant messages (dominant
among smishing messages), we adopted the textual adver-
sarial attack methodologies employed in [24] and [25] and
proposed a text evasion attack tool (EVA) that generates
pseudo-variant messages from a given message. To the
best of our knowledge, this is the first attempt at using
adversarial attacks on smishing messages. This tool was used
to enhance the smishing classifier and evaluate its robustness.
For enhancement, variant messages created by the EVA tool
were used for adversarial training to retrain the classifier. For
the evaluation, the EVA tool was used to perform a textual
adversarial attack on the classifier.

The sequential processes utilized in building our on-device
classifier can be presented as a pipeline comprising data
collection, preprocessing, data distribution, model training,
model evaluation (to assess the classification performance
and robustness against smishing variations), and adversarial
training. Figure 1 illustrates this pipeline. The KISA and open
datasets can be collected automatically using application
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programming interfaces (APIs). The collected data were
preprocessed for classification and evenly distributed for
training, validation, and evaluation based on topic clustering
results. The model was trained using both smishing and
normal messages. The classification performance (accuracy,
F1 score, false positive rate, and false-negative rate) and
robustness of the trained model were evaluated. The model
was then retrained using additional adversarial messages
to address the vulnerabilities to smishing variant messages.
Through this pipeline, we can automatically build an
on-device smishing classifier that is resistant to text evasion
attacks. This significantly reduces the workload and expenses
and allows us to adapt to concept drift by continuously
incorporating the most recent smishing dataset updates.
Our classifier generated through the pipeline provides a
high classification performance (accuracy of 0.99) with a
lightweight model size (127 kB) and is robust against variant
smishing messages (attack success rate of 0.41).

The details of each step in the pipeline are described
in the following sections. In Section II, we describe the
related research that supports the concepts utilized in
this study. Section III examines the smishing and normal
datasets through statistical analysis, feature selection, and
trend analysis. In Section IV, we develop a lightweight
smishing classifier suitable for mobile devices. In Section V,
we present the text evasion attack tool (EVA), which is
based on textual adversarial attacks. Finally, Sections V–VII
describe the evaluation and improvement of the robustness of
the lightweight smishing classifier by using the EVA tool.

II. RELATED WORK
A. SMISHING CLASSIFICATION
To prevent smishing, various studies have been conducted
to identify and differentiate fraudulent messages sent by
scammers from normal messages. The methods adopted in
these studies can be categorized into URL-based and content-
based approaches. URL-based detection examines the legit-
imacy of the URLs by detecting their abnormal lexical
structure, linked content validity, and likelihood of containing
malicious software downloads [19], [20], [21], [22], [23].
Content-based detection relies on the unique characteristics
of the SMS content. These factors include morphological
characteristics, readability, and keywords that can distinguish
between smishing and normal messages. In general, these
methodologies involve creating rules or training models
using specific features [6], [7], [9]. Additionally, efforts have
been made to understand the context of the messages by
training models using text [8], [10], [11], [12]. Unfortunately,
the classification performances of previous studies were
evaluated using small and outdated smishing messages or
messages similar to smishing, such as spam [26], [27].

B. TEXTUAL ADVERSARIAL ATTACK
Scammers who are aware of the presence of a smishing
detector may try to evade detection. Several studies have

been conducted on adversarial attacks that circumvent text
classifiers. When a text is given, an attack explores an
adversarial text that holds a similar meaning to the original
text but is predicted to belong to a different class by the
target model. Attacks can be performed in white-box or
black-box environments; we are interested in the latter.
In general, an adversary in a black-box environment injects
perturbations that alter the original text to find the adver-
sarial text without the target model’s internal knowledge.
Perturbation injection techniques are categorized based on the
target object as character-level, word-level, or sentence-level
attacks. Character-level attacks can deceive textual classifiers
by manipulating characters through insertion, substitution,
or deletion [28], [29], [30], [31], [32]. These characters are
either substituted with visually similar characters or the word
is intentionally misspelled to imitate typographical errors.
Such disturbances can deceive the target model without
significantly altering the original meaning perceived by
humans. Word-level attacks mainly replace a particular token
or word with a new one. They can be selected through
synonym substitution [33], [34], [35] or based on a high
salient score determined using similar word embeddings [36],
[37], [38], [39]. In recent studies, masked language models
such as BERT have been used to generate perturbed words for
substitution in the same context [24], [25]. Most word-level
attacks search for texts that can deceive the target model by
modifying the original texts with perturbed words, which can
also be seen as a problem in greedy searches for the loss
of the target model. Sentence-level attacks involve replacing
an original sentence with a new adversarial text generated
using techniques such as paraphrasing [40], [41], [42], back-
translation [43], or competitive dialogue agents [44]. These
approaches often result in new sentences that do not retain
the original meaning.

C. MITIGATION
Mitigation strategies have been proposed to address textual
adversarial attacks by considering the unique characteristics
of textual data. These methods detect adversarial texts using
textual features, such as misspellings [45], grammatical
errors [46], synonym substitutions [47], word frequency [48],
and unnatural sentences [49]. Additionally, the encoding
method assigns a distinct embedding vector to each synonym
cluster [50]. However, these methods cannot be easily applied
to smishing texts that use casual languages and informal
writing styles. In addition, methods similar to those used in
the image domain have been applied to reduce the effect of
adversarial attacks on text. These methods include techniques
such as smoothing and regularization [51], [52]; however,
they can be applied only to certain models. Various methods
have been proposed in previous studies, but adversarial
training is considered a universal solution for combating
textual adversarial attacks [53], [54], [55], [56], [57]. This
can enhance the resistance of the model to adversarial attacks
if a sufficient number of adversarial samples are gathered.
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TABLE 1. Number of distinct smishing and normal data collected
from 1Q 2018 to 3Q 2022.

III. DATASET
To construct a smishing classifier and perform an adversarial
attack, we used a real SMS dataset collected and maintained
by the Korean Internet and Security Agency (KISA).
In Section III-A, we analyze the dataset and explore the
characteristics of smishing messages that differentiate them
from normal messages. Additionally, we used Korean texts
provided by open data platforms for conducting the false
alarm test on various examples of normal data; the list of
datasets is given in Section III-B.

A. KISA DATA
1) STATISTICS
KISA receives samples of suspicious smishing messages
reported by victims through partners such as mobile telecom
providers and antivirus software companies. The collected
samples are classified as smishing if the included URLs
lead to a malicious site (e.g., a malware distribution server
or phishing site); otherwise, they are classified as normal.
The collected and analyzed samples can be accessed through
a Cyber Threat Analysis & Sharing (C-TAS1) system with
permission granted by KISA. We used 254,905 smishing
messages and 949,152 normal messages collected between
Q1 2018 and Q3 2022 (Table 1). According to Table 1,
there was a significant increase in smishing cases in 2020,
coinciding with the onset of the COVID-19 pandemic.
It appears that scammers attempted social engineering attacks
by aggressively exploiting the vulnerable state of the mind of
the public. During this period, smishing messages related to
health and welfare increased rapidly (Figure 4b). In addition,
the majority of Android package kits (APKs) distributed via
smishing messages were hijacking and spyware apps, which
extract private information or facilitate other scams, such as
vishing (voice phishing). In 2021, there was a noticeable
increase in the number of messages categorized as normal.
This is considered to be the result of heightened public
awareness regarding smishing owing to the harm it caused
in 2020.

Most smishingmessages consist of text andURLs. Embed-
ded images sent through a multimedia messaging service
(MMS) are beyond the scope of our study. By examining
the dataset, we discovered numerous smishing messages that
were altered by replacing the URLs or tweaking a small
part of the text in previous smishing messages. These can
be regarded as variants of the original smishing message.

1https://cshare.krcert.or.kr:8443/index

TABLE 2. Number of representative, variant-text, and variant-link
smishing messages per quarter.

To distinguish such variants from the original messages,
we used the metric edit distance rate (edr), which counts
the character difference between the two texts by using the
Levenshtein distance [58] and obtains the ratio for the length
of the previously reported text as

edr(ta, tb) =
levenshtein(ta, tb)

len(ta)
,

where, in the timeline, ta is the previously reported text,
tb is the subsequently reported text, and len(ta) is the
number of characters in ta. The metric edr measures the
degree of perturbation between the two texts. For example,
edr = 0.3 indicates that the previously reported text
ta has an editorial difference of approximately 30% from
the subsequently reported text tb. We regard text tb as
a variant of text ta if edr ≤ 0.4. The threshold was
determined heuristically by observing smishing texts with
similar semantics. In this study, we defined three types of
smishing messages: representative, variant-text, and variant-
link. A representative message includes text that is editorially
distant from the text of all other previously reported smishing
messages (i.e., edr > 0.4). A variant-text message is a
smishing message with the text part slightly modified from
the text of the representative message. It is editorially similar
to the text of the representative message (i.e., edr ≤ 0.4).
A variant-link message is a smishing message that utilizes
different URLs but shares identical text content with the
previously reported message.

Table 2 shows the number of messages of each type in
the collected smishing dataset, and Figure 2 illustrates the
proportion of each type of message in each year since 2018.
Interestingly, the average number of representative messages
is only 1.94%. This means that approximately 98% of
the smishing messages were reproduced from a small
number of representative messages by modifying some text
and/or altering the URLs. Upon analyzing the representative
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FIGURE 2. Ratio between representatives and variants (for texts and
URLs) in yearly smishing messages.

messages, we found that 62% were reproduced more
than twice, and the oldest message was reproduced for
49 months. The most frequently reproduced messages were
regarding couriers, wedding invitations, and welfare, all of
which are closely related to people’s daily lives. Scammers
targeted messages familiar to the public at that time when
executing social engineering attacks. As shown in Figure 2,
approximately 19.08% of the messages were alterations of
the texts of the representative messages (i.e., variant-text),
and 78.98% utilized different URLs for the same text as in
the representative and variant-text messages (i.e., variant-
link). Although variant-link messages constitute a significant
part of the dataset, we focused on detecting variant-text
messages, because the detection of variant-text messages also
covered that of variant-link messages, as they share the same
text. Various studies and solutions have been presented for
malicious URL detection [19], [23], [59], [60]. Our focus was
to identify smishing by analyzing the text of the messages.

2) FEATURE SELECTION
Smishing mimics messages familiar to the public. Owing to
the similarities between smishing and normal messages, it is
difficult for individuals to distinguish between them. How-
ever, most smishing messages consist of short sentences with
poor grammar. Such writing styles can be used to identify
smishing messages. We investigated the distinctiveness of
smishing messages in comparison with normal messages by
analyzing the spacing, URL position, text length, symbols,
tokens, and other factors.

In Figure 3, we show six characteristics that can be
used to differentiate smishing from normal messages, where
impurities refer to any object such as symbol, letter, space,
or line break that is inserted between Korean letters. Figure 3f
shows that smishing texts tend to contain between 20 and
60 characters, whereas normal texts have more evenly
distributed lengths. It appears that smishing scammers prefer
relatively short texts, with an average of approximately
40 characters. Figures 3d & 3e show a tightly concentrated
distribution of smishing that closely resembles the shape
of the distribution shown in Figure 3f. This is because as
the length of the text increases, it becomes more likely

to include impurities and spacing. The Pearson correlation
coefficient indicated a strong correlation between the text
length and number of impurities (0.96) and spacing (0.91)
in smishing texts. Figure 3d shows that impurities appear
approximately five times in smishing texts. As shown in
Figure 3a, smishing uses more impurities per unit of text
length. During smishing, impurities can be intentionally
added to messages to avoid detection by spam filters or to
emphasize deceptive phrases and words. Figure 3e shows
that the number of spaces used in smishing is typically
distributed between 0 and 10, and Figure 3b shows that,
in the unit text length, smishing uses a smaller number of
spacings than normal texts. People often omit spacing for
convenience when writing text messages. This aspect appears
to be more prominent in smishing. Figure 3c shows that the
ratio of symbol usage per unit text length is slightly different
but not significant. Symbols were expected to be used more
frequently in smishing to avoid spam filters. The KISA
dataset categorizes spam messages (e.g., advertisements)
without malicious URLs as normal, which could account for
unexpected results. It appears that the attributes of normal
messages, such as spam, are responsible for these results. The
abovementioned characteristics can be effectively utilized
to distinguish between smishing and normal text messages.
Furthermore, a combination of these characteristics can
enhance their effectiveness.

Relying solely on the aforementioned characteristics may
not be sufficient to accurately identify smishing attempts. It is
expected that the tokens commonly used in smishing and
normal texts can aid in their classification.We refer to these as
smishing-friendly and normal-friendly tokens, respectively.
These tokens were extracted using the following process:

1) Tokenize texts by morphemes and leave only the nouns.
2) Calculate the frequency of tokens for smishing:

freq(τ ) =
smishing(τ )

normal(τ )+ smishing(τ )

where τ is a token; smishing(τ ) counts howmany times
the token τ appears in the smishing texts, and normal(τ )
counts the same in the normal texts.

3) Exclude the following tokens

- composed of only one letter,
- total number of occurrence (=normal(τ ) +

smishing(τ )) < 100; the number of collected
samples is not sufficient,

- 0.4 < freq < 0.6; these are located near the
borderline between smishing and normal.

4) Classify the remaining into

- smishing-friendly token if freq ≥ 0.6,
- normal-friendly token if freq ≤ 0.4.

From this dataset, 147 smishing-friendly and 348 normal-
friendly tokens were extracted. For clarity, we have pro-
vided English translations of the Korean keywords in
this paper. For example, smishing-friendly tokens that are
commonly used in smishing include words such as ‘‘invoice,’’
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FIGURE 3. Comparison of the statistical distribution of each feature between the smishing and normal texts, where the red symbol (x) represents
the density plot of the smishing texts, and the blue symbol (o) represents the density plot of the normal texts; in (a), (b), and (c), the x-axis
denotes the ratio of the appearance of impurity, spacing, and symbol in a unit text length.

‘‘delivery,’’ ‘‘item,’’ ‘‘return,’’ ‘‘post,’’ ‘‘health,’’ and ‘‘bless-
ing.’’ However, normal-friendly tokens that are less fre-
quently used in smishing include words such as ‘‘adult,’’
‘‘mobile,’’ ‘‘download,’’ ‘‘cash,’’ ‘‘authentication,’’ ‘‘free,’’
and ‘‘loan.’’ They are strongly biased toward either smishing
or normal. In Section IV, we use the aforementioned
characteristics and tokens as features in the machine learning
models such as Naïve Bayes, Random Forest, and light
gradient boosting machine (Light GBM), and present their
classification performances.

3) TREND
We categorized the collected messages into various topics
and detected any changes in the trends by observing their
distribution. To do this, we removed duplicate messages
with the same content (i.e., variant-link messages) and
focused only on unique smishing texts. The number of
unique smishing messages was 53,569. The topics were
determined by manually analyzing the texts. We selected
appropriate keywords related to each topic and categorized
the smishing texts using these keywords. During categoriza-
tion, we adaptively added new topics and their associated
keywords. We completed this task with approximately
400 uncategorized messages remaining. The selected topics
were courier, invitation, welfare, finance, police, and sexual.
In Figure 4, Figure 4a shows the yearly count of smishing
messages related to all topics, whereas Figure 4b excludes
the courier topic. This is because the courier topic has
a notably higher number of messages and presenting the
data in two separate graphs improves the visualization.
Scammers frequently use topics related to courier in smishing
attacks. In particular, smishing became rampant during the
COVID-19 pandemic of 2020, and courier-related smishing
messages increased significantly when compared with that

FIGURE 4. Topic distribution of smishing messages from 2018 to 2022.

in the previous year. During this time, many people favored
online purchases and courier services for their daily needs
because of difficulty in going out and the desire to avoid
close contact. This accelerated courier-related smishing
attacks. Smishing messages related to courier services
were about delays, product confirmation, and arrival and
return notifications. In addition to courier-related messages,
a significant proportion of smishing messages were related
to welfare and wedding invitations. Figure 4b shows that
in 2020, invitation-related messages decreased whereas
welfare-related messages increased. People were cautious
about inviting guests to wedding events and followed public
health information messages issued by authorities. Most
topics extracted from the smishing dataset were such that they
provoked curiosity or anxiety among people receiving them.

B. OPEN DATA
The KISA dataset described in Section III-A contains
messages that are suspected to be related to smishing. For this
reason, the normal messages in the KISA dataset are similar
to smishing messages from the viewpoint of users and do
not reflect the various cases of SMS messages. Therefore,
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we required a range of normal SMS messages to evaluate the
effectiveness of the smishing detector. However, collecting
personal messages is difficult because of privacy concerns.
As an alternative, we utilized Korean public texts, similar to
SMS. Owing to the efforts of previous researchers, we could
use the datasets listed below:
• AI-Hub corpus2: 12 kinds of speech and dialogue
(e.g., emotional conversations, customer responses, etc.)
of 0.7 GB

• Modoo’s corpus3: 6 kinds of Korean corpora (e.g., daily
conversations, newspaper texts, etc.) of 19.4 GB

• KcBERT pre-training corpus4: Korean news comments
of 12.1 GB

The above datasets are mainly composed of short texts per-
taining to categories such as casual conversations, counseling,
meetings, and news comments. However, these short texts
are not real SMS messages. They are used only to evaluate
various SMS text messages. We did not use them for training
because they may contain unexpected patterns that are not
present in real SMS messages.

IV. CLASSIFICATION
Tominimize personal data leaks, we constructed an on-device
smishing classifier that runs on a local device and does not
transmit data. We selected the appropriate model according
to the following criteria. First, model size is critical when
considering an on-device solution. For instance, on-device
smishing classifiers can be installed on various smartphones
at both low and high costs. However, low-cost devices
might not have sufficient memory to run the model, and
a large-sized model may quickly drain the battery. The
detector response time also depends on the model size.
The larger the model, the greater the time required for
reasoning. During the design and construction processes,
we prioritized the size of the model as the most important
factor. Second, accuracy is an important factor that should
be considered. Our goal was to create a model with the
maximum possible accuracy. However, it is important to
note that false classifications (false positives and false
negatives) can still occur. If false positives occur frequently,
the classifier may become unreliable, as in the case of the
shepherd boy in a fairy tale. This can result in the user
losing trust in the classifier and possibly even deleting or
deactivating it. In our model selection, we assigned high
importance to a low false positive rate. Finally, it is important
to update the model regularly or on-demand to address the
concept drift effectively in smishing. However, the process
of detecting changes in trends, analyzing them, and updating
the model can be a time-consuming and costly process.
To minimize them, we automate the model updating process
without relying on manual input by experts. To achieve this,
themodel should be as easily adaptable to updates as possible.

2https://aihub.or.kr/
3https://corpus.korean.go.kr/
4https://www.kaggle.com/datasets/junbumlee/kcbert-pretraining-corpus-

korean-news-comments

For the base model selection, we evaluated the most
commonly used models for smishing detection. Table 3 lists
themachine learningmodels of Naïve Bayes, RandomForest,
and LightGBM, whereas the deep learning models included
Word-CNN, Char-CNN, and KoELECTRA. We trained each
model using our datasets and selected the model that best met
the criteria.

For preprocessing, we simplified certain message com-
ponents that could increase the classification complexity
owing to their variations. URLs, file names, and call numbers
were included in these components. We replaced them with
specific mask strings: “LINK” for an URL, “FILE” for
a file name, and “CALL” for a call number. For instance,
if a message included two URLs, they were replaced with
“LINKA” and “LINKB”, respectively; this process was also
followed for file names and call numbers. Masking can lower
the classification complexity and prevent the model from
being biased toward a specific string, such as a URL, file
name, or call number.

For feature selection of the machine learning models,
we utilized six characteristics and 495 (smishing-friendly and
normal-friendly) tokens as classification features, as analyzed
in Section III-A. However, for the Naïve Bayes classifier with
the feature-independence assumption, we excluded highly
correlated characteristics (i.e., number of impurities and
number of spacings) and used only four characteristics and
tokens. For Word-CNN, we used words in the messages
as features. We split the messages into tokens and trained
a word-embedding matrix (i.e., Word2Vec). Char-CNN
recognizes text by using characters and memorizes them
similar to images [61]. Its effectiveness in text classification
makes it a valuable tool for smishing detection. For Hangul
(i.e., the Korean script), Char-CNN uses the initial consonant,
middle vowel, and final consonant as the features, whereas
it uses the alphabet for English. Furthermore, Char-CNN
also uses symbols, digits, spacing, and line breaks as its
features. In total, Char-CNN used 215 features in this study.
While [61] used one-hot encoding for feature vectorization,
we opted for a character embedding matrix, which has a
dimension of 48. Initially, the 215 features were randomly
positioned in the 48-dimension and updated per epoch.
Our choice of using a character embedding matrix instead
of one-hot encoding was to minimize the model size.
Finally, KoELECTRA is known to have a smaller size
and competitive performance when compared with other
transformer models [62]. We used a small KoELECTRA
model, the koelectra-small-v3-discriminator.
Its tokens were determined using WordPiece tokenization,
as in BERT.

We followed the default settings of scikit-learn-
1.0.2 for the hyperparameters of the machine learning
models; some of these hyperparameters were changed
through repeated experiments to provide better perfor-
mance. For both Word-CNN and Char-CNN, we used a
one-dimensional CNN with one layer and added a feed-
forward network with ten hidden cells. The CNN models
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TABLE 3. Brief description and performance comparison of candidate models for on-device smishing classification, where the performance metrics are
presented as the mean value of five trained models, with the standard deviation shown in parentheses.

with multiple layers did not provide significantly better
performance than the CNN model with one layer; some of
them even showed a decrease in performance. Considering
the sizes of the CNN models, we decided to stack only one
layer, which was sufficient to classify smishing messages.
For KoELECTRA, a feedforward network with 256 hidden
cells was added at the end of the pre-trained model to predict
the final class. The major hyperparameters of each model are
listed in Table 3.

The KISA dataset explained in Section III-A was used to
construct a comprehensive dataset for training, validation,
and testing; we did not include open datasets in the model
comparison, as they require much processing time and hence
were not suitable for repeated testing. The validation dataset
was used to select the best among the models generated at
each epoch, and the test dataset was used to evaluate the
classification performance of the selected model (Table 3).
To prevent learning the same text repeatedly, we used
only smishing messages with 55,369 unique texts (i.e.,
representative and variant-text messages). We retained 20%
of the smishing messages for testing (10,713) and divided the
remaining 80% in the ratio of 8:2 into training (34,282) and
validation (8,574) data. The same ratio as in smishing was
applied to normalmessages. However, because the proportion
of normal messages is overwhelmingly high when compared
with the number of smishing messages, the trained models
can be biased toward the normal class. To prevent this,
a portion of the normal messages, approximately double
the number of smishing messages, was utilized for training,
which was a total of 59,571 messages. Additionally, 14,896
messages were used for validation, and 18,615 were used
for testing. The messages used for training, validation, and
testing were chosen randomly from nine clusters by using
Latent Dirichlet Allocation (LDA), where, in a specific range
of 3 to 20, the number of clusters was determined with the
objective of maximizing the LDA coherence value. Topic
clustering in LDA does not always cluster the samples with
complete clarity. Nevertheless, it is sufficient to ensure that
the model is not trained or evaluated for particular topics by

using evenly distributing messages with similar meanings; in
contrast, the topic clustering mentioned in Section III-A is
analyzed manually.

To evaluate model performance, we trained five models
under the same conditions of datasets and hyperparameters
for each candidate model. Then, we compared their perfor-
mance by calculating the mean and standard deviation of the
population in Table 3. As for Naïve Bayes, we did not provide
the standard deviation because it produces the same result
under the same conditions. The standard deviations of the
other candidate models were too small to be concerned about
performance variations. The results were reviewed according
to the three criteria mentioned above. First, it is worth
noting that the Naïve Bayes, LightGBM, and Char-CNN
models were all less than 1 MB in size. This implies that
installing these models does not create a significant memory
burden. Although Naïve Bayes had the smallest model size,
its accuracy was the lowest. This could lead to a decrease
in user trust. The difference in accuracy may seem small
(≤0.02), but it cannot be disregarded when considering
the daily volume of messages received. To compare the
computation speeds of a small-size model (<1 MB) and a
large-size model (≥1 MB), we measured the throughputs
(i.e., predicted messages per second) of Char-CNN and
KoELECTRA (1,179 and 329, respectively). Char-CNN was
3.6 times faster than KoELECTRA. Moreover, large models
are expected to consume significantly more power than
small models. Second, in terms of detection accuracy, all
models except Naïve Bayes were equally effective. Among
these models, Char-CNN showed the highest accuracy
and lowest false positive/negative rate. Third, in terms of
maintenance, machine learning models are not appropriate
because, as smishing trends change, experts may need to
select new features for each update, and a change in themodel
structure may also occur. This may necessitate the assistance
of trained operators and present difficulties whenever a
model is updated. In contrast, deep learning models are
more suitable for on-device environments. In short, according
to our criteria, Char-CNN demonstrated high classification
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performance with a small model and supported easy update.
We regarded the Char-CNN model as suitable for classifying
smishing in the devices. To test the chosen Char-CNN model
on mobile devices, we converted the Pytorch implementation
to TensorFlow-Light (version 2.7.0). The transform relied
exclusively on the built-in operators of TensorFlow-Light
without the need for any TensorFlow core or custom
operators. Additionally, the internal parameters, such as
weights, were reduced through quantization. These allowed
us to achieve a small-size model of only 127 kB. Despite
this reduction, the classification performancewas not affected
or decreased. Moving forward, we refer to one of these five
Char-CNNmodels as the basemodel. Its performancemetrics
are as follows: 0.9959 for accuracy, 0.9946 for F1 score,
0.0041 for false-positive rate, and 0.0043 for false-negative
rate. The base model will serve as the target model for
evading attacks in Section VI, and as the reference model for
comparing adversarial-trained models in Sections VI & VII.

V. EVASION
In smishing, scammers may attempt to evade detection by
applying perturbations to a small portion of the smishingmes-
sages. As shown in Section III, messages with perturbations
in a small portion of the text (i.e., variant texts) have already
been found in the real smishing dataset. We constructed a
tool for text-based evasion attack (EVA), which imitates a
scammer’s attack behaviors in the real world and artificially
constructs variant-text messages. We first introduce the threat
model for an evasion attack (Section V-A), describe how the
EVA injects various perturbations while interacting with a
target model (Section V-B), and evaluate it by attacking the
base model in Section IV (Section V-C).

A. THREAT MODEL
Our evasion attack proceeds in a black-box environment
without knowledge of the inner information of the target
model (e.g., hyperparameters, architecture, and training data).
It imitates the scammers’ attack environment in which they
are unaware of the operation of a smishing detector in
the real world. Under the black-box setting, we assume
that the adversary (i.e., the scammer) can query the target
model for arbitrary messages and obtain responses regarding
their predicted classes and confidence scores. However,
some intelligent adversaries might attempt white-box-based
evasion attacks after extracting the internal information of
the target systems using known attacks, such as side-channel
attacks and active learning [63], [64], [65], [66], [67],
[68]. Nevertheless, executing these attacks is not easy for
scammers because of the challenges involved in model
extraction, shortage of expert knowledge, defense against
tamper-resistant techniques, and cost of a large number of
queries. Hence, we assumed that scammers did not know the
inner information of the target models.

During an attack, an adversary injects perturbations into
the smishing message and asks the target model whether the
modified message is smishing. The adversary’s goal is to

find perturbed messages recognized as normal by the target
model under a limited condition whereby the perturbations
do not alter the meaning of the original smishing messages.
To measure the semantic similarity between an original mes-
sage and its perturbed message, we consider both sentence
similarity (i.e., the BERT score [69]) and edit distance rate
(i.e., edr(·, ·) in Section III-A). In previous studies [24],
[25], [38], [70], sentence similarity was used to measure
the semantical distance between two messages; however,
we cannot fully trust the result because of low accuracy. This
guarantees that the two messages have a somewhat similar
meaning. To complement this, we measured the edit distance
rate. Let F : M → C × D be a target model, M be
the messages allowed by the detector, C be the predictable
classes, and D be the confidence scores. To achieve the goal,
an adversary should satisfy the following two requirements.

• Misclassified: the perturbed message madv of an
original message m ∈ M should be classified into
cadv ̸= c, where c is the predicted class ofF(m) = (c, d).

• Semantically similar: the adversary can perturb the
original message m only in a similar context with-
out significant damage to the original meaning, i.e.,
sim(m,madv) ≥ µsent and edr(m,madv) ≤ µedit, where
sim(·, ·) and edr(·, ·) represent the sentence similarity
and edit distance rate, respectively.

If the adversary generates a perturbed message that satisfies
the above requirements, it succeeds in an evasion attack.
We refer to this as an adversarial message.

B. ALGORITHM
In the field of text classification, evasion attacks have been
studied on various topics [24], [25], [30], [31], [38], [71],
[72], [73], [74], including sentiment analysis, spam filtering,
and fake news detection. Their research focused primarily
on a methodology that naturally injects perturbations from
a human perspective. For evasion attacks against smishing
classifications, we utilized existing methodologies that
included injecting perturbations at the character and word
levels (in PerturbChar&Word). We also introduced
new perturbation techniques, such as breaking patterns (in
BreakPatterns) and injecting structure-level perturba-
tions (in PerturbStruct), which consider the character-
istic patterns used in smishing and the unformatted writing
style of SMS messages, respectively. The attack tool, EVA,
takes the target smishing message m, target model F(·), and
thresholds of semantic similarity scores (µsent for sentence
similarity and µedit for edit distance rate) as the inputs, and
outputs an adversarial messagemadv. It comprises six phases:
Preprocess, BreakPatterns, PerturbStruct,
ImportantTokens,PerturbChar, andPerturbWord.
EVA is described in Algorithm 1, and the related functions are
given in Table 4.

In Preprocess, fix_spelling(·) fixes misspelled words
and misused spaces in an input message m. SMS messages
do not comply well with grammar and mainly use an

4770 VOLUME 12, 2024



J. W. Seo et al.: On-Device Smishing Classifier Resistant to Text Evasion Attack

Algorithm 1 EVA
Input: smishing message m, target model F(·), and thresholds:

µsent for sentence similarity and µedit for edit distance

rate

Output: adversarial message madv

1 Preprocess:
2 ḿ← fix_spelling(m)
3 m̂← mask(ḿ)
4 τpro = (ν1, ν2, . . . , νn)← tokenize(m̂)

5 BreakPatterns:
6 τpar ← remove(τpro,S)
7 τpar ← inject(τpar)

8 mpar ← compose(τpar)

9 if isSuccess(mpar) then return madv = mpar

10 else κcurr ← queryF(mpar)

11 PerturbStruct:
12 τstruct = τpar

13 Pstruct ← line(τpar)

14 for ρ ∈ Pstruct do
15 κ ← queryF(ρ), (α, β)← getSemantics(ρ)
16 if (κ < κcurr) ∧ (α ≤ µedit) ∧ (β ≥ µsent) then
17 τstruct ← updateTokens(τstruct, ρ)

18 mstruct ← compose(τstruct)

19 if isSuccess(mstruct) then return madv = mstruct

20 else κcurr ← queryF(mstruct)

21 ImportantTokens:
22 for ν ∈ τstruct do
23 mimp ← compose(τstruct − {ν})

24 κimp ← queryF(mimp)

25 if κimp < κcurr then store (ν, κimp) in I

26 sort I in ascending order of κimp

27 PerturbChar&Word:
28 τtoken = τstruct

29 for (ν, _) in I do
30 Pchar ← insert_char(τtoken, ν) ∪

del_char(τtoken, ν) ∪ sub_char(τtoken, ν) ∪

insert_corr_symbol(τtoken, ν) ∪

del_symbol(τtoken, ν)

31 Pword ← insert_word(τtoken, ν) ∪

del_word(τtoken, ν) ∪ sub_word(τtoken, ν) ∪

swap_word(τtoken, ν)

32 Ptoken ← Pchar ∪ Pword

33 for ρ ∈ Ptoken do
34 κ ← queryF(ρ), (α, β)← getSemantics(ρ)
35 if (κ < κcurr) ∧ (α ≤ µedit) ∧ (β ≥ µsent) then
36 τbest ← updateTokens(τtoken, ρ)

37 κcurr = κ

38 mtoken ← compose(τbest)

39 if isSuccess(mtoken) then return madv = mtoken

40 return None

informal writing style. Thus, they include various types of
typographical errors. Unlike well-formalized texts, such as
news, articles, and emails, it is not easy to disassemble
such messages into tokens. Fixing the spelling errors
helps tokenize(·) to recognize and split the tokens. Before
tokenization, EVA replaces the URLs, call numbers, and file
names with specific strings, as described in Section III-A, and
excludes them from the perturbations. To deceive the target
model, EVA does not modify the URLs, call numbers, or file
names. In addition, it replaces the spacings and line breaks
with specific strings. This causes tokenize(·) to recognize
them as tokens. Then, the tokenized spacings and line breaks
are used for structure-level perturbations. The original strings
of these masks are recovered when a sequence of tokens is
reconstructed into a perturbed message using compose(·).
tokenize(·) converts a spell-corrected and masked message
into a sequence of tokens, τpro = (ν1, ν2, . . . , νn), where
ν is a token. For the remaining processes, EVA injects
perturbations for each token.

In BreakPatterns, EVA breaks specific patterns that
frequently appear in most smishing messages. As the target
models repeatedly learn frequent smishing patterns, they tend
to predict messages with such patterns as strongly smishing.
In these cases, even when the EVA injects a perturbation, the
confidence score does not decrease significantly. Such pat-
terns include specific nouns that mainly appear in smishing
messages and URLs occurring adjacent to tokens having a
certain meaning (e.g., contact, link, check, etc.). To increase
the attack success probability, EVA breaks the patterns
using remove(·, ·) and inject(·). The function remove(·, ·)
deletes tokens that frequently appear in smishing but do not
appear in normal messages (called strong smishing tokens,
S), which are determined based on high-ranked smishing-
friendly tokens in Section III-A. Function inject(·) adds a
token at the front/end of the URLs, where the tokens are
chosen by the fill-mask task (i.e., BERT-MLM) without
damaging the meaning of the context as much as possible.
In some cases, breaking these patterns may succeed in
generating adversarial messages. After breaking the patterns,
compose(·) recovers the modified token sequence (τpar)
as a message and checks if it is an adversarial message or
not; the success conditions are given in the description of
isSuccess(·) in Table 4. If the attack succeeds, EVA stops
the subsequent processes and returns the adversarial message
madv; the success conditions are checkedwhenever amessage
is newly perturbed.

The SMSmessages are written in an unformatted structure.
Generally, line breaks can be positioned anywhere in a
sentence. In addition, URLs, file names, and call numbers can
be positioned anywhere, regardless of their meaning. When
we manually attacked the smishing classifier by changing
the structural features (e.g., adding/deleting line breaks and
repositioning the URLs, file names, and call numbers), the
addition/deletion of line breaks easily changed the prediction
results in many cases, whereas repositioning did not help in
decreasing the confidence score for smishing. Hence, EVA
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TABLE 4. Functions used in EVA.

includes structure-level perturbations to inject and delete line
breaks, unlike previous studies [24], [25], [30], [31], [38],
[73] in which such perturbations can only be considered in
texts that are not grammatically well organized, such as SMS
messages. In PerturbStruct, the function line(·) gener-
ates a set of perturbedmessagesPstruct, where each perturbed
message ρ in Pstruct includes the addition/deletion of only
one line break. The function line(·) turns a spacing into a line
break to allow insertion or a line break into a spacing to allow
deletion. Then, EVA selects the perturbed messages that have
a lower confidence score than the current κcurr within the
allowed semantic similarity scores. An added/deleted line
break of each selected perturbed message is accumulated
in the token sequence τstruct (lines 14 to 17); during the
structure-level perturbation, to prevent the perturbed text
mstruct from becoming unusual by including too many line
breaks, we limited the number of added line breaks to three.
EVA checks the success conditions for the perturbed message
mstruct and proceeds to the next phase if it does not succeed.

Character- and word-level perturbations individually mod-
ify the tokens in a given token sequence τstruct. For
effective and efficient perturbation, it is necessary to identify

which token is more important than the others for evasion
attacks and then prioritize the perturbation of the token.
ImportantTokens determines the priority of the tokens
for a perturbation by using the method described in [31]. This
is the preparation phase for the character- and word-level
perturbations. It deletes each token in the target message,
queries the target model, and measures the extent to which
the confidence scores decrease from the current score. The
greater the decrease in the score, the higher is the perturbation
priority of the token. In other words, the perturbation priority
for token ν is computed as

queryF(m)− queryF(m
′
= compose(τ − {ν})),

where the negative sign indicates deletion of the token ν from
a sequence of tokens τ . This method of linking important
tokens has been commonly used in previous studies [24],
[30], [38]. The tokens that increased the confidence score
were excluded from the token pool of perturbations. Pool I
remembers the tokens and their perturbation priority (ν, κimp)
in the descending order of the perturbation priority κimp.
PerturbChar&Word sequentially perturbs the tokens

according to the perturbation priority. For each token, the
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perturbation functions produce perturbed messages through
different strategies, such as insertion, deletion, and substi-
tution, where Pchar is the set of messages perturbed by
character-level perturbations, andPword is the set ofmessages
perturbed by word-level perturbations. The perturbed mes-
sages are merged into a setPtoken. For all perturbed messages
in Ptoken, EVA finds the message that reduces the confidence
score the most within the allowed semantic scores; EVA
adopts one perturbation strategy for one token. If the found
message mtoken satisfies the success conditions, EVA returns
it as an adversarial message madv. Otherwise, the token of
the subsequent target is perturbed. This process continues
until all the tokens in pool I are used. Character-level
perturbations inject artificial typos (i.e., insert_char(·, ·),
del_char(·, ·)) or imitate writing styles typically used in SMS
messages, which involve the use of symbols and Internet
vocabulary (i.e., sub_char(·, ·), insert_corr_symbol(·, ·),
and del_symbol(·, ·)). Typos are mainly caused by human
mistakes, and symbols and Internet vocabulary are inten-
tionally used for emphasis or fun or as abbreviations.
Perturbations can pose a challenge for the target model in
analyzing amessage accurately and classifying it as smishing.
To incorporate perturbations, sub_char(·, ·) replaces the
target token with Internet vocabulary, such as leet, where the
letters in a word are intentionally substituted with numbers
or other characters. For Korean, we used yaminjungum,
a Korean leet. Other perturbations handle characters and sym-
bols by adding or deleting them, as in previous studies [30],
[31]. For word-level perturbations, we borrowed methods
used in previous studies [24], [25], [30], [38], [73]. Pertur-
bations include word insertions, deletions, substitutions, and
swaps (insert_word(·, ·), del_word(·, ·), sub_word(·, ·), and
swap_word(·, ·)). Perturbations are used to find a different
expression while maintaining a meaning similar to that of the
given message. Among these perturbations, word insertion
and substitution require new words that do not disrupt the
context of a given message as much as possible. For this
purpose, we utilized a fill-mask task (i.e., BERT-MLM [75]).
In word insertion, EVA places the mask in a position that
requires a new word, extracts N candidate words using
the fill-mask task, and inserts candidate words with high
confidence scores. In word substitution, EVA replaces the
target token with a mask, extracts N candidate words from
the fill-mask task, and substitutes the target tokenwith similar
words in the BERT score.

C. EVALUATION
To evaluate the attack possibility of EVA, we attacked the
base model described in Section IV. The target messages for
the attack were selected from the representative messages
described in Section III-A. Among them, we chose only the
messages used in the training of the base model and tested
whether EVA could generate adversarial messages from the
already trained messages. The number of target messages for
evaluating the EVA tool was 4,457, which included messages

of various sizes between 36-byte and 1,628-byte (136-byte on
average).

EVA requires setting up some parameters for the operation:
the maximum number of attack attempts, language model
for performing the fill-mask task and computing the BERT
score, number of candidate tokens recommended by the
fill-mask task, and threshold of semantic similarity scores.
These settings were determined empirically. According to
the default setting for comparison, we attacked only once
per message, used klue/bert-base [76] as the language
model, set the number of candidate tokens to 20, and
applied semantic scores without restrictions (i.e., µsent = 0
and µedit = 1). To optimize the performance of EVA,
we modified its parameters individually and selected those
that yielded higher semantic similarity scores or attack
success rates.

First, the maximum number of attack attempts was
set to five. EVA is a probabilistic algorithm in which
functions remove(·, ·) and inject(·) randomly select tokens
for perturbation. That is, for the same target messages, EVA
may succeed or fail. Even if an adversarial attack succeeds,
different adversarial messages can be produced per attack for
the same target message. In our empirical experiments, the
target messages that could not generate adversarial messages
within five attack attempts failed with a high probability, even
if additional chances were given. Five attack attempts per text
were sufficient to determine the success of the attack. In our
test, if we succeeded in creating an adversarial message once
in up to five attacks, we considered the attack as a success.

After generating adversarial messages from 4,457 target
messages by adjusting the language models or number of
candidate tokens, we found that the semantic similarity scores
of the adversarial messages did not show significant differ-
ences. To verify the improvement more clearly according
to the candidate models or number of candidate tokens,
we extracted the target messages that produced semantically
low-quality adversarial messages. We expected these target
messages to be relatively robust to text perturbations. A lan-
guage model or an appropriate number of candidate tokens
capable of generating high-quality adversarial messages from
these target messages was assumed to be suitable for evading
attacks. For this, we attacked the base model under the
above default setting and specifically selected 252 target
messages that would generate adversarial messages with a
sentence similarity score below 0.8 (average: 0.92) or an edit
distance rate higher than 0.45 (average: 0.38). By taking these
messages as input, we attempted to determine the language
model and number of candidate tokens that improve the initial
semantic similarity scores.

Second, we set the languagemodel tolassl/bert-ko-
base. The model can be downloaded from the Hugging Face
model hub,5 which provides models that perform various
types of tasks in multiple languages. From the Hugging Face
model hub, we downloaded and tested 29 language models

5https://huggingface.co/lassl/bert-ko-base
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FIGURE 5. Statistical analysis of the successfully perturbed texts on the base model.

supporting the fill-mask task in Korean, which were highly
rankedmodels in Most-Likes. We attacked the base model
by applying the downloaded language models to the fill-mask
task and computing the BERT score. We also evaluated the
adversarial messages generated from 252 target messages by
measuring the average sentence similarity (using the same
language model) and average edit distance rate. Finally,
a language model with a higher mean sentence similarity and
a lower mean edit distance rate was selected.

Third, the number of candidate tokens was set to N = 10.
EVA was tested by changing the number of candidate tokens
N using the language model lassl/bert-ko-base.
We also evaluated the adversarial messages produced from
252 target messages in the same manner as in the language
model. For N ≥ 10, the adversarial messages had similar
or lower quality when compared with the case of N = 10,
that is, no significant improvement in quality was observed
beyond N = 10. The tokens with lower confidence
scores predicted by the fill-mask task did not help create
high-quality adversarial messages in smishing. EVA uses
only ten candidate tokens with higher confidence scores for
the fill-mask task.

Finally, we set the threshold of the semantic scores as
the sentence similarity µsent ≥ 0.9 (i.e., the BERT score)
and the edit distance rate µedit ≤ 0.4 (i.e., the Levenshtein
distance rate). Previous studies [24], [38] have constrained
the sentence similarity for a successful attack to a maximum
of 0.8. However, in the case of smishing messages, perturbed
messages with a sentence similarity of less than 0.9 could
not preserve the original semantics; in most cases, they were
simple combinations of meaningless words. In smishing, the
short length (unlike other types of samples such as emails,
articles, news, etc.) and informal writing style might disturb
the fill-mask task for predicting proper tokens. We used a

higher threshold than that used in previous studies to obtain
better semantically similar messages. For the edit distance
rate, perturbed messages of more than 0.4 could generally
break the semantic similarity. This means that the meaning
can be preserved to a reasonable extent in smishing, even
if at most 40% of the original message is altered into other
characters.

The EVA was evaluated on an Intel Core TM i7-
11700 (2.50 GHz) with NVIDIA GeForce RTX 3080 GPU
(CUDA v11.6). For the 4,457 representative messages,
we implemented EVA under the following settings:
number of attack attempts as five, language model
as lassl/bert-ko-base, number of candidate tokens as
ten, and thresholds for the semantic scores asµsent ≥ 0.9 and
µedit ≤ 0.4. It took approximately two hours to complete the
attack. The EVA succeeded in generating 3,636 adversarial
messages and failed for 776 target messages, whereas the
remaining 45 target messages (≃ 1%) were falsely predicted
to be normal by the base model without perturbation. Except
for messages that were already predicted to be normal, the
attack success rate was 0.8241; for the five Char-CNNmodels
trained in Section IV, the mean attack success rate was
0.8018, with a standard deviation of 0.0206.

Figure 5 shows the statistical analysis results for 3,636
adversarial messages. The quality of the perturbed messages
was evaluated using the edit distance rate and sentence
similarity. Figure 5a shows the edit distance rate distribution
of adversarial messages. The edit distance rate was quantized
at 0.05 units to provide a clear visualization. Adversarial mes-
sages with approximately 0.35 edit distance rate accounted
for the most significant proportion (approximately 22.41%),
and most adversarial messages (approximately 76.07%) were
generated between the edit distance rates of 0.25 and 0.35.
Additionally, approximately 4% of the adversarial messages
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succeeded in the attack by altering the original messages
within 0.1 edit distance rate. In Figure 5b, the distribution
of sentence similarities for adversarial messages is displayed
by quantizing them in 0.02 units. Adversarial messages with
0.96 sentence similarity account for the most significant
proportion (approximately 30.03%), and more than half of
the adversarial messages (approximately 53.51%) have a
sentence similarity of 0.95 or higher. Compared with the
original messages, on average, the adversarial messages had
28% of editorial changes (i.e., approximately 20 letters)
and preserved 95% sentence similarity. Figure 5c shows
the frequency of each part of speech consumed for the
perturbations, where the parts of speech were assigned
according to open Korean text (Okt). The rank of each part
of speech corresponded to its effectiveness in evasion attacks,
with higher ranks being more impactful. As a result, nouns
overwhelmingly prevailed, and the results for the rest were
relatively similar. The base model for classifying smishing
primarily relies on identifying crucial nouns that play a
key role in differentiating smishing from normal messages.
Figure 5d displays how often each perturbation function is
used for the perturbations. Structure-level perturbation line(·)
is the most effective for most adversarial messages, followed
by word-level perturbation sub_word(·, ·). Other functions
did not significantly contribute to the attack. As expected
from amanual attack, line(·) is themost effective perturbation
function. As shown in previous studies [24], [25], [38],
the function sub_word(·, ·) was also used effectively in
our attack. Word insertion was useful in [24], but the
function insert_word(·, ·) was not very impactful in our
smishing attack. In smishing, the inserted words may not
be able to deceive the target model effectively because
of the existing surrounding words. The contributions of
various perturbation types were as follows: structure-level
perturbation (50%), word-level perturbation (39%), and
character-level perturbation (11%). Structure-level perturba-
tions might be mitigated by preprocessing (e.g., removing
line breaks), but character- and word-level perturbations are
not. In Section VII, we discuss a method for alleviating this
problem.

When we attacked the base model without braking pat-
terns (BreakPatterns) and structure-level perturbations
(PerturbStruct), as in previous studies, the attack
success rate was 0.3497 (0.4744 lower than that with the pro-
posed approach). It primarily failed to generate adversarial
messages within the designated semantic similarity scores.
Additionally, the perturbation priority for tokens could not
be computed in some instances because removing one
token does not lower the confidence score. Simply injecting
character- and word-level perturbations is less effective in
perturbing smishing messages within the allowed semantic
similarity scores.

VI. ALTERNATIVE TO VARIANT
In Section V-C, we showed that EVA can successfully attack
the base model. This section demonstrates that the adversarial

messages generated by EVA closely resemble real variant-
text messages; hence, they can be used as an alternative to
real variant-text messages when training the models. For this
purpose, we conducted the following experiments:
1) Train a model using the representative messages without

including the variant-text messages; other settings,
including the normal dataset, are the same as those for
the base model. We call this the representative model.

2) Collect adversarial messages reproduced from the
representative messages using EVA, which interacts
with the representative model.

3) Retrain the models using the representative messages
and the collected adversarial messages. We call these
the retrained models; the initial conditions were fixed
with the same random seed used during the base model
training to exclude unnecessary effects.

4) Compare the performance between the base and
retrained models.

In the above experiment, the retrained models did not utilize
the variant-text messages; the adversarial messages were
extracted through the representative model, and retraining
was performed using only the representative and adversarial
messages without the variant-text messages. We checked
whether the models that were retrained with adversarial
messages had a negative impact on the performance when
compared with the base model. We found that the retrained
models were comparable to or better than the base model.
This experiment showed that adversarial messages can
substitute real variant-text messages for training. In addition,
this guarantees that they will not cause a significant negative
effect on the classification when used in adversarial training.

To conduct the experiment, various adversarial messages
were collected using EVA. However, EVA is designed to
generate one adversarial message per target message by
selecting the perturbation that reduces the confidence score
most significantly among the allowed semantic scores. Even
if the functions (remove(·, ·) and inject(·)) in Algorithm 1
are probabilistic, their range of variation is relatively
small. Therefore, it is necessary to produce diverse sets
of adversarial messages repeatedly using EVA. For this
purpose, we modified two parts of Algorithm 1. First, in lines
33–37 of Algorithm 1, we modified the EVA to choose
not the best perturbation but a perturbation at random:
selection_mode=random (best/random). In this
case, the EVA randomly selects one of the perturbations
that reduce the confidence score to within the accept-
able semantic scores. Second, we ran the EVA up to
25 times per target message to collect several adversarial
messages: max_collection=25. We defined the EVA of
Algorithm 1 as attack mode and the modified EVA as
collection mode.

We used 4,457 representative messages, described in
Section V-C, as training datasets for the representative model
and as target messages for the EVA. We collected 72,000
adversarial messages in the collection mode. Then, using
72,000 adversarial messages, we trained two models, Re36
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FIGURE 6. Performance (accuracy, F1 score, false positive/negative rate (FPR/FNR), and attack success rate) of each model: the base model (Base),
Re36, and Re72.

and Re72, according to (3). Re36 was trained using both
representative messages and 36,000 adversarial messages
randomly selected from the 72,000 adversarial messages. The
number of adversarial messages used in the training was
comparable to the number of variant-text messages (approx-
imately 29,825) used in the base model training. Re72 was
trained using 72,000 adversarial messages, corresponding to
approximately 2.4 times the variant-text messages used in the
base model training.

Figure 6 shows the performance measurement results (i.e.,
accuracy, F1 score, false-positive rate, and false-negative
rate) for the three models: the base model, Re36, and Re72.
Figure 6a and 6b present the results obtained from the KISA
test dataset (described in Section III-A). The retrainedmodels
exhibited a higher false-negative rate than the base model.
Consequently, they demonstrated lower accuracy and F1
score. The adversarial messages resemble the representative
smishing messages more closely than the original variant-text
messages because EVA alters only a small portion of
the representative message. In models retrained with these
adversarial messages, it appears that an insufficient number of
smishing cases results in a relatively high false-negative rate.
However, the performance differences among the models
were not sufficiently large to indicate that any one model was
superior. The differences were at most within 0.01: 0.0047 for
accuracy, 0.0062 for F1 score, 0.0022 for false-positive rate,
and 0.0093 for false-negative rate. The distance between the
adversarial messages and the original variant-text messages
was not too large. We evaluated how accurately the models
classified normal SMS messages that were not spam. For
this purpose, we utilized short text messages in the open
dataset (approximately 131 million messages, as described
in Section III-B). These were not real SMS messages but
could be utilized to indirectly evaluate the models because
of their resemblance to typical SMS messages. Figure 6c
shows the false-positive rate measured in the open dataset,
where Re72 provided the lowest false-positive rate. The
difference from the base model value was 0.0521, which was
not negligible. It is worth noting that with the increased use of
adversarial messages for training, the false-positive rate in the
open dataset decreases. To further reduce the false positives,

we can use a very high number of adversarial messages;
however, this may lead to an increase in false negatives.
Regarding the robustness against evasion attacks, Figure 6d
shows the attack success rate of each model, measured under
the attack mode of EVA using representative messages as
target messages. Attack mode adopts the best perturbation
whenever perturbations are injected, whereas collectionmode
uses random perturbations. This causes the attack mode to
generate different adversarial messages from those of the
collection mode by adopting different perturbations. In our
test, the two modes generated different adversarial messages
for the same target model and message. The evaluation was
performed without learning the adversarial messages that the
attack mode can generate in advance. The attack success rate
was significantly lower for the retrained models Re36 and
Re72. Owing to their comparable results, we assumed that
the attack success rate was saturated at approximately 0.55.

In summary, we replaced the variant-text messages of
smishing with adversarial messages generated by EVA and
obtained a smishing classifier comparable to or better than the
base model. Re72 provides a similar detection performance
on the KISA dataset, lower false positiveness in the open
dataset, and better robustness against evasion attacks when
compared with the base model.

VII. MITIGATION
This section explores strategies for reducing the effect of
evasion attacks. Two approaches were considered in this
study. First, during the preprocessing of input messages,
we eliminated the target features that are vulnerable to
evasion attacks. For the EVA, we replaced line breaks with
spaces to invalidate structure-level perturbations. Second,
we retrained the target model with adversarial messages to
prevent character- and word-level perturbations.

In the first approach (i.e., preprocessing), we removed
line breaks during the preprocessing stage and trained a new
model (Psd) under the same conditions as those applied
for the base model training. This eliminated the effect of
the addition or deletion of line breaks by EVA. However,
contrary to our expectations, Table 5 shows that the attack
success rate did not decrease for Psd. It remained almost
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TABLE 5. Performance comparison between the base model and
improved models (Psd and Adv), where Psd is the model that
removes line breaks and Adv is the adversarially trained model.

identical to the attack success rate of 0.8204 against the
base model. When attempting a text evasion attack on
Psd, it appears that perturbations at the word level (mainly
sub_word(·, ·)) replaced the line break addition/deletion
at the structural level, resulting in a higher success rate.
Consequently, removing line breaks is not an effective
solution for mitigating evasion attacks.

For the second approach (i.e., adversarial training),
we collected adversarial messages using the collection
mode (described in Section VI) and retrained the models
by using these messages. We measured the classification
performance using the KISA and open datasets and evaluated
the robustness of the retrained models using the attack
mode of EVA. As mentioned in Section VI, the attack
mode generates different adversarial messages from those of
the collection mode. EVA first generated 120,000 distinct
adversarial messages from 4,457 representative messages.
The adversarial messages were partitioned into ten groups,
eachwith 12,000messages.We then trained the tenmodels by
gradually accumulating the messages from each group. The
first retrained model was trained using 12,000 messages from
the first group, and the second retrained model was trained
using 24,000 messages from the first and second groups.
Finally, the last (the tenth) retrained model was trained using
120,000 messages from all groups. Each model was retrained
without line breaks (by altering the line breaks into spaces)
to reduce the available perturbations. For the KISA test
dataset, the classification performances of the ten retrained
models were slightly lower than those of the base model,
but the difference was not large enough to have a substantial
effect. Additionally, the ten retrainedmodels provided similar
classification performances, even when a high number of
adversarial messages was used during training. For the open
dataset, the model retrained with 12,000 samples exhibited
a relatively high false-positive rate of 0.16. However, models
retrained with more than 24,000 samples showed lower false-
positive rates, ranging from 0.05 to 0.1. It appears that
adversarial training using adversarial messages generated
by EVA does not degrade the classification performance.
The attack success rates (ASRs) of the ten retrained models
were measured to be between 0.4 and 0.65, gradually
decreasing with fluctuations as the number of adversarial
messages used in training increased. In the model retrained
with 84,000 adversarial messages, the attack success rate
was slightly saturated and did not decrease significantly.
Table 5 compares the model (Adv) retrained with 84,000

adversarial messages with the base model. The classification
performance of Adv was comparable to that of the base
model. However, the robustness against evasion attacks was
significantly improved. After adversarial training, the attack
success rate of Adv was almost half (0.4091) that of the base
model.

The results show that adversarial training cannot perfectly
defend against evasion attacks but can make the attack
more difficult. Even if a developer has access to several
smishing datasets, robustness against evasion attacks cannot
be guaranteed. However, adversarial training using EVA
reduces the threats caused by evasion attacks and helps
successfully deploy a smishing classifier in the real world.

VIII. CONCLUSION
In this paper, we presented an effective on-device smishing
classifier that is resistant to text-evasion attacks. Our
classifier utilizes a deep learning model that is trained
and evaluated using real smishing messages provided by
KISA to ensure its practicality in real-world scenarios.
To alleviate privacy concerns, we focused on a solution that
functions solely on local devices. Therefore, we developed
a lightweight model that does not impose a burden on
the devices. In addition, we proposed a text-evasion attack
tool, EVA, which imitates the smishing scammer’s behavior.
We used EVA to evaluate the robustness of the proposed
smishing classifier against variant-text smishing messages
and enhanced it through adversarial training. This was the
first study to address the severity of variant-text smishing
messages. Our classifier achieved a high accuracy rate of
0.99, despite its compact size of 127 kB. Furthermore, it is
robust against variant-text smishing messages.
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