
Received 18 December 2023, accepted 28 December 2023, date of publication 4 January 2024,
date of current version 11 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3349704

IPCC7: Post-Quantum Encryption Scheme
Based on a Perfect Dominating Set in
3-Regular Graph
JIEUN RYU 1, YONGBHIN KIM2, SEUNGTAI YOON3,
JU-SUNG KANG 1,2, AND YONGJIN YEOM 1,2
1Department of Financial Information Security, Kookmin University, Seoul 02707, Republic of Korea
2Department of Information Security Cryptography Mathematics, Kookmin University, Seoul 02707, Republic of Korea
3Cold Spring Harbor Laboratory, Laurel Hollow, NY 11724, USA

Corresponding author: Jieun Ryu (ofryuji@kookmin.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government through Ministry
of Science and Information & Communications Technology (MSIT) under Grant 2021M1A2A2043893.

ABSTRACT Post-quantum cryptography (PQC) has been actively explored to meet the requirements arising
with the rapid development of quantum computers. The National Institute of Standards and Technology
(NIST) conducted a competition to establish the next-generation cryptographic standards. While previous
competitions selected a single cryptographic standard, this competition aimed to standardize several
algorithms based on various mathematical problems since the security of PQC has not been studied as
extensively as that of legacy cryptosystems. The recent exclusion of the isogeny-based key-establishment
algorithm, SIKE, from the competition emphasizes the necessity of exploring cryptographic algorithms
based on various fundamental problems. In this study, we propose the Improved Perfect Code Cryptosystem 7
(IPCC7), a new post-quantum encryption scheme, as an improved version of the perfect code cryptosystem
(PCC) based on combinatorics conceptualized by Koblitz. The security of our cryptosystem relies on
the intractability of finding the perfect dominating set in a given graph. A PCC proposed previously by
Koblitz did not receive much attention because of its low efficiency for handling higher-order polynomials.
To overcome these drawbacks, we used the product of low-degree polynomials and demonstrated the
feasibility of a graph-based encryption scheme. IPCC7 has some limitations for use as a general-purpose
PQC. However, considering its relatively small key size (768 bytes public-key and 64 bytes secret key),
fast decryption speed (2.0 Gbps), and usable encryption speed (8.6Mbps), IPCC7 is particularly suitable for
environments with low-memory constraints, such as white-box encryptions.

INDEX TERMS Graph-based encryption, perfect code cryptosystems, perfect dominating function, perfect
dominating set, post-quantum cryptography.

I. INTRODUCTION
Public-key cryptosystems are indispensable to communi-
cation services, such as online payments, key agreements,
and message encryptions. However, the rapid development
of quantum computers in recent years has threatened the
security of the existing public-key systems [1], [2], [3].
Consequently, post-quantum cryptography (PQC) has been

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek .

actively studied owing to its quantum resistance. Recently,
post-quantum cryptographic algorithms based on various
mathematical problems were refined and optimized [4].

The National Institute of Standards and Technology
(NIST) in the USA has been running a program for PQC
standardization since 2016 in response to the development
of quantum computers. In addition, numerous institutes
and companies have conducted research on post-quantum
technology. According to the NIST, PQC must satisfy
IND-CCA2 security against attackers and provide sets of

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 4575

https://orcid.org/0009-0001-9638-3012
https://orcid.org/0000-0002-0846-389X
https://orcid.org/0000-0002-8240-8661
https://orcid.org/0000-0001-7005-6489

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

parameters for various security strengths, such as the 128,
192, and 256 bits security level options of the standard
block cipher AES [5]. Currently, the NIST has selected four
algorithms, including CRYSTALS-KYBER, as the standard
through competition, and yet other four algorithms are still in
contention as candidate algorithms [6]. Notably, the candidate
algorithms use code-based problems that are different from
the selected algorithms, which are based on lattice and hash
problems [7].
Unlike the traditional public-key cryptography, which has

been proven and analyzed from the perspective of underlying
problems for decades, PQC algorithms are too recent to
determine whether they are secure enough. Therefore, the
decision of the NIST decision to standardize multiple PQCs
that use different underlying problems is intended to prepare
for future unexpected attacks [8]. In fact, SIKE, an isogeny-
based key-establishment algorithm, was one of the final
candidates up to the third round of competition before it
succumbed to mathematical attacks and was eliminated [9].
SIKE was vulnerable probably because it has undergone a
shorter research period than the other third-round candidates.
Considering the possibility that PQC algorithms will be
compromised later, long-term and continuous R&D on
cryptographic algorithms based on various fundamental
problems is necessary.

The cryptosystem investigated in this study is a public-key
cryptosystem based on a novel fundamental problem, namely,
a combinatorial theory that has never been considered in
NIST’s competitions thus far. It can be used as a PQC based
on the conjecture that finding a particular subset within a
graph is an NP-hard problem [10], [11], [12], [13], [14].
The perfect code cryptosystem (PCC) proposed by Koblitz

in 1992 is a public-key algorithm based on the intuitive
concept of constructing a ciphertext polynomial using
variables of graph vertices and constants mapped to vertices
[15], [16]. An encrypted message is a polynomial generated
using a graph as a public-key, and the ciphertext can be
decrypted by evaluating the polynomial using a special subset
of vertices as a corresponding private-key. The security of this
cryptosystem depends on the randomness of the ciphertext
polynomial. That is, it is difficult to distinguish the ciphertext
from a randomly selected polynomial. However, to make it
difficult to distinguish, the ciphertext to be extremely large
and the encryption speed to be low. To overcome these
difficulties and use the cryptosystems, several researchers
have studied these systems, including their underlying
problems [17], [18], [19], [20], [21], [23], [24], [25], [26],
[27], [28]. The simplest form of the polynomial that this
cryptosystem can generate allows for relatively rapid gener-
ation of the ciphertext [15], [29]. However, its highly con-
strained and simplified form renders it vulnerable to simple
attacks [30].
In this paper, we propose a post-quantum encryption

scheme named Improved PCC 7 (IPCC7) as an improved
PCC. To satisfy the 128-bit security level, we used a graph
with 256 vertices as a public-key and generated a ciphertext

as a sparse polynomial of degree 7. Thus, the size of
the public-key is 768 bytes representing a 3-regular graph.
The private-key, i.e., the subset information of the graph,
occupies much less memory than its corresponding public-
key. Since a ciphertext is a sparse but high-degree polynomial,
only nonzero terms are stored in a table. Thus, the size
of a ciphertext is not constant and it occupies a large
amount of memory, about 280 kB on average. Encryption is
relatively slow because of the heavy polynomial operations
in the process of generating ciphertext. In contrast, the
decryption process merely requires a simple evaluation of the
polynomial. Our experiments showed that the decryption time
was less than 1 ms, and the scheme can be implemented faster
through parallalization.

Fig. 1 compares the key and ciphertext sizes of the
algorithms included in the NIST competition. In the figure,
most candidates are located on the diagonal, implying that in
general, the size of ciphetext is proportional to that of the key.
One exception is the McEliece cryptosystem, which is based
on the traditional coding theory and uses a large generating
matrix of Goppa code as a public-key. The advantage of the
McEliece scheme is high-speed encryption (less than 1 ms)
and decryption (about 20 ms) once a huge public-key of
hundreds of kilobytes is shared. Our IPCC7 lies far away from
the McEliece system in Fig. 1. The advantages of IPCC7 are
small key size and fast decryption, while its disadvantages are
large ciphertext and slow encryption.

The unique properties of IPCC7 make it suitable for
cryptographic applications that allow for large memory,
such as white-box implementations. Although ciphertext of
IPCC requires a lot of memory, in environments without
memory limitations, the size of the ciphertext is not an issue.
White-box cryptography uses memory ranging from a few
megabytes to several gigabytes to protect the encryption key
from attacks such as memory dumps and code lifting [31],
[32]. In this environments without memory limitations, the
large ciphertexts of IPCC7 are expected to be especially
efficient when applied to a trapdoor one-way function in
white-box encryption for external encoding to strengthen the
one-wayness [33]. IPCC is a primitive suitable for provid-
ing such one-way encoding with a quantum-safe security
level.

FIGURE 1. Algorithms included in the NIST competition: the size of the
public-key and ciphertext [34].

4576 VOLUME 12, 2024

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

A. OUR CONTRIBUTION
Based on the concept of Koblitz’s PCC, we propose a new
post-quantum encryption scheme. Through quantitative secu-
rity analysis, we redesigned the construction algorithm for
invariant polynomials by combining low-degree polynomials
and determined the parameters for the algorithm with 128-
bit security, including the graph size and the degree of the
polynomial. Further, our implementation demonstrated the
practical potential of IPCC7 as an alternative to post-quantum
algorithms.

II. PRELIMINARY
This section introduces 3-regular graph and their properties.
Then we discuss previous studies on cryptosystems based on
the graph theory. The abbreviations used in our paper are
summarized in Appendix A.

A. MATHEMATICAL BACKGROUND
Let G = (V ,E) be a graph with a set of vertices V and a set
of edges E(⊆ V × V).
Definition 1 (Closed Neighborhood): For a vertex v ∈ V

of graph G = (V ,E), the closed neighborhood N [v] of v is
a set of vertices consisting of v and its adjacent vertices. The
closed neighborhood of vertex v is expressed as follows:

N [v] = {u ∈ V | uv ∈ E} ∪ {v}.

Example 1: Fig. 2 shows a graph with vertices V =

{v1, v2, v3, v4, v5, v6, v7}. In this graph, all the closed neigh-
borhoods are as follows:

N [v1] = {v1, v2, v5}, N [v2] = {v1, v2, v3, v6, v7},

N [v3] = {v2, v3, v4}, N [v4] = {v3, v4, v5},

N [v5] = {v1, v4, v5, v6}, N [v6] = {v2, v5, v6, v7},

N [v7] = {v2, v6, v7}.

FIGURE 2. Graph with seven vertices.

Definition 2 (r-Regular Graph): For some positive integer
r , a simple graph G = (V ,E) is called an r-regular graph if
it satisfies the following condition.

∀v ∈ V , |N (v)| = r + 1.

Example 2: Fig. 3 shows a graph with six vertices V =
{v1, v2, v3, v4, v5, v6}. For each vertex v ∈ V , the closed
neighborhood N [v] has exactly four vertices as follows:

N [v1] = {v1, v2, v4, v6}, N [v2] = {v1, v2, v3, v6},

N [v3] = {v2, v3, v4, v5}, N [v4] = {v1, v3, v4, v5},

N [v5] = {v3, v4, v5, v6}, N [v6] = {v1, v2, v5, v6}.

Therefore, the graph is called a 3-regular graph.

FIGURE 3. 3-Regular graph with six vertices.

Fact 1: The number of edges in an r-regular graph
consisting of n vertices is nr/2.
Definition 3 (Perfect Dominating Set, PDS): For a given

graph G = (V ,E), a subset D ⊆ V is called a perfect
dominating set (PDS) of G if N [v] contains exactly one
element of D for each vertex v ∈ V (i.e., each vertex has
exactly one neighbor in D). We say D ∈ PDS(G) if

|N [v] ∩ D| = 1 for all v ∈ V ,

where PDS(G) is the collection of PDS in graph G.
Example 3: Fig. 4 shows a graph with eight vertices

V = {v1, v2, v3, v4, v5, v6, v7, v8}. In this graph, the closed
neighborhood of each vertex v ∈ V is defined as

N [v1] = {v1, v2, v4, v6}, N [v2] = {v1, v2, v3, v7},

N [v3] = {v2, v3, v4, v8}, N [v4] = {v1, v3, v4, v5},

N [v5] = {v4, v5, v6, v8}, N [v6] = {v1, v5, v6, v7},

N [v7] = {v2, v6, v7, v8}, N [v8] = {v3, v5, v7, v8}.

Let D = {v1, v8}. Then, for each v ∈ V , the intersection of
N [v] and D has exactly one element as

N [v1] ∩ D = {v1}, N [v2] ∩ D = {v1},

N [v3] ∩ D = {v8}, N [v4] ∩ D = {v1},

N [v5] ∩ D = {v8}, N [v6] ∩ D = {v1},

N [v7] ∩ D = {v8}, N [v8] ∩ D = {v8}.

Therefore, D is a PDS of graph G.

FIGURE 4. 3-Regular graph with {v1, v8} ∈ V as a perfect dominating set
(PDS).

A graph may or may not have a PDS; if it does, there may
be one or more PDSes. Notably, the graph in Fig. 3 cannot
have a PDS.
Fact 2: If an r-regular graphG has a PDS at least, then the

number of PDSes is r + 1. If the number of vertices |G| is n,
then the size of each PDS is n

r+1 .
Proposition 1: The distance between distinct vertices

belonging to a PDS is always at least three.
Example 4: Fig. 5 shows two different parts of a 3-regular

graph. We assume that the vertices colored in red belong to

VOLUME 12, 2024 4577

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

the same PDS. In the graph on the left, if we check the closed
neighborhood set for all vertices, there is always only one red
vertex in this set. This implies that the set consisting of red
vertices does not violate the definition of PDS.

However, in the graph on the right, two red vertices appear
in the closed neighborhood set of the central black vertex.
This implies that the red vertices cannot form PDS. Similarly,
two vertices that are at a distance less than or equal to two
cannot be elements of the same PDS.

FIGURE 5. Relation between the vertex distance and PDS.

Definition 4 (Perfect Dominating Function, PDF): Given
a graph G = (V ,E), a function χ : V → {0, 1} is called a
perfect dominating function (PDF) if it satisfies the following
condition. ∑

u∈N [v]

χ (u) = 1 for each v ∈ V .

In this case, we write χ ∈ PDF(G) where PDF(G) is the set
of PDFs in a graph G.
Proposition 2: Let xv denote the variable assigned to

vertex v ∈ V . For a 3-regular graph G = (V ,E) with PDS,
χD is a PDF if it maps the vertices within D to 1 and all the
remaining vertices to 0, where D is a PDS.
Example 5: Consider the graph in Fig. 4 containing

PDSes. Let xvi be a variable for vi ∈ V , and u ∈ N [vi]
for each vi. Furthermore, let the function χ map vertices in
{v1, v8} ∈ PDS(G) to 1 and all other vertices to 0.

For each vertex vi, define ei =
∑

u∈N [vi] xu which is written
explicitly as follows:

e1 = xv1+xv2+xv4+xv6 , e2 = xv1+xv2+xv3+xv7 ,

e3 = xv2+xv3+xv4+xv8 , e4 = xv1+xv3+xv4+xv5 ,

e5 = xv4+xv5+xv6+xv8 , e6 = xv1+xv5+xv6+xv7 ,

e7 = xv2+xv6+xv7+xv8 , e8 = xv3+xv5+xv7+xv8 .

Choose a PDS and consider its corresponding PDF. Then
we observe that each ei has exactly one nonzero term. If we
choose {v1, v8} as a PDS, then xv1 and xv8 take the value
1 and remaining terms are zero. Hence, each ei equals one.
Formally, we write

ei(χ (v1), · · · , χ(v8)) = 1 for any χ ∈ PDF(G). (1)

Note that this happens regardless of the choice of PDF χ .
We define a vector valued function χ : V n

→ {0, 1}n by

χ (v1, . . . , vn) = (χ(v1), . . . , χ (vn)).

Then equation (1) is simplified as ei ◦ χ = 1 which means ei
is transformed into a constant function under any PDF χ .

Example 5 leads us to define an invariant polynomial.
Definition 5 (Invariant Polynomial): Let G = (V ,E) be a

graph with a PDS whose vertices are ordered as v1, . . . , vn.
For a nonnegative integer p (not necessarily a prime), consider
a polynomial ring Zp[xv1 , xv2 , . . . , xvn]. As a monomial, xvi is
interpreted as the i-th coordinate function:

xvi (a1, a2, . . . , an) 7→ai.

A polynomial f ∈ Zp[xv1 , . . . , xvn] is called an invariant
polynomial if

f ◦ χ = c for any χ ∈ PDF(G),

where c ∈ Zp is a constant independent of χ .
Note that (f ◦ χ) (v1, . . . , vn) is explicitly evaluated as

f (xv1 (χ (v1), · · · , χ(vn)), · · · , xvn (χ (v1), · · · , χ(vn))).

We easily to see that e1 in Example 5 is an invariant
polynomial. For the PDF χD corresponding to PDS D =
{v1, v8}, e1 ◦ χD = 1. For,(
e1 ◦ χD

)
(v1, . . . , v8)

= xv1 (χD(v1, . . . , v8))+ · · · + xv6 (χD(v1, . . . , v8))

= xv1 (χD(v1), . . . , χD(v8))

+ · · · + xv6 (χD(v1), . . . , χD(v8))

= χD(v1)+ χD(v2)+ χD(v4)+ χD(v6)

= 1+ 0+ 0+ 0 = 1.

In Example 5, e1, . . . , e8 are invariant polynomials of degree
1. Our definition of the invariant polynomial follows that of
Koblitz, leading to the following proposition [15].
Proposition 3: Given a graph G = (V ,E) with PDS,

choose a vertex v. Then for i ∈ 1, 2, · · · , |N [v]|, if gi is an
arbitrary invariant polynomial of degree k−1, and all gi+ci
are evaluated to have the same value for the adjusted constant
ci, then the following is an invariant polynomial of degree k:∑

u∈N [v]

(gu + cu)xu.

Proposition 4: Given a graph G = (V ,E) with PDS,
consider an invariant polynomial f over G, where xv, xu are
the variables for vertices v, u ∈ V . If these variables appear
in the same term of f , then the following hold:
(a) xvxu = xv if v = u, and
(b) xvxu = 0 if v ̸= u and the distance between the two

vertices is ≤ 2.
We can directly establish these from Proposition 1.

Throughout this paper, such a transformation process of
polynomials according to Proposition 4 is called ‘‘reduction.’’
The following example illustrates the process of generating
an invariant polynomial with reduction.
Example 6: Consider a 3-regular graph G with D =

{v1, v8} ∈ PDS(G) as shown in Fig. 4. We can construct an
invariant polynomial of degree 2 for this graph as follows.
Select a vertex vi ∈ V and let N [vi] = {ui,1, ui,2, ui,3, ui,4}

be a closed neighborhood.

4578 VOLUME 12, 2024

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

Suppose fj is an arbitrary invariant polynomial of degree 1,
such as e1, . . . , e8 in Example 5. Adjust constants cj so that(
fj ◦ χD

)
+ cj has the same value for j = 1, 2, 3, 4. We can

then generate an invariant polynomial f of degree 2 as

f =
4∑
j=1

(fj + cj)xui,j .

If we choose a vertex v1 and four invariant polynomials,

f1 = 4e2, f2 = e1 + 2e5, f3 = 5e8, f4 = 3e6,

then, we can adjust c1 = −1, c2 = 0, c3 = −2, and c4 = 0 so
that

fj + cj = 3 for j = 1, 2, 3, 4.

Now, f is an invariant polynomial of degree 2 with a value 3.
For,

f =
4∑
j=1

(fj + cj)xu1,j

= (4e2 − 1)xv1 + (e1 + 2e5)xv2 + (5e8 − 2)xv4 + (3e6)xv6
=

{
4(xv1+̸ xv2+̸ xv3+̸ xv7)−1

}
xv1

+
{
(̸ xv1+xv2+̸ xv4+̸ xv6)+2(̸ xv4+xv5+̸ xv6+̸ xv8)

}
xv2

+
{
5(̸ xv3+̸ xv5+xv7+̸ xv8)−2

}
xv4

+ 3(̸ xv1+̸ xv5+xv6+̸ xv7)xv6
= 3xv1 + xv2 − 2xv4 + 3xv6 + 2xv2xv5 + 5xv4xv7 .

Similarly, another example of an invariant polynomial g of
degree 2 can be obtained by choosing the vertex v5 as

g = 5xv4 + 3xv6 − xv8 + 4xv1xv8 + 3xv2xv5 − 2xv4xv7 .

It is easy to check that for any χ ∈ PDF(G), g ◦ χ = 3.

B. PCC
Determining whether a given graph G = (V ,E) has a PDS
is an NP-hard problem. Furthermore, it has been conjectured
that finding any PDS is also NP-hard, provided that a given
graph is known to have PDSes [20]. These properties can
be used to construct a public-key cryptosystem, where a
graph with PDS serves as the public-key, thus ensuring
the one-wayness of the cryptosystem. Moreover, one of the
PDSes is used as a private-key to establish a trapdoor for the
cryptosystem.

As explained in Definition 6, the PCC scheme consists of
three procedures: key generation, encryption, and decryption.
Using invariant polynomials generated from a graph G
with PDS, one can produce the ciphertext polynomial of a
message m. It can be decrypted by evaluating the ciphertext
polynomial using a PDF as the corresponding private-key.
Definition 6 (PCC Scheme): Let m be a message to be

encrypted.

(a) [Key generation] Construct a graphG that has a perfect
dominating set D ∈ PDS(G). Then the public-key is the
graph G itself, and the private-key is its PDS D.

(b) [Encryption] Construct an invariant polynomial g such
that

g ◦ χ = m for any χ ∈ PDF(G).

Note that the polynomial g as the ciphertext of m can be
constructed without knowing D or χ .

(c) [Decryption] Using the private-key D, define a perfect
dominating function χD ∈ PDF(G) by χD(v) = 1 for
v ∈ D and χD(v) = 0 elsewhere. Then one can evaluate
g ◦ χD to obtain the decrypted message.

Because of the property of invariant polynomials, the
evaluation of the ciphertext polynomial during decryption
always yields the same value as the original message.

The overall flow of secure communication using PCC
cryptosystem is shown in Fig. 6. Firstly, receiver Bob
generates graph G with n vertices having PDSes and selects
one of the PDSes, say D, as the private-key. Then, Bob
shares the graph G with sender Alice. After obtaining a
public-key, Alice encrypts the message m in Zp as follows:
the encryption algorithm generates an invariant polynomial
ct ∈ Fk as its ciphertext, where Fk is the set of all invariant
polynomials of degree k or less. With invariant polynomials
gu in Fk−1, Alice can recursively generate one in Fk in
the form

∑
u∈N [v](gu + cu)xu for a randomly selected vertex

v ∈ V , where cu are selected so that gu+ cu = m. Finally, the
encryption process is completed by applying the reductions
described in Proposition 4 to obtain the ciphertext that can be
hardly distinguished from a randomly selected polynomial in
Fk .

FIGURE 6. Secure communication with a perfect code cryptosystem (PCC).

After the encryption process is completed, Alice sends the
ciphertext polynomial ct to Bob. Then, for decryption, Bob
simply evaluates the polynomial ct◦χD to recover the original
message m.
Example 7: As in Example 6, suppose that Alice has a

message m = 3 and wants to encrypt m into an invariant
polynomial of degree 2. Alice has the public key G shown
in Fig. 4. Example 5 says that ei(i = 1, . . . , 8) are invariant
polynomials of degree 1 for the graphG. Although Alice does
not know any χ ∈ PDF(G), she knows that ei ◦ χ = 1 is
always satisfied for all i, as shown in (1) of Example 5.
To generate the ciphertext, Alice randomly selects a

vertex, say v5. Then, the closed neighborhood N [v5] =
{v4, v5, v6, v8}. Alice selects four invariant polynomials of

VOLUME 12, 2024 4579

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

degree 1:

gv4 = 4e1 − 2e7, gv5 = 3e7,

gv6 = 5e1, gv8 = 6e2 − 2e4.

Note that a linear combination of invariant polynomials is also
invariant. Next, Alice determines constants cu so that

(gu ◦ χ)+ cu = 3 = m.

In fact, constants are calculated as

cv4 = 3− (4− 2) = 1, cv5 = 3− (3) = 0,

cv6 = 3− (5) = −2, cv8 = 3− (6− 2) = −1.

Using these elements in F1, the ciphertext polynomial ct
in F2 is constructed as follows:

ct = (gv4+ cv4)xv4 + (gv5+ cv5)xv5
+ (gv6+ cv6)xv6 + (gv8+ cv8)xv8
= (4e1−2e7+1)xv4+(3e7)xv5
+ (5e1−2)xv6+(6e2−2e4−1)xv8
= 5xv4 + 3xv6 − xv8 + 4xv1xv8 + 3xv2xv5 − 2xv4xv7 .

The final line is obtained after the reduction.
Suppose that Bob possesses the private-keyD = {v1, v8} ∈

PDS(G). The corresponding χD ∈ PDF(G) is defined as

χD(v1) = χD(v8) = 1, and χD(v) = 0 elsewhere.

Bob recovers the message m by evaluating ct ◦ χD as

(ct ◦ χ) (v1, v2, . . . , v8)

= ct(χD(v1), . . . , χD(v8))

= ct(1, 0, 0, 0, 0, 0, 0, 1)

= 5 · 0+ 3 · 0− 1+ 4 · 1 · 1+ 3 · 0 · 0− 2 · 0 · 0

= 3.

To summarize, Koblitz shows the possibility of building
a PCC, but it cannot be efficiently implemented [15].
Intuitively, higher-degree ciphertexts make it more difficult
to mount an attack but take longer to encrypt messages.
For example, consider a PCC using a 3-regular graph with
100 vertices. If we choose degree k = 7, the number
of nonzero monomials in a randomly selected invariant
polynomial in F7 will be larger than 108. Thus, sparse
polynomials of high degree are desirable for ciphertexts,
assuming that they do not compromise the security of
the cryptosystem. Koblitz’s PCC suggests an algorithm for
constructing invariant polynomials in Fk to generate the
ciphertext in time O(n(r + 1)k) using r-regular graph with
n vertices. Within n(r + 1)k = 100 × 47 ≈ 106 operations
or so, one can encrypt a message with a sparse polynomial.
However, Koblitz’s scheme is feasible but not practical.

III. PROPOSED CRYPTOSYSTEM: IPCC7
In this section, we propose a post-quantum encryption
scheme called IPCC7, the improved PCC with polynomi-

als of degree 7. We also explain a quantitative security
analysis with efficient implementation and performance
analysis.

We will first clarify the notations. Here, m denotes the
message to be encrypted; ct represents the ciphertext that
takes the form of an invariant polynomial; fk denotes an
arbitrary invariant polynomial of degree k or less.

A. PARAMETERS
IPCC7 uses a 3-regular graph G with PDS as a public-key.
By Property 2, G has four distinct PDSes: D1,D2,D3, and
D4, one of which can be selected as the corresponding private-
key. The PDFs χDi : V → {0, 1} are defined by

χDi (v) =

{
1, if v ∈ Di,
0, otherwise,

(2)

for i = 1, . . . , 4.
In addition to public and private-keys, the following

security parameters should be determined:
• p is a parameter that determines the message space Zp,
and it can be a composite number.

• n is the number of vertices in the graph (i.e., the size of
the vertex set n = |V |).

• k is the degree of ciphertext polynomials.
• k ′ is the maximum degree of temporary subpolynomials
generated in the encryption procedure.

• ne is the parameter used for generating invariant
polynomials of degree 1.

The parameter set summarized in Table 1 is chosen
to ensure 128-bit security. The parameter set Spara ={
p, n, k, k ′, ne

}
are preshared ormade public beforehand. The

rationale for these specific parameter choices is discussed in
Section IV.

TABLE 1. Parameters for 128 bit security.

B. ALGORITHMS
We use the notation

$
←− for the random selection of an

element from a set. For example, v
$
←−V where v is an

element of V . Similarly, U
$
←−
i

V implies that the set

U is a randomly selected subset of set V with size i, i.e.,
U ⊆ V , |U | = i. Further, we frequently use the fact that
the number of closed neighborhoods in a vertex is four for all
vertices in a 3-regular graph.

The cryptosystem comprises key generation, encryption,
and decryption algorithms. The key generation algorithm
creates a public-key graph and a set of private keys. The
encryption algorithm generates a polynomial ciphertext for
the message, and the decryption algorithm derives the
message from the polynomial ciphertext.

4580 VOLUME 12, 2024

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

1) KEY GENERATION
First, the key generation algorithm generates a 3-regular
graph with PDSes. Since the 3-regular graph used as the
public key is a simple and regular graph, it can be constructed
by assigning six random one-to-one correspondences to each
pair of PDSes.

Algorithm 1 (KeyGen) Key Generation
Input: Security parameter n
Output: A pair of keys (pk, sk)
1: V ← {v1, v2, . . . , vn}
2: Divide a set V into four disjoint subsets D1,D2,D3,

and D4 such that

|D1| = |D2| = |D3| = |D4| =
n
4

3: Randomly create six one-to-one correspondences
between sets and connect the related vertices. The result
is then generated as a graph G = (V ,E) with four
PDSes.

4: Check whether the generated graph is connected. If not,
repeat step 3.

5: pk ← G = (V ,E) and sk ← D1
6: return pk, sk

Example 8: The procedure used to generate the graph
shown in Fig. 4 using Algorithm 1 is as follows: First,
we divided the set V = {v1, v2, . . . , v8} into four subsets as
shown in Fig. 7.

D1 = {v1, v8}, D2 = {v2, v5},

D3 = {v3, v6}, D4 = {v4, v7}.

FIGURE 7. Example of key generation step 2.

Subsequently, six random one-to-one correspondences are
randomly created between subsets as shown in Fig. 8.

FIGURE 8. Example of key generation step 3.

We confirm that the graph generated by these correspon-
dences is connected. Therefore, the sender uses the graph as
a public key, as shown in Fig. 9.

FIGURE 9. Example of key generation step 4.

Finally, we select a private key D
$
← {D1,D2,D3,D4}.

If we choose D1, the corresponding PDF χD1 is depicted as
shown on the right side in Fig. 10.

FIGURE 10. Example of key generation step 5.

2) ENCRYPTION
In the encryption process, Algorithm 2 generates an invariant
polynomial as shown in Fig. 11.

Algorithm 2 (Enc) Encryption
Input: graph G = (V ,E), message m, and parameter set
Spara
Output: invariant polynomial f of degree k

1: m′
$
←− Zp

2: Find m′′, and cm such that m = m′m′′ + cm (mod p)
3: k ′← ⌊k/2⌋
4: k ′′← k − k ′

5: f ′k ′ ← EncDegK(G, k ′,m′)
6: f ′′k ′′ ← EncDegK(G, k ′′,m′′)
7: fk ← f ′k ′ × f

′′

k ′′ + cm
8: Reduction(fk)
9: return fk

In Fig. 11, GIP is a function that generates an invariant
polynomial. In 12, a, b, c, d, e, and f in the gray or black
boxes represent distinct vertex variables xv. The ‘‘hiding
phase’’ consists of five steps: RD (reduce degree), RT
(reduce terms), and SC (sum coefficients) are the functions
that organize the reduction process, and SV (sort variables)
and ST (shuffle terms) are processes that prevent tracing
of the polynomial generation process. Thus, this phase
makes it impossible to perform attacks that factorize the
ciphertext. The hiding phase is described in detail in
APPENDIX D.

VOLUME 12, 2024 4581

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

FIGURE 11. Encryption flow.

FIGURE 12. Hiding phase.

Algorithm 3 (EncDeg1) Generate an Invariant Polynomial
of Degree 1
Input: graph G = (V ,E), message m
Output: invariant polynomial f of degree 1
1: Initialize the polynomial f1 and temporary value sum.

f1←− 0, sum←− 0.

2: Select the number of vertices nv and distinct nv vertices.

nv
$
←− {1, . . . , ne},

{v1, . . . , vnv}
$
←−
nv

V

3: For each vj in v1, . . . , vnv−1 except for the last one,
choose a random constant value const j ∈ Zp.

sum← sum+ const j (mod p),
f1← f1 + const j

∑
u∈N [vj] xu.

4: For the last vertex vnv ,
constnv ←− m− sum (mod p),
f1← f1 + constnv

∑
u∈N [vnv]

xu
5: return f1

Algorithm 4 (EncDegK) Degree k Invariant Polynomial
Generation
Input: graph G = (V ,E), degree k , message m
Output: invariant polynomial fk of the degree k
1: If k = 1, return fk ← EncDeg1(G, m)
2: Initialize the polynomial fk ←− 0

3: Select a random vertex v
$
←− V

4: for For each u ∈ N [v] do
5: Choose the random fragment m′

$
←− Zp

6: fk−1← EncDegK(G, k − 1,m′)
7: Set const ←− m− m′ (mod p)
8: fk ← fk + (fk−1 + const)xu
9: end for
10: return fk

3) DECRYPTION
The decryption algorithm is remarkably simple. The receiver
obtains the message m by substituting the variables xv in ct
by 0 or 1 with the knowledge of χD ∈ PDF(G). As mentioned
earlier in Examples 5 and 7, we can evaluate this algorithm
using equation (2) as follows:(

ct ◦ χD
)
(v1, . . . , vn) = ct (χD(v1), . . . , χD(vn)) = m.

Algorithm 5 (Dec) Decryption
Input: Private key D, ciphertext ct
Output: message m
1: Evaluate the polynomial ct using the private key D

m←−
(
ct ◦ χD

)
(v1, . . . , vn) (mod p)

2: return m

C. DESIGN RATIONALE
In the last decade, various efforts have been made to design
secure public-key cryptography for cryptanalysis using quan-
tum computers, particularly in the NIST PQC standardization
project. However, no candidate has yet been confirmed
secure against quantum computing attacks. Therefore, cryp-
tographic algorithms with new underlying problems still need
to be considered. Many NP problems exist in combinatorics.
In the early stage of public-key cryptography, combinatorics-
based cryptosystems were attempted, but they were not
practical because of their low efficiency and high complexity
of implementation. We intend to improve the efficiency of
combinatorics-based cryptography, quantitatively analyze its
security, and propose a new quantum resistant algorithm.

Koblitz’s PCC scheme in Definition 6 uses an invariant
polynomial of a graph to generate a ciphertext. In fact,
it should be almost randomly selected from a pool of invariant
polynomials. The problem is that generating the necessary
high-order polynomials requires much time. In designing
a new cryptographic algorithm, we aim to increase the
encryption speed. Since the encryption speed decreases to
almost its square root when the maximum degree is halved,
we tried to enhance the encryption speed by using low-degree
polynomials to generate a high-degree polynomial. We quan-
titively analyzed the security and concluded that attackers
must exert an effort equivalent to breaking a high-degree
polynomial while the ciphertext is generated at a speed
similar to that of a low-degree polynomial. In contrast to the
encryption speed, the key generation and decryption speeds
are remarkably higher.

4582 VOLUME 12, 2024

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

1) GENERATING INVARIANT POLYNOMIALS
A k-degree invariant polynomial on a 3-regular graph with
PDSes can be generated using (k − 1)-degree invariant
polynomials, as described in Proposition 3. Theoretically,
to cover all invariant polynomials, we can pregenerate and
store all invariant polynomials of degree less than k in a
set Fk−1. However, the random selection of a polynomial
from this set for each encryption is inefficient in terms of
memory utilization. Instead, an encryption algorithmmay use
a recursive approach to generate an invariant polynomial of
degree k in the form

|N [u]|∑
i=1

(gi + ci)xi, u ∈ V .

where, gi are invariant polynomials of degree k−1 generated
recursively and do not contain any variables related to vertex
v ∈ N [u]. Note that ci belong to Zp.
When thus generating ciphertext polynomials, it is impos-

sible to cover all conceivable invariant polynomials over
graph G. Because of the existence of O

(
n3k/k2k

)
(where

n ≫ k) invariant polynomials of degree k that can be
generated recursively, this is expected to be a large burden
for an attacker.

However, even with a recursive approach, the computa-
tional complexity of encryption increases drastically as the
maximum degree of the polynomial increases. To ensure the
usability of the algorithm, we did not just recursively generate
a high-degree polynomial. Instead, we performed encryption
by recursively generating several low-degree subpolynomials
and combining them to form a high-degree polynomial.

2) COMBINING SUBPOLYNOMIALS
The primary concept of the proposed encryption algorithm
is to generate a low-degree polynomial by fragmenting a
message, as shown in Algorithm 9. Our goal is to randomize
the combinatorial methods for splitting and reassembling
messages. This concept can be summarized in the following
algorithm, where, Fk is a family of methods that combine
subpolynomials of degree less than k , such that the resulting
polynomial is guaranteed to have degree k . Here,Fk denotes a
polynomial combination method randomly selected fromFk ,
represented as Fk (f1, f2, · · ·). We choose F7 for IPCC7 as

F7(f1, f2) = f1 · f2 + c,

where f1 and f2 are invariant polynomials of degree 4 or less,
and c is a constant depending on the message to be encrypted.

Algorithm 6 (GeneralEnc) Generalized Encryption
Input: graph G = (V ,E), parameter set Spara, message m
Output: ciphertext ct
1: Select the combination method Fk from Fk
2: Split the message m into random message pieces
m1,m2, . . . so that F(m1,m2, . . .) = m

3: For each message mi, execute the algorithm 4 and store
the result as gi, i.e.,

gi← EncDegK(G, ki,mi)

where ki are slected so that the degree of polynomial
Fk (g1, g2, . . .) equals to k .

4: Combine the gi into Fk as

F̃k ← Fk (g1, g2, . . .)

5: Apply the hiding procedure to F̃k , including reduction.

ct ← Hiding(F̃k)

6: return ct

The Algorithm 6 is illustrated in Fig. 13.

FIGURE 13. Encryption flow.

The messagem is divided intom1,m2, . . . according to the
combinatorial scheme Fk selected fromFk . After recursively
generating subpolynomials g1, g2, . . . of degree k1, k2, . . .,
we combine them into a k-degree polynomial Fk (g1, g2, . . .)
to form the ciphertext.

When constructing a high-degree ciphertext polynomial
from low-degree polynomials, fewer computations are
required to generate the ciphertext than those required by an
attacker to recover the plaintext, as discussed in Section IV.

In this scenario, an attacker can attempt an attack based on
a low-degree polynomial. However, owing to the difficulty of
polynomial factorization, it is not feasible for an attacker to
divide the ciphertext polynomial into low-degree polynomials
as designed [35], [36]. In addition, the reduction procedure at
the end of encryptionmakes it harder for an attacker to restore
the subpolynomials.

The receiver can decrypt the ciphertext without knowing
how the sender generated it. However, an attacker cannot
factorize the ciphertext without knowing Fk . Thus, the
attacker cannot benefit from low-degree polynomials and is
based on a high-degree polynomial.
Example 9: Suppose the sender wants to generate a

ciphertext polynomial of degree k by choosing the following

VOLUME 12, 2024 4583

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

combination scheme.

F = fk1 · fk2 + fk3 · fk4
$
←− Fk

When an attacker eavesdrops on a ciphertext and
mounts an attack to recover the plaintext, they must guess
the coefficients of the ciphertext polynomial. Knowledge
of the combination of subpolynomials can drastically reduce
the number of unknowns that need to be guessed. The attacker
may attempt to decompose F into fk1 · fk2 + fk3 · fk4 . However,
merely by intercepting the ciphertext, the attacker cannot
determine the combination for F including the following
methods:

fk1 · fk2
fk1 + fk3 · fk4
fk1 · fk2 + fk3 · fk4

...

Therefore, an attacker must try to recover the plaintext by
guessing a polynomial of degree k without decompositon.

IV. SECURITY ANALYSIS
The primary attack strategies against PCC are exhaustive
key search and plaintext recovery attacks. The main security
parameters that directly affect both attacks are the size
n of the graph G and the degree k of the ciphertext
polynomial. In addition, a guessing attack in an exhaustive
key search is influenced by the security parameter ne used to
generate invariant polynomials. The key recovery attack of an
exhaustive key search is only affected by n. Security can be
balanced by increasing k to ensure a security level similar to
that provided against plaintext recovery attacks.

Before exploring various attack techniques, we note that
our cryptosystem implements the reduction procedure when
the distance between vertices is two or less. Therefore,
considering a situation that an attack is executed, it is
more efficient to select vertices at a distance of three
or more.

Typically, when generating a polynomial, reduction is
necessitated by the hiding phase. Predicting the output
ciphertext after this phase becomes challenging, making it
difficult to prove the security level. However, by selecting
vertices in a manner such that they are not affected by the
reduction, we can prove security more efficiently.

Fact 3 presents the number of combinations required
to select j vertices in a 3-regular graph such that not all
selected vertices are reduced. This corresponds to the case
where r1 = 4 and r2 = 10 in Proposition 6.3(a) of
Koblitz [15].
Proposition 5 (In the Proof of Koblitz’s Proposition 6.3):

Let G be an arbitrary graph with n vertices, and let u0 be a
vertex such that |N [u0]| = r1 where r1 = minu∈V #{v ∈ V :
v ∈ N [u]} and r2 = maxu∈V #{v ∈ V : distance(u, v) ≤ 2}.
The number of monomials of degree j, composed of variables
xu, corresponds to the number of sets of distinct vertices

u ̸= N [u0] such that no two of the u are at a distance≤ 2 from
one another. Consequently, the number of subsets of j vertices
is

≥
(n− r1)(n− r1 − r2) · · · (n− r1 − (j− 1)r2)

j!

= r j2

(
(n− r1)/r2

j

)
.

Fact 3: In a 3-regular graph with n vertices, the minimum
number of methods to select distinct j vertices that generate
the same monomial before and after applying the reduction is

10 j
(
(n− 4)/10

j

)
.

A. KEY RECOVERY ATTACK
A key recovery attack is a method to find a PDS with
n/4 vertices in a 3-regular graph G with n vertices to
determine the secret key of the receiver. Determining
whether an arbitrary graph has PDSes is NP-complete. It is
conjectured that the problem of finding vertices in a graph
with PDSes presents a comparable security level [20]. Even
if the attacker fails to precisely identify D, which is a
PDS selected from among the four PDSes by the receiver
during key generation, the attack is considered successful if
the attacker discovers at least one PDS. PCC counters the
key recovery attacks by leveraging NP-hardness, where the
computation of a key recovery attack is proportional to the
size of graph n.
Theorem 1: The complexity of a naive exhaustive key

search is

O(2n/2) ≤ O(
(
n
n/4

)
) ≤ O(2n).

Proof: Because a PDS of a 3-regular graph with n
vertices consists of n/4 vertices, an attacker checks every
subset with n/4 vertices to confirm whether it is a PDS. The
number of trials is bounded by(

n
n/4

)
=
n(n− 1) · · · (n− (n/4)+ 1)

(n/4)!
.

Stirling’s approximation can be applied to obtain the upper
and lower bounds of the following expression:

(3n/4)n/4

(πn/2)1/2 (n/4e)n/4
≤

(
n
n/4

)
≤

nn/4

(πn/2)1/2 (n/4e)n/4
.

This inequality can be simplified as

6n/4 ≤ (3e)n/4 ≤
(
n
n/4

)
≤ (4e)n/4 ≤ 12n/4.

Since 2n/2 < 6n/4 and 12n/4 < 2n, we finally have

2n/2 <

(
n
n/4

)
< 2n.

□
The security of our algorithm against key recovery attacks

increases exponentially with the graph size n. A better

4584 VOLUME 12, 2024

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

algorithm than the naive version, such as backtracking, can
slightly reduce the time complexity of exhaustive PDS search,
but the time complexity still increase exponentially. From
Theorem 1, we may set n = 256 for 128-bit security.

B. CIPHERTEXT SEARCH ATTACK
Another exhaustive search strategy is the ciphertext search
attack, which aims to identify a message corresponding
to a given ciphertext. Each invariant polynomial has a
unique value for any PDF in a given graph. According to
Proposition 3, anyone can generate an invariant polynomial
with the desired value without knowledge of the PDF. Let
F be a set of all possible ciphertext polynomials. Then, this
set can be expressed as a disjoint union of the set F(m) of
ciphertext polynomials for every message m.

F =
⋃
m∈Zp

F(m).

Suppose that an attacker eavesdrops the ciphertext ct of
a sender. If the attacker identifies F(m), which contains
the ciphertext polynomial ct corresponding to the message
m, then they succeed in message recovery. Consequently,
the cryptosystem should handle a sufficiently large number
of invariant polynomials to ensure that the attacker cannot
identify the set F(m) to which the ciphertext belongs.
Fact 4: The computational cost of a ciphertext search

attack depends on the number tk of ciphertext polynomials
of degree k or less.

The security level in Fact 4 is highly dependent on the
parameters n, k , and ne. Using Theorem 2, the size of
ciphertext space F(m) can be estimated.
Lemma 1: The number tk of ciphertext polynomials of

degree k or less satisfies

t1 = pne
(
n
ne

)
,

tk ≥
{
pne+1

(
n
ne

)}4k−1

for k > 1.

Proof: We use the security parameters such as p, n,
and ne defined in Table 1. Note that ne is the number of
polynomials of degree 1 whose linear combination forms an
invariant polynomial f1 of degree 1 during the encryption
process, which is depicted in Algorithm 3 (EncDeg1).

When k = 1, polynomial f1 is constructed as follows:
Select ne distinct vertices and define elementraty invariant
polynomials ei (i = 1, 2, . . . , ne) for the vertices. Choose
coefficients αi in Zp for i = 1, 2, . . . , ne. Then, generate
linear combinations of the form

α1e1 + α2e2 + · · · + αneene .

Considering the number of possible combinations, we have

t1 = pne
(
n
ne

)
.

For k > 1, according to Proposition 5, polynomial fk is
generated by selecting one vertex from n−4−10(ne+k−3)
previously unselected and irreducible vertices.

According to the step 8 in Algorithm 4, we can estimate tk
by the recursive formula as

tk ≥ (tk−1p)4{n− 4− 10(ne + k − 3)}.

Let r(k) = p4{n− 4− 10(ne + k − 3)}. Then, we have

tk = t4k−1 · r(k),

tk−1 = t4k−2 · r(k − 1),

...

t2 = t41 · r(2).

By mathematical induction, it follows from r(i) ≥ p4 for all
i that

tk = t4
k−1

1

k∏
i=2

r(i)4
k−i
≥ t4

k−1

1 · p4
k−1

.

Consequently,

tk ≥
{
pne+1

(
n
ne

)}4k−1

.

□
Theorem 2: If the encryption parameter ne is chosen so

that ne ≪ n and ne ≪ p, then the number tk of ciphertext
polynomials of degree k or less satisfies

tk ≥ (np)ne4
k−1

.

Proof: The computational cost of a ciphertext search
attack depends on the number of ciphertext terms, denoted
as tk .

First, let us estimate the number of ciphertext polynomials
of order one. From Lemma 1,

t1 = pne
(
n
ne

)
= pne

n(n− 1) · · · (n− ne + 1)
ne!

.

Stirling’s approximation can be used to obtain the lower
bound of the expression.

t1 ≥
{p(n− ne)}ne

(2neπ)1/2(ne/e)ne
≥

(
p(n− ne)

ne

)ne
.

The final representation is simplified by the relation
(2neπ)1/2e−ne < 1 for ne = 1, 2, Thus, the following
expression for tk is obtained.

tk ≥ p4
k−1

{
pne

(
n
ne

)}4k−1

≥ p4
k−1

(
p(n− ne)

ne

)ne4k−1

≈ p(ne+1)4
k−1

(
n
ne

)ne4k−1
VOLUME 12, 2024 4585

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

= (np)ne4
k−1

(
p
nnee

)4k−1
≈ (np)ne4

k−1
.

□
Theorem 2 shows that it is infeasible for an attacker

to guess the ciphertext if we choose parameters ne and k
properly. In fact, given parameters n = 256 and ne =
3 proposed by our algorithm, the security against ciphertext
search attacks increases exponentially with the degree k of
the ciphertext. For a given parameter k = 7, more than 26×10

4

invariant polynomials can be generated. Therefore, it can be
sufficiently challenging to determine whether for messagem,
ciphertext is contained in F(m).

C. PLAINTEXT RECOVERY ATTACK
A plaintext recovery attack compares the coefficients of
an arbitrary invariant polynomial with those of the inter-
cepted ciphertext to determine an equivalent polynomial
that evaluates the same value. This method does not
directly identify the key (i.e., find a PDS) or the cipher-
text polynomials; instead, by using Gaussian elimination,
it derives the message information dispersed among the
coefficients.

In this attack, the attacker first generates an arbitrary
polynomial to recover a message. They then compare the
coefficients of the terms in the intercepted ciphertext with
those of the terms in the arbitrarily generated polynomial.
With the equivalent coefficients as unknowns, the attacker
generates a system of linear equations. Then, by applying
Gaussian elimination, the last column of the reduced row
echelon form (RREF) matrix is summed at Zp to retrieve
the message. The procedure of this attack is detailed
in APPENDIX B and a toy example is described in
APPENDIX C.

The computational complexity of the attack depends on
the size of the matrix used for Gaussian elimination. The
computational complexity for an a×amatrix is about O(a3).
Fact 5: Let a be the minimum number of coefficients in an

arbitrarily chosen ciphertext. Then an attacker can succeed
in the plaintext recovery attack with complexity O

(
a3

)
for

Gaussian elimination.
The a is proportional to n and k and are independent of ne.
Lemma 2: The minimum number of monomials appearing

in an arbitrary ciphertext polynomial generated by an
attacker is

k∑
i=1

10 i−1n
i

(n−4
10

i− 1

)
.

Proof: A set of monomials to be included in any
ciphertext generated by an attacker must include all mono-
mials that can appear in the intercepted ciphertext of
the sender.

The encryption scheme of the sender can represent all the
terms that appear after reduction over graph G. From Fact 3,

the number of combinations for selecting j vertices from
vertex set V to generate polynomials of degree j is

≥ 10 j
(n−4

10
j

)
,

where
(x
j

)
is assumed zero if x ≤ j− 1.

FromKoblitz’s proof for Proposition 5, in a 3-regular graph
that includes cases in which the number of vertices at distance
≤ 2 is at most 10, the number of ways to select j distinct
vertices unaffected by reduction is as follows.

n(n− 4)(n− 4− 10)(n− 4− 2 · 10) · · · (n− 4− (j− 1)10)
j!

=
10 j−1n

j

(n−4
10

j− 1

)
Because the arbitrary polynomials generated for our attack

cover cases i = 1, 2, · · · , k , the minimum number of
monomials that must be present in an arbitrary ciphertext
polynomial is

k∑
i=1

10 i−1n
i

(n−4
10

i− 1

)
.

□
Theorem 3: In an environment where an attacker prepares

polynomials of degree k required for an attack in advance, the
computational cost of a plaintext recovery attack is

O
(
(2n)3k/k3k

)
.

Proof: The computational complexity of a plaintext
recovery attack depends on the size of the matrix used for
Gaussian elimination. The size of the row space of the matrix
required for an attack is

∑k
i=1

10 i−1n
i

(n−4
10
i−1

)
.

Let the size of the row space be a. Then,

a3 =

{
k∑
i=1

10 i−1n
i

(n−4
10

i− 1

)}3

≥

{
k∑
i=1

10i
(
n/10
i

)}3

.

Using Stirling’s approximation, the lower bound is

a3 ≥

{
k∑
i=1

(n− 10i)i

(2iπ)1/2(i/e)i

}3

Thus, the inequality can be simplified as follows:

a3 ≥

{
k∑
i=1

{
e(n− 10i)

i

}i}3

≥

{
e(n− 10k)

k

}3k

≥

{
23

(
n3

k3
− 30

n2

k2
+ 300

n
k
− 1000

)}k
4586 VOLUME 12, 2024

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

≈

(
2n
k

)3k

.

□
From Theorem 3, given that the parameters of IPCC7

are n ≫ k , the security of our algorithm against plaintext
recovery attacks increases exponentially with the degree
k of the ciphertext. From Theorem 3, it is seen that we
achieve 128-bit security for plaintext recovery attack with
n = 256, k = 7.
Remark 1: The lower bound of the computational cost

incurred by an attacker for each attack can be summarized
as follows:
• Key recovery attack: O

(
2n/2

)
• Ciphertext search attack: O

(
(np)ne4

k−1
)

• Plaintext recovery attack: O
(
(2n)3k/k3k

)
Here, the computational cost for each attack grows

exponentially with the security parameters n, k , and ne.
Moreover, for a plaintext recovery attack assuming an

arbitrary ciphertext polynomial with unknown coefficients,
the computation required by an attacker to generate a
single polynomial differs from that required by the sender
to generate a ciphertext by at most O(nke). Therefore, the
security level can be adjusted by increasing or decreasing the
values of the relevant security parameters. For the parameters
proposed in Table 1, IPCC7 achieves 128 bits and 149 bits
of security against key recovery attacks and plaintext attacks,
respectively. Moreover, the number of invariant polynomials
that an attacker needs to search during a ciphertext search
attack is greater than 26×10

4
, providing a sufficiently large

target set for the attack.

D. RATIONALE FOR PARAMETER SELECTION
The security corresponding to the value of each parameter for
each attack is expressed as follows:

TABLE 2. Complexity of key recovery attack for the number of vertices n
(bit).

FIGURE 14. Complexity of ciphertext search attack for the degree k and
parameter ne (unit:bit, n = 256).

FIGURE 15. Complexity of plaintext recovery attack for the number of
vertices n and degree k (unit: bit).

TABLE 3. Complexity of plaintext recovery attack for the degree k (unit:
bit, n = 256).

From Table 2, to ensure 128-bit security against a key
exhaustive search attack, the graph size must be n ≥ 256.
Thus, the parameter n = 256 proposed in Table 1 satisfies
the 128-bit security requirements.

As the size of the graph increases, IPCC7 becomes more
secure against key recovery attacks. However, we must
consider memory usage to overcome implementation limita-
tions. Before selecting parameter n, we considered the data
type to represent the graph vertices from the perspective of
implementation. This consideration is related to the memory
size required for intermediate operations during the algorithm
execution and the size of the ciphertext. We observed that
an increase in the graph size for the same data type did
not drastically affect the algorithm speed or memory usage.
Hence, we chose a graph size of n = 256, which represents
≥ 256 vertices, to satisfy the 128-bit security level using a
data type char (1 byte). This choice facilitated the generation
of a 3-regular graph. The number 256 is a multiple of 4; thus,
a 3-regular graph with n = 256 can be generated, with each
byte representing 256 vertices (0-255).

According to Fig. 14, to ensure 128-bit security against
ciphertext recovery attacks when ne = 1, the maximum
degree of the polynomial should be k ≥ 2. The parameters
k and k ′ proposed in Table 1 satisfy the 128-bit security
level. Because the 128-bit security level is achieved when
starting with ne = 1, if there is a preference to use higher
values to improve security, this can be made possible by
considering the memory and speed. The proposed parameters
were determined considering the implementation speed and
ciphertext size.

According to Fig. 15, a plaintext recovery attack generates
an arbitrary polynomial based on the maximum degree of the
eavesdropped ciphertext. This attack can be counteracted by
increasing k . According to Table 3, when the graph size is
256, k ≥ 7 is necessary to ensure 128-bit security, where the
proposed parameter k = 7 satisfies 128-bit security.

VOLUME 12, 2024 4587

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

E. DEDICATED ATTACKS FOR SPECIFIC CASE
The security of PCC is based on two main impracticabilities:
the difficulty of finding a PDS in a given graph and the
difficulty of guessing ciphertext polynomials. Instead of the
complicated recursive process adopted in IPCC7, one may
expect that it is possible to construct a ciphertext polynomial
as a simple combination of elementary invariant polynomials:

ct =
∑
Ui⊂U

ci
∏
u∈Ui

∑
v∈N [u]

xv, (3)

where U is the power set of V which consists of all subsets
of V , and ci is constant in Zp. Then, it is easy to see that
the corresponding plaintext is

∑
ci. However, this results in

a dedicated attack [30].
In the encryption process, we increase the degree of the

invariant polynomial from k − 1 to k using
∑

(gi + ci)xi.
Meanwhile, equation (3) can be considered as (g + c)

∑
xi.

Thus constant c may appear repeatedly even in the final
polynomial particularly when using a sparse polynomial for
efficiency. Lange noted that in a sparse ciphertext constructed
using (3), the message can be recovered by only adding
different coefficients that appear individually [30].
To prevent such a coefficient summation attack, polyno-

mials should be chosen more diversely, as
∑

(gi + ci)xi, at
each stage during ciphertext generation. Then constants ci
are mixed up in the recursive process even in a sparse case.
This method increases the computational effort required by
the sender, but only by a constant factor.

V. IMPLEMENTATION
The encryption speed of a cryptosystem is drastically affected
by the degree k . We proposed a method for constructing
high-degree polynomials from low-degree polynomials. This
method allows rapid encryption while retaining security
against known attacks.

In this section, we describe the performance of the program
using the proposed parameters and algorithms. The pseu-
docode of the cryptosystem is described in APPENDIX D,
and an example of the program execution is described
in APPENDIX E. Our cryptosystem operates under the
assumption that the randomness used for vertex selection
and coefficients are achieved using a cryptographically
secure random number generator. To implement the proposed
algorithm, we used the random number generator AES-CTR-
DRBG.

A. IMPLEMENTATION CONSIDERATIONS
1) POLYNOMIAL STRUCTURE
In speed-sensitive cryptosystems, it is necessary to devise
designs for static memory allocation, rather than for dynamic
memory allocation. However, static memory allocation
may lead to memory wastage owing to several reasons.
Fortunately, when designing the implementation of the
invariant polynomial in IPCC7, unlike in the case of general
polynomials, a suitable range of upper and lower limits can be

measured based on the degree of the polynomial. Therefore,
we used static memory allocation, considering the upper limit
in the design of a polynomial, coefficients, and vertices for a
term.

This process consumes four bytes for a coefficient and
one byte for each vertex. The coefficient is designed as an
unsigned int data type to calculate the coefficients without
BigNumber operations, where the vertex is represented as
a byte data type to indicate the index of a vertex in a
cryptosystem with 128-bit security.

2) LOOKUP TABLE
The encryption speed is greatly affected by the hiding
procedure, which consumes 90% of the total encryption
time. However, hiding is essential because it increases the
complexity of factoring in the ciphertext by an attacker.
To enhance the speed of hiding operation, we can prepare
a precomputed lookup table. The public key, which is
the output of the key generation algorithm, stores edge
information. By reorganizing the table into a 256 × 4 table
of closed neighborhoods for each vertex, we can improve the
operation to check whether the distance between two vertices
in the same term is less than or equal to two in the RD
of the hiding process. Thus, the complexity can be reduced
from O(n) to O(1). This enhancement leads to a considerable
improvement in encryption performance.

Decryption is the process of obtaining a message using
a PDS as the private key. The private key generated by the
key generation algorithm is implemented as a byte array
containing 256/4 PDS vertices. For decryption, the array
is reconstructed into a 256 × 1 table. This is achieved by
storing ‘‘1’’ for the vertex belonging to the PDS and ‘‘0’’
for the other vertices. Each nonzero term in the ciphertext
contains the vertices from the PDS. Bitwise AND operations
can be perrformed to determine whether all vertices in the
term belong to the PDS.

3) FUTURE WORK
Currently, in our cryptosystem, most of the encryption time is
consumed by the hiding phase during the SC process, with a
time complexity of O(n2). However, by defining terms based
on a lexical ordering according to the vertices, the speed was
improved by approximately five times. It is predicted that
for an appropriate application of hashing to lexical ordering,
similar to the dictionary of Python or hashmap of Java, the
time complexity will decrease from O(n2) to O(n).

B. PERFORMANCE ANALYSIS
IPCC7, which is known to output very large ciphertexts,
assumes an environment with abundant memory capacity.
Therefore, when analyzing time and memory complexity, we
first examined time complexity.

All benchmarks were obtained using an Intel(R) Core i5-
7360U CPU@2.3GHz processor. The benchmarking PC was
equipped with 8GB RAM and compiled using Apple Clang

4588 VOLUME 12, 2024

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

version 13.0.0. All measured results were the averages of
1,000 iterations.

As observed in the previous analysis, the security strength
of IPCC7 is determined by two main security parameters.
Here, n is the number of vertices, and k is the maximum
degree of the ciphertext polynomial. For a cryptosystem
to be adopted in the real world, a balance must be
established between these parameters in terms of security and
performance. From the perspective of implementation, the
speed of key generation is influenced by n. For a graph with
n = 256, key generation takes 2.32ms.
Before evaluating the improved encryption performance

of IPCC7, we analyzed the speed of each function in the
encryption algorithm and found that the SC procedure in the
hiding phase consumes most of the total encryption time.
To address this issue, we measured the performance

difference when applying the SC to only a portion of the terms
in the ciphertext. The result indicated that the computational
burden of SC can be reduced from O(n2) to O(rn) depending
on the ratio r of terms to which SC is applied. On increasing
r from 0 to 1 in increments of 0.2, we found a marked rise in
encryption time, particularly, as r shifted from 0.2 to 0.4 (see
Fig. 16). Meanwhile, there was no noticeable decline in the
number of terms during shifting. Consequently, we fixed the
algorithm to execute the SC process on just 20% of the terms
after the RT process of the hiding phase is finished.

Eliminating the SC process poses the risk of expos-
ing the selection of random coefficients. However, by apply-
ing the SC for 20% of the terms, subsequent ST processes
obscure the terms for which the SC was applied. This makes
it challenging for attackers attempting to reverse engineer on
the basis of the coefficients.

FIGURE 16. Encryption speed according to the percentage of terms in ct
to which SC is applied in IPCC7 with k = 7.

Encryption speed is affected by both n and k , and the effect
of k is prominent. Meanwhile, although decryption speed is
also affected by n and k , its dependence on these variables is
drastically less pronounced than that of the encryption speed.

For n = 256, the operating speeds of the existing method
(PCC) and the proposed approach (IPCC7) are compared
in Fig. 17. Comparison of the performances of generating
degree-k ciphertext using the IPCC7 and PCC algorithms
are shown in Fig. 17. We measured the performance of the
PCC algorithm using its variant, namely, 4. For simplicity

in subsequent references, Algorithm 4 will be referred to as
PCC.

According to Fig. 17, the encryption speed of IPCC7
is approximately five times that of PCC. Conversely, the
decryption speed of IPCC7 is relatively lower than that
of PCC because the former generates more terms in the
ciphertext than the latter. Nevertheless, given that the
decryption speed of IPCC7 is inherently high, the difference
in decryption speed between the two algorithms is negligible.

FIGURE 17. Algorithm performance for each degree k (n = 256, ne = 3).

The differences in encryption speed between the PCC
and the IPCC7 are summarized in Table 4. As explained in
Section III-C, IPCC7 creates two lower-degree polynomials
of degrees 3 and 4 andmultiplies them to generate a ciphertext
polynomial of degree 7. It takes about 1.5 s to create a
polynomial of degree 7, but only 0.8 ms and 3.4 ms are
sufficient for generating polynomials of degrees 3 and 4,
respectively. Considering this, while the PCC spends a long
time in the encryption to create the targeted degree of
polynomial, IPCC7 enjoys a speed advantage in that it only
takes about twice the time to achieve the target degree by
generating low-degree polynomials. According to Table 4,
as the degree of the ciphertext increases from 4 to 7, PCC
requires approximately 440 times encryption time. The time
required for generating a degree-7 ciphertext with IPCC7 is
not simply the sum of the times needed to generate degree-
3 and degree-4 polynomials with the PCC; it requires more
encryption time than that required for the hiding phase.
However, the time required to generate a degree-7 ciphertext
polynomial is only about 80 times that needed for a degree-
4 polynomial, making the increase in degree much less
burdensome compared to the PCC.

TABLE 4. Performance of encryption algorithm for k when n = 256.

For all the provided parameters, after averaging the results
of 1,000 runs for each scheme, the operational times were

VOLUME 12, 2024 4589

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

2.32 ms for key generation, 262.34 ms for encryption, and
1.12 ms for decryption (see Table 5). The sizes of the
public-key and secret-key are (3n/2)2 = 768 bytes and
n/4 = 64 bytes, respectively, and the average size of the
ciphertext is 235,818 bytes.

TABLE 5. Implementation speed with the proposed parameters.

C. COMPARISON OF IPCC7 WITH OTHER PQC
ALGORITHMS
In our implementation, IPCC7 generated a ciphertext of
235,818 bytes for a 768-byte public-keywith 128-bit security.
The size of the data transmitted over the network was 236,586
bytes, and the algorithm execution time was 2,338.71 ms
(including key generation, encryption, and decryption).
Fig. 18 and 19 compare the performances of IPCC7 and
several other PQC algorithms, all run with the parameters
required to ensure 128-bit security [34].

FIGURE 18. Comparison of IPCC7 and several other PQC algorithms in
terms of public key and ciphertext size.

FIGURE 19. Comparison of IPCC7 and several other PQC algorithms in
terms of operation speed and data size.

IPCC7 has the advantage of fast key generation and
fast decryption. Its encryption speed, although relatively
slow, is realistically usable. The unique features of this
cryptosystem include its reliance on novel problems that
are distinct from those proposed during the NIST PQC
algorithm standardization process: small public key and
large ciphertext sizes. Considering these characteristics, it
is expected to outperform other PQC algorithms in various

applications such as one-way functions and white-box
encryption, particularly in environments where the size of
the ciphertext is not an issue. White-box cryptography is a
technology that protects encryption keys from threats such as
memory dumps while encrypting messages. To achieve this
purpose, this cryptography method uses several megabytes
to several gigabytes of memory; hence, memory limitations
are not a major concern. Consequently, IPCC7 is expected to
be efficient when applied to the one-way external encoding
required in the white-box encryption process.

Current research on IPCC7 has revealed its potential
for use as a trapdoor one-way function in cryptographic
primitives. Future studies will aim to reduce the performance
gap with the general PQC algorithms by optimizing the
recursively implemented code and offering parameter options
for various security levels. Additionally, progressive research
into the security model against general adversaries is
expected to yield more reasonable and specific performance
compared with the other PQC algorithms.

VI. CONCLUSION
In the domain of public-key cryptosystems, encryption
schemes based on the graph theory have been mostly
neglected for a long time. This is mainly because of
the extreme inefficiency of such schemes in terms of
speed and memory efficiency. However, by integrating the
concept of polynomial combinatorics, we achieved a drastic
improvement in encryption speed.

In this study, we determined the appropriate parameters for
128-bit security, including the size of the graph, maximum
degree of ciphertext, and the number of terms in the ciphertext
polynomial.We then demonstrated that an algorithm based on
the graph theory can be implemented practically.

IPCC7 is still under study as a primitive. At present,
it does not satisfy the conditions of the PQC scheme required
by NIST because of the lack of analysis on IND-CCA2
security and the absence of variable security strengths based
on different parameters. However, this study is meaningful
in that it demonstrates that a trapdoor one-way function
based on graph theory can actually be used as a PQC
primitive. By analyzing and adapting this primitive to meet
the construction requirements of the NIST, we can expect it
to be usable as an actual PQC in environments with suitable
resource requirements.

Cryptosystem design based on graph theory and combina-
torics is not yet mature. Nonetheless, numerous concepts can
be studied and integrated for the effective use of cryptosys-
tems. For instance, subpolynomials can be generated using
multiple graphs sharing a PDS, or a PDF can be extended
to a perfect minus dominating function to enhance security
against key recovery attacks.

In future work, we will analyze more general security,
improve the algorithm, and optimize the implementation of
the algorithm.We anticipate that these studies will bolster the
field of combinatorics-based cryptosystems and contribute to
the diversification of the problems underlying PQC.

4590 VOLUME 12, 2024

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

APPENDIX A
LIST OF ABBREVIATIONS

TABLE 6. List of abbreviations.

APPENDIX B
ALGORITHM OF THE PLAINTEXT RECOVERY ATTACK

Algorithm 7 (PRA) Plaintext Recovery Attack
Input: ciphertext ct = fk
Output: plaintext pt
1: To generate an arbitrary polynomial f̂k that

encompasses all the terms that appear in the ciphertext,
the attacker may generate and collect the vertices
required to generate the ciphertext, along with their
corresponding pairs of unknowns.

2: These organized pairs are used to generate an arbitrary
polynomial f̂k . Note that f̂k is an invariant polynomial,
generated by a simple recursive method without using
Fk .

3: Then, fk = f̂k is applied to obtain a linear system for the
sum of the unknowns, which are the coefficients of the
monomials of f̂k .

4: The resultant linear system is transformed and
Gauss-Jordan elimination is applied to the matrix.

5: The values in the last column of the RREF matrix are
added over Zp to derive the plaintext pt .

6: return pt

APPENDIX C
EXAMPLE OF EXECUTING A PLAINTEXT RECOVERY
ATTACK
This example illustrates how Gauss-Jordan elimination can
be used in a plaintext recovery attack. Suppose that an

attacker Eve wants to recover a message by intercepting the
ciphertext. The security parameters

p = 11, n = 8, k = 1, k ′ = 1, ne = 2

shared by the principle of cryptographic communication,
Alice (sender) and Bob (receiver) are known, and Bob’s
public key graph is shown in Fig. 4.
Eve is also aware of this public security parameter and the

public key. The ciphertext that has been eavesdropped upon
after being generated by Alice is as follows:

ct = 4xv1 + 9xv3 + 2xv5 + 4xv6 + 2xv7 + 9xv8 .

To perform Gauss-Jordan elimination by generating a
linear equation, Eve constructs an arbitrary polynomial
containing all the possible combinations that Alice could have
chosen to generate an invariant polynomial of degree 1. Given
that k = 1, 8C1 = 8 sets of vertices can be selected to
generate a polynomial. The (vertex, coefficient) pairs that
map a random coefficient ĉi onto each set are as follows:

(v1, ĉ1), (v2, ĉ2), (v3, ĉ3), (v4, ĉ4),

(v5, ĉ5), (v6, ĉ6), (v7, ĉ7), (v8, ĉ8).

By using these pairs to generate a ciphertext, Eve gets the
following arbitrary invariant polynomial of degree 1:

ĉt = ĉ1(xv1 + xv2 + xv4 + xv6)

+ ĉ2(xv1 + xv2 + xv4 + xv6)

+ · · ·

+ ĉ7(xv2 + xv6 + xv7 + xv8)

+ ĉ7(xv3 + xv5 + xv7 + xv8).

At present, this polynomial is arranged for unknown
coefficients ĉi; however, it can be rearranged for vertex
variables xv. The solved polynomial is then compared with
the stolen ciphertext to generate the following system of
equations:



ĉ1 + ĉ2 + ĉ4 + ĉ6 = 4 (coefficient of xv1)
ĉ1 + ĉ2 + ĉ3 + ĉ7 = 0 (coefficient of xv2)
ĉ2 + ĉ3 + ĉ4 + ĉ8 = 9 (coefficient of xv3)
ĉ1 + ĉ3 + ĉ4 + ĉ5 = 0 (coefficient of xv4)
ĉ4 + ĉ5 + ĉ6 + ĉ8 = 2 (coefficient of xv5)
ĉ1 + ĉ5 + ĉ6 + ĉ7 = 4 (coefficient of xv6)
ĉ2 + ĉ6 + ĉ7 + ĉ8 = 2 (coefficient of xv7)
ĉ3 + ĉ5 + ĉ7 + ĉ8 = 9 (coefficient of xv8)

This system of equations can be represented as a matrix,
as shown in Fig. 20. By applying Gauss-Jordan elimination to
this matrix, we obtain an RREF matrix, as shown in Fig. 21.
The message can be recovered by summing all values in the
last column over Zp.
The values in the last column of Fig. 21 are {2, 2, 7, 0,

2, 0, 0, 0}, and their sum yields 13 = 2 mod p. This result
is consistent with 4 + 9 = 2 mod p. which is obtained by

VOLUME 12, 2024 4591

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

FIGURE 20. ct = ĉt matrix generated to perform a plaintext recovery
attack.

FIGURE 21. PPEF matrix of ct = ĉt with Gauss-Jordan Elimination.

substituting the value of the secret-key PDF corresponding
to PDS {v1, v8} in the public-key graph (Fig. 4) into the
intercepted ciphertext ct .

APPENDIX D
PSEUDOCODE FOR IMPLEMENTATION
Each vertex v ∈ V is represented by a 1-byte index
number. Polynomial fk generated for the input message (32-
bit plaintext) is stored in a t × (k + 1) two-dimensional
array, where t is the number of polynomial terms. Here,
cryptographic algorithms are described in the order of their
execution for implementation.

A. KEY GENERATION
The key generation algorithm closely follows Algorithm 1,
except for the storage process of the public-key and secret-
key.

A public-key graph comprises a set of vertices V and
a set of edges E , which can be collectively represented
through neighborhood relationships for each vertex. Because
the edges of a graph carry information on the vertices at both
ends, we can ascertain all vertices from E without knowing
V .

Thus, the graph public-key is stored as a 3n
2 × 2 two-

dimensional array, and the edge information is stored in
a randomized order to prevent the inference of the PDS
identity. The secret key is stored as an n

4 one-dimensional
array, selected from one of the PDSes in the graph, without
generating a PDF.

In the key generation algorithm, the notation A[i]
signifies the i th element of array A. When arrays A

and B are of the same size, A[a]
$
←→ B[b] denotes

a random one-to-one correspondence between elements
A[a] and B[b].

Algorithm 8 (KeyGen) Key Generation Implementation
Input: The number of vertices n
Output: A pair of keys (pk, sk)
1: V ← {1, 2, · · · , n}
2: E ← ø
3: L1← Shuffling(V)
4: D1,D2,D3,D4← ø
5: for i = 1 to n/4 ▷ generate PDS
6: D1[i]← L1[4i− 3]
7: D2[i]← L1[4i− 2]
8: D3[i]← L1[4i− 1]
9: D4[i]← L1[4i]

10: for i = 1 to 3 ▷ generate graph that has PDS
11: for j = i+ 1 to 4
12: L2← Shuffling({1, 2, · · · , n4 })
13: for k = 1 to n/4
14: E ← E ∪ {Di[k]

$
←→ Dj[L2[k]]}

15: sk
$
←− {D1,D2,D3,D4} ▷ Select PDS as the sk

16: pk ← Shuffling(E) ▷ G has a vertex information
potentially

17: return sk, pk

B. ENCRYPTION
The encryption algorithm is a function that calls Algo-
rithms 11 and 10 to generate a k-degree invariant poly-
nomial as a ciphertext. The distribute function generates
message fragments and lower-degree invariant polynomials
that comprise F , where q is the number of polynomials
that constitute F . The function ‘‘Combine’’ combines the
generated subpolynomials g1, g2, · · · , gq into a polynomial
of degree k , following the format F .

Algorithm 9 (Enc) Encryption Implementation
Input: Graph G = (V ,E), parameter set D, message m
Output: Ciphertext ct

1: F
$
←− Fk

2: {m1,m2, · · · ,mq} ← Distribute(F,m)
3: {k1, k2, · · · , kq} ← Distribute(F, k)
4: for i = 1 to q
5: gi← GenPolyDk(G,GRT, ø, ki, mi)
6: fk ← Combine(g1, g2, · · · , gq)
7: Hiding(fk)
8: ct ← fk
9: return ct

When an invariant polynomial is generated, an encryp-
tion algorithm is designed to avoid scenarios in which a
polynomial with a maximum degree < k is returned as a
ciphertext. This implementation ensures that if any term of
the polynomial satisfies the maximum degree k , then the
ciphertext degree also satisfies k , guaranteeing that at least
one term matches the k-degree.

For a randomly selected vertex v, if vertex v′ selected
during the recursive process does not belong to N [v]; the

4592 VOLUME 12, 2024

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

term that includes v and v′ is neither removed nor its degree
decreased. To preserve the maximum degree, the algorithm
passes the set of vertices to be considered in the reduction,
that is, the set Ṽ ⊂ V comprises the vertices selected in the
previous step.

The input parameter ‘‘GRT’’ is a flag that indicates whether
the maximum degree of generated term satisfies k .

Algorithm 10 (GenDeg1) Degree 1 Invariant Polynomial
Generation Implementation

Input: Graph G = (V ,E), selected vertices set Ṽ , message
m
Output: Invariant polynomial f of the degree 1

1: ne
$
←− {1, 2, 3}

2: U
$
←−
ne

V \ Ṽ ▷ U is a set consisted by ne distinct

randomly selected vertices
3: for i = 1 to ne
4: value

$
←− Z×p

5: if i = ne
6: value = m− sum
7: sum← sum+ value
8: f1← f1 + value ·6v∈N [ui]xv ▷ ui ∈ U
9: return f1

Algorithm 11 (GenDegK) Degree k Invariant Polynomial
Generation Implementation
Input: Graph G = (V ,E), guarantee gua, selected vertices
set Ṽ , degree k̃ , message m
Output: Invariant polynomial f of the degree k̃
1: if k̃ = 1
2: if gua = GRT ▷ guarantees maximum degree
3: f̃k ← GenPolyD1(G, Ṽ ,m)
4: else
5: f̃k ← GenPolyD1(G, ø,m)
6: return f̃k
7: v

$
←− V

8: if gua = GRT
9: while break ▷ choose and cheak a vertex not in Ṽ
10: if v /∈ Ṽ
11: break
12: v

$
←− V \ Ṽ

13: s← 0 ▷ |N [v]| = 4
14: if gua = GRT

15: s
$
←− {1, 2, 3, 4}

16: for i = 1 to 4
17: value

$
←− Zp ▷ value evaluated for f̃k−1

18: if i = s ▷ term that guarantees maximum degree
19: Ṽ ← Ṽ ∪ {u : u ∈ N [v[s]]}
20: f̃k−1← GenPolyDk(G,GRT, Ṽ , k̃ − 1, value)
21: else
22: f̃k−1← GenPolyDk(G,NOT, ø, k̃ − 1, value)
23: const = m− value (mod p)
24: f̃k ← f̃k + (f̃k−1 + const)xv[s]
25: return f̃k

The hiding phase operates on the polynomial returned by
Algorithm 11.

Algorithm 12 (Hiding) Reduction and Ordering
Implementation
Input: Graph G = (V ,E), invariant polynomial fk ,
maximum degree k
Output: Reducted invariant polynomial f ′k
1: g0← fk
2: g1←ReduceDegree(G, g0, k)
3: g2←SortVariable(g1, k)
4: g3←ReduceTerms(G, g2, k)
5: g4←SumCoefficients(g3, k)
6: f ′k ←ShufflingTerms(g4, k)
7: return f ′k

The following notation is used to describe the subalgo-
rithms within the hiding phase.

• |f |: the number of terms in f
• f [α]: αth term of f
• |f [α]|: the number of variables in the αth term of f
• f [α][β]: vertex for the βth variable of the αth term in f
• yα,β : the βth variable of the αth term of f , i.e., xf [α][β]
• cα: the coefficient of the αth term in f .

Detailed algorithms for the SortVariable and Shuf-
flingTerms functions are not included. The full program code
is available at
https://github.com/KMURASEofficial/ipcc/tree/master/ipcc7.

Algorithm 13 (RD) Reducing Polynomial Degree
Input: Graph G = (V ,E), invariant polynomial fk ,
maximum degree k
Output: Reduced invariant polynomial f ′k
1: f ′k ← 0
2: for α = 1 to |fk |
3: T ← {yα,1}

4: term← cαyα,1
5: for β = 2 to k − 1
6: for γ = β + 1 to k
7: if yα,β ̸= yα,γ

8: check← 0
9: if yα,β ∈ T

10: check← 1
11: if check = 0
12: T ← T ∪ {yα,β}

13: term← term · yα,β

14: if |T | = k
15: break
16: check← 0
17: if yα,γ ∈ T
18: check← 1
19: if check = 0
20: T ← T ∪ {yα,γ }

21: term← term · yα,γ

22: if |T | = k

VOLUME 12, 2024 4593

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

23: break
24: f ′k ← f ′k + term
25: return f ′k

Algorithm 14 (RT) Reducing Terms in Polynomial
Input: Graph G = (V ,E), invariant polynomial fk ,
maximum degree k
Output: Reduced invariant polynomial fk
1: for α = 1 to |fk |
2: for β = 1 to k − 1
3: for γ = β to k
4: for i = 1 to 4
5: ui ∈ N [fk [α][β]]
6: for j = 1 to 4
7: wj ∈ N [fk [α][γ]]
8: if N [ui] ∩ N [wj] ̸= ø
9: fk [α]← 0

10: break
11: return fk

Algorithm 15 (SC) Sum up the Coefficients of Terms
Having Same Monomial
Input: Invariant polynomial fk , maximum degree k
Output: Reducted invariant polynomial f ′k
1: f ′k ← fk [1]
2: for α = 2 to |fk |
3: for β = 1 to |f ′k |
4: dup← 0
5: for γ = 1 to k
6: if fk [α][γ] = f ′k [β][γ]
7: dup← dup+ 1
8: if dup = k
9: c′β ← c′β + cα

10: goto line 2
11: f ′k ← f ′k + fk [α]
12: return f ′k

C. DECRYPTION
The decryption algorithm compares the variables of the terms
in a ciphertext polynomial with those corresponding to the
vertices stored in the PDS. Let U denote a set of vertex
variables that form a monomial for any term in ciphertext.
If |U ∩ sk| = |U |, then the coefficients of that term
are meaningful; otherwise, they are considered meaningless.
In the algorithm below, tmp is a temporary variable that stores
information on whether monomial variables are meaningful
vertex variables.

In line 6, u denotes the jth vertex variable of the ith term.
In line 7, (if u ∈ PDS ? 1 : 0) is a ternary operator that returns
‘‘1’’ if u is an element of the PDS and ‘‘0’’ otherwise. In the
iteration in line 5, tmp = 1 if all vertex variables in the term
are in PDS, and tmp = 0 if none of them are, thus allowing us

to decide whether to add ci to pt in line 8. |ct| is the number
of terms in the ciphertext ct .

Algorithm 16 (Dec) Decryption Implementation
Input: Private key sk(PDS), ciphertext ct
Output: message m
1: pt = 0
2: for i = 1 to |ct|
3: if ci ̸= 0
4: tmp = 1
5: for j = 1 to k
6: tmp← tmp× (if u ∈ PDS ? 1 : 0)
7: pt ← pt + ci × tmp
8: m← pt
9: return m

APPENDIX E
EXAMPLE OF CIPHERTEXT
The example ciphertext ct presented below is a degree
7 invariant polynomial resulting from the encryption of
message pt = 4410 where pt ∈ Z232 , over a 3-regular graph
of 256 vertices with ne = 3. The total number of terms
in ct is 22,641, and the size of the ciphertext polynomial
is 249,051 bytes. In this study, we present 50 randomly
chosen terms that constitute 0.2% of the total number of
terms in the ciphertext. The full transcript is available at
https://github.com/KMURASEofficial/ipcc/tree/master/ipcc7.

ct = 485730577 xv53xv119xv134xv169xv218xv229
+ 1185214412 xv16xv31xv38xv63xv93xv193xv220
+ 1187133452 xv53xv56xv120xv134xv169xv250xv255
+ 252775020 xv53xv73xv164xv166xv206xv235xv250
+ 1280749315 xv7xv60xv83xv105xv191xv217
+ 1393233314 xv18xv53xv58xv85xv131xv206xv211
+ 832293056 xv51xv60xv63xv196xv213xv247
+ 484242184 xv63xv93xv108xv183xv206
+ 93293340 xv31xv63xv65xv130xv146xv228xv229
+ 1926696176 xv1xv38xv53xv68xv134xv141
+ 1442193836 xv31xv63xv67xv124xv125xv166
+ 2017528070 xv6xv24xv31xv124xv212xv225xv227
+ 1582964880 xv31xv53xv193xv229xv236xv255
+ 403276964 xv31xv47xv120xv122xv124xv152xv191
+ 1866835366 xv53xv139xv140xv183xv206xv239xv250
+ 79727103 xv3xv17xv38xv120xv134xv191xv193
+ 1569908464 xv53xv60xv73xv78xv229xv255
+ 733183104 xv5xv38xv48xv105xv134xv191xv236
+ 1335896384 xv5xv38xv48xv105xv134xv190xv191
+ 1531249596 xv31xv51xv63xv169xv181xv193xv247
+ 1597157840 xv25xv60xv63xv122xv146xv202
+ 272552863 xv78xv134xv143xv157xv171xv191
+ 1034371758 xv63xv125xv134xv159xv166xv169

4594 VOLUME 12, 2024

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

+ 891399469 xv7xv83xv85xv131xv191xv206xv231
+ 1943924752 xv38xv82xv134xv143xv171xv191xv209
+ 1804266088 xv18xv19xv31xv53xv55xv124
+ 1485573648 xv7xv83xv166xv191xv206xv217xv244
+ 777739680 xv25xv53xv60xv68xv154
+ 987761874 xv53xv68xv134xv152xv169xv248
+ 665067856 xv53xv60xv68xv76xv211
+ 2069066654 xv16xv31xv63xv166xv193
+ 328203030 xv63xv75xv134xv139xv166xv169
+ 1804266088 xv18xv31xv53xv55xv124xv157
+ 94944640 xv25xv26xv33xv63xv93xv183xv206
+ 1280749315 xv5xv7xv60xv83xv191xv210
+ 356289050 xv4xv60xv120xv191xv194xv210
+ 615627056 xv20xv63xv75xv166xv206xv244
+ 840805087 xv18xv53xv58xv69xv126xv131xv206
+ 1422995562 xv14xv31xv53xv68
+ 83463576 xv16xv31xv53xv54xv193xv225xv229
+ 1301019424 xv15xv25xv60xv171xv191
+ 1026991232 xv25xv31xv33xv63xv93xv164xv228
+ 1399391380 xv53xv68xv134xv154xv169xv255
+ 544586942 xv60xv63xv122xv146xv174
+ 737529456 xv38xv60xv63xv92xv93xv227
+ 308534452 xv53xv134xv169xv200xv218xv229
+ 1928067505 xv63xv144xv146xv183xv206xv226xv250
+ 415282332 xv6xv31xv49xv114xv212xv228xv237
+ 84079493 xv31xv53xv164xv193xv226xv227xv250
+ 262643568 xv9xv24xv31xv53xv124xv225xv229
+ · · ·

REFERENCES
[1] P. W. Shor, ‘‘Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer,’’ SIAM Rev., vol. 41, no. 2,
pp. 303–332, Jan. 1999, doi: 10.1137/S0036144598347011.

[2] IBM. The IBMQuantum Development Roadmap. Accessed: Jun. 19, 2023.
[Online]. Available: https://www.ibm.com/quantum/roadmap

[3] R. Kuang and M. Perepechaenko, ‘‘Quantum encryption with quantum
permutation pad in IBMQ systems,’’ EPJ Quantum Technol., vol. 9, no. 1,
p. 26, Dec. 2022, doi: 10.1140/epjqt/s40507-022-00145-y.

[4] J. Buchmann and J. Ding, ‘‘Post-quantum cryptography,’’ in Proc. 2nd Int.
Workshop PQCrypto, vol. 5299, Cincinnati, OH, USA. Berlin, Germany:
Springer, Oct. 2008, pp. 1–14.

[5] NIST. Submission Requirements and Evaluation Criteria for the Post-
Quantum Cryptography Standardization Process. Accessed: Apr. 12,
2023. [Online]. Available: https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-
2016.pdf

[6] NIST. Post-Quantum Cryptography Standardization. Accessed: May 14,
2023. [Online]. Available: https://csrc.nist.gov/Projects/post-quantum-
cryptography/post-quantum-cryptography-standardization

[7] J. Buchmann, E. Dahmen, and M. Szydlo, ‘‘Hash-based digital signature
schemes,’’ in Post-Quantum Cryptography. Berlin, Germany: Springer,
2009, pp. 25–93.

[8] ‘‘Status report on the third round of the NIST post-quantum cryptography
standardization process,’’ NIST Interagency, Gaithersburg, MD, USA,
Tech. Rep. 8413, Jul. 2022.

[9] C. Wouter and D. Thomas, ‘‘An efficient key recovery attack on SIDH,’’ in
Advances in Cryptology—EUROCRYPT 2023 (Lecture Notes in Computer
Science), vol. 14008, H. Carmit and S. Martijn, Eds. Cham, Switzerland:
Springer, 2023, pp. 423–447.

[10] M. H. Freedman, ‘‘P/NP, and the quantum field computer,’’ Proc.
Nat. Acad. Sci. USA, vol. 95, no. 1, pp. 98–101, Jan. 1998, doi:
10.1073/pnas.95.1.98.

[11] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of Np-Completeness. San Francisco, CA, USA: Freeman, 1979.

[12] F. Rosamond, ‘‘Computational thinking enrichment: Public-key cryptog-
raphy,’’ Informat. Educ., vol. 17, no. 1, pp. 93–103, Apr. 2018.

[13] J. Kratochvl, ‘‘Perfect codes in general graphs,’’ in Combinatorics
(ColloquiaMathematica Societatis Janos Bolyai), vol. 52. Amsterdam, NY,
USA: North-Holland, 1988, pp. 357–364.

[14] F. Arat and S. Akleylek, ‘‘Attack path detection for IIoT enabled cyber
physical systems: Revisited,’’ Comput. Secur., vol. 128, May 2023,
Art. no. 103174, doi: 10.1016/j.cose.2023.103174.

[15] M. Fellows and N. Koblitz, ‘‘Combinatorially based cryptography for
children (and adults),’’Congr. Numerantium, vol. 99, pp. 9–41, Aug. 1994.

[16] M. Fellows and N. Koblitz, ‘‘Kid krypto,’’ in Proc. Annu. Int. Cryptol.
Conf. Berlin, Germany: Springer, 1992, pp. 371–389.

[17] J. A. Bondy and U. S. R. Murty,Graph Theory With Applications. London,
U.K.: Macmillan, 1976.

[18] T. W. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of Domination
in Graphs. Boca Raton, FL, USA: CRC Press, 1998.

[19] S. Yoon, ‘‘(1,-1,0)-perfect minus dominating function and its application to
the public-key cryptosystem,’’ M.S. thesis, Dept. Math. Educ., Seoul Nat.
Univ., Seoul, South Korea, 2001.

[20] J. Kratochvl, ‘‘Regular codes in regular graphs are difficult,’’ Discrete
Math., vol. 133, nos. 1–3, pp. 191–205, Oct. 1994, doi: 10.1016/0012-
365X(94)90026-4.

[21] S. Kwon, J.-S. Kang, and Y. Yeom, ‘‘Analysis of public-key cryptography
using a 3-regular graph with a perfect dominating set,’’ in Proc. IEEE
Region Symp. (TENSYMP), Jeju, South Korea, Aug. 2021, pp. 1–6, doi:
10.1109/TENSYMP52854.2021.9550868.

[22] D. W. Bange, A. E. Barkauskas, L. H. Host, and P. J. Slater, ‘‘Generalized
domination and efficient domination in graphs,’’ Discrete Math., vol. 159,
nos. 1–3, pp. 1–11, Nov. 1996, doi: 10.1016/0012-365X(95)00094-D.

[23] J. Dunbar, W. Goddard, S. Hedetniemi, A. McRae, and M. A. Henning,
‘‘The algorithmic complexity of minus domination in graphs,’’ Discrete
Appl. Math., vol. 68, nos. 1–2, pp. 73–84, Jun. 1996, doi: 10.1016/0166-
218X(95)00056-W.

[24] X. Bultel, J. Dreier, P. Lafourcade, and M. More, ‘‘How to explain
modern security concepts to your children,’’ Cryptologia, vol. 41, no. 5,
pp. 422–447, Sep. 2017, doi: 10.1080/01611194.2016.1238422.

[25] L. Wang and W. Wang, ‘‘An approximation algorithm for a variant of
dominating set problem,’’ Axioms, vol. 12, no. 6, p. 506, May 2023, doi:
10.3390/axioms12060506.

[26] A. Razaq, G. Alhamzi, S. Abbas, M. Ahmad, and A. Razzaque, ‘‘Secure
communication through reliable S-box design: A proposed approach using
coset graphs and matrix operations,’’ Heliyon, vol. 9, no. 5, May 2023,
Art. no. e15902, doi: 10.1016/j.heliyon.2023.e15902.

[27] A. Razzaque, A. Razaq, S. M. Farooq, I. Masmali, and M. I. Faraz,
‘‘An efficient S-box design scheme for image encryption based on the
combination of a coset graph and a matrix transformer,’’ Electron. Res.
Arch., vol. 31, no. 5, pp. 2708–2732, Jan. 2023.

[28] J. Ryu et al., ‘‘KpqC competition round 1,’’ IPCC, KpqC Com-
petition, Tech. Rep., 2023. [Online]. Available: https://www.kpqc.or.
kr/competition.html

[29] S. Kwon, ‘‘A study on graph-based public-key cryptographic primitives
and transition to post-quantum cryptography,’’ M.S. thesis, Dept. Finance
Inf. Secur. Kookmin Univ., Seoul, South Korea, 2021.

[30] T. Lange, ‘‘Analysis of IPCC,’’ KpqC-Bulletin, KpqC Competition
Round 1, Tech. Rep., 2022. [Online]. Available: https://groups.
google.com/g/kpqc-bulletin/c/vy0BSMg4cI4/m/RkpbP77fBAAJ

[31] S. Chow, P. Eisen, H. Johnson, and P. C. Van Oorschot, ‘‘A white-box DES
implementation for DRM applications,’’ in Proc. ACM Workshop Digit.
Rights Manag. Berlin, Germany: Springer, Nov. 2002, pp. 1–15.

[32] A. Bogdanov and T. Isobe, ‘‘White-box cryptography revisited: Space-hard
ciphers,’’ in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2015, pp. 1058–1069.

VOLUME 12, 2024 4595

http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1140/epjqt/s40507-022-00145-y
http://dx.doi.org/10.1073/pnas.95.1.98
http://dx.doi.org/10.1016/j.cose.2023.103174
http://dx.doi.org/10.1016/0012-365X(94)90026-4
http://dx.doi.org/10.1016/0012-365X(94)90026-4
http://dx.doi.org/10.1109/TENSYMP52854.2021.9550868
http://dx.doi.org/10.1016/0012-365X(95)00094-D
http://dx.doi.org/10.1016/0166-218X(95)00056-W
http://dx.doi.org/10.1016/0166-218X(95)00056-W
http://dx.doi.org/10.1080/01611194.2016.1238422
http://dx.doi.org/10.3390/axioms12060506
http://dx.doi.org/10.1016/j.heliyon.2023.e15902

J. Ryu et al.: IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set

[33] T. Isobe, H. Hiwatari, and K. Shibutani, ‘‘Encryption device,
encryption method, decryption device and decryption method,’’ U.S.
Patent 2019 0 103 957, A1, Apr. 4, 2019, p. 1029.

[34] D. Moody, ‘‘The 2nd round of the NIST PQC standardization process,’’ in
The 2nd PQC Standardization Conf. Santa Barbara, CA, USA: University
of California, Santa Barbara, 2019, pp. 15–16.

[35] M. T. Dickerson, ‘‘The functional decomposition of polynomials,’’
Ph.D. thesis, Dept. Comput. Sci., Cornell Univ., Ithaca, NY, USA, 1989.

[36] J. Ding and D. Schmidt, ‘‘Rainbow, a new multivariable polynomial
signature scheme,’’ in Proc. Int. Conf. Appl. Cryptography Netw. Secur.
Berlin, Germany: Springer, 2005, pp. 164–175.

JIEUN RYU received the B.S. degree in infor-
mation security cryptography mathematics from
Kookmin University, Seoul, Republic of Korea,
in 2022, where she is currently pursuing the
M.S. degree in financial information security.
Her research interests include post-quantum cryp-
tography, white-box cryptography, and security
protocol.

YONGBHIN KIM is currently pursuing the B.S.
degree in information security cryptography math-
ematics with KookminUniversity, Seoul, Republic
of Korea. His research interests include post-
quantum cryptography, white-box cryptography,
and optimization of cryptographic algorithms
and their efficient implementation on various IT
devices.

SEUNGTAI YOON received the B.S. and M.S.
degrees in mathematics education from Seoul
National University, Seoul, Republic of Korea,
in 1999 and 2001, respectively, and the Ph.D.
degree in applied mathematics and statistics from
Stony Brook University, New York, NY, USA,
in 2006. His research interests include cryptogra-
phy, abstract algebra, and statistical genetics.

JU-SUNG KANG received the B.S., M.S., and
Ph.D. degrees in mathematics from Korea Uni-
versity, Seoul, South Korea, in 1989, 1991, and
1996, respectively. From 1997 to 2004, he was a
member of the Technical Staff with the Electronics
and Telecommunication Research Institute. He has
been a Professor with Kookmin University, since
2004. His research interests include cryptanalysis,
protocol, and random number generator.

YONGJIN YEOM received the B.S., M.S., and
Ph.D. degrees in mathematics from Seoul National
University, Seoul, Republic of Korea, in 1991,
1994, and 1999, respectively. From 2000 to 2011,
he was a member of the Engineering Staff and a
Principal Researcher with the National Security
Research Institute. He has been a Professor with
Kookmin University, since 2012. His research
interests include cryptanalysis, random number
generator, and security system evaluation.

4596 VOLUME 12, 2024

