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ABSTRACT Visual place recognition is one of the core modern computer vision tasks concerned with
identifying location based on the image taken there. Modern state-of-the-art approaches heavily rely on
RGB images which are largely affected by changes in the same scene such as varying daytime, illumination,
seasonal changes, and presence of dynamic objects (people, vehicles). This results into a large difference
between the images in the training dataset and the ones taken by a person in real life at the same place as a
part of some application, rendering modern approaches less effective. To deal with this problem, we propose
a novel approach that uses only geometrical information (shapes of buildings, terrains, trees, and their
relevant positions) obtained from depth and semantic maps inpainted to remove dynamic objects. In this
paper, we study two versions of the pipeline: the first one uses direct inpainting, and the second utilizes
synthetic data to improve the inpainting process. Our most efficient model achieved 60.6% correct answers
with synthetic refinement. With direct inpainting, it kept metrics high at 51.1%. With these compelling
results, our approach offers a novel and effective alternative to known algorithms, making it an exciting
avenue for future research in visual place recognition.

INDEX TERMS Visual place recognition, image retrieval, inpainting, semantic segmentation, monocular
depth estimation, NetVLAD, CosPlace.

I. INTRODUCTION
One of the problems that recently gained popularity in
computer vision is the visual place recognition [1], [2], [3],
[4], [5]. This task aims to find a location where an image
was taken based only on the image itself. It is typically done
with the image retrieval approach [6], [7], [8], [9], [10].
More precisely, a large index database of images with known
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locations (for example, coordinates for every picture) should
be collected preliminary. Then, a model is trained to create
embeddings for images that preserve features important for
location identification. During inference, a query image is
fed into a model. An embedding of this query image is
being compared with embeddings of images in an index
database according to the chosen similarity metric (typically,
Euclidean distance or cosine similarity). The closest image
from a database is picked and considered from a similar
location to the query. Consequently, a known location of a
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FIGURE 1. The overall pipeline schema with a proposed application. Firstly, a user takes a picture in a location they are interested in. Then, we extract
refined depth and segmentation maps with neural networks. We call them refined as they are unaffected by dynamic objects (notice the lack of vehicles
on depth and semantic maps). Then, an image retrieval model finds an image in the index database that is the most similar to the query. After, its location
is being extracted. Finally, the location and additional information about it from the Internet are being sent back to the user.

picked image is output as an estimate of the location of a
query image.

However, visual place recognition remains a challenging
task due to several reasons. Firstly, even relatively small
differences in distance or angle between two images can
cause significant variations in a view. For example, if a
camera operator stands in the same spot but turns camera
30◦, a completely different set of buildings, roads, and green
spaces might be presented. The same thing might happen if a
cameraperson moves 10 meters from a current spot. A model
should be able to handle all of these sensitive changes instead
of dropping in performance because a camera is slightly
carried away. That creates a need to collect many images
taken very close to each other at various angles per location.
Secondly, image illumination changes can significantly
affect the quality of visual place recognition, mainly if the
illumination in queries differs from a corresponding image
in a database. For instance, recognition during nighttime
might be challenging if a model is mainly trained on daytime
images, especially if there are many colored illumination
sources like neon lights, light poles (which in many countries
use sodium lamps leading to yellow illumination), or digital
billboards. Finally, images in RGB (Red-Green-Blue) format
have a lot of fine details that may change reasonably often in
the real world, such as billboards, road signs, advertisements,
etc. Initially, hidden periodic processes were used to deal
with the spatiotemporal dynamics of the environment, e.g.,
spectral analysis [11], [12]. Nowadays, such changes might

be learned as they are effective location clues. For example,
a model can use a pizzeria logo in an image to recognize
a place because a small percentage of locations in an index
database have pizzerias with similar logos in their images.
If a restaurant shuts down, the model’s performance will drop
for this image because it still focuses on the now-defunct
logo in a picture in a database. Additionally, natural details
that are noticeable in RGB images, such as snow, change
from time to time. Moreover, the number of people and
vehicles differs depending on the daytime and seasons. At the
same time, people and vehicles themselves in images vary
all the time. Consequently, the ‘‘frozen’’ dataset results may
not generalize well for real-world applications in dynamic
environments.

One possible way to overcome the challenges of dynamic
environments (scene and illumination changes) is to build
a large dataset containing images of the same places but
collected at different times of the day in various weather
conditions [13]. Such a task is challenging, expensive, and
poorly scaled. For example, authors of the mentioned Oxford
RobotCar Dataset spent over a year collecting 20 million
images for the 10 km long route [13]. On top of that, even
if such a dataset is available for a large area (e.g., a whole
city), it will take enormous time and computing power to train
a model on it. However, the problem with data collection is
vastly amplified in real-life applications. It happens because
a database must always be fresh and up to date to mitigate
the impact of some long-term non-cyclic changes, which
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implies even more constant data collection. Therefore, the
main drawback of this approach is that collecting large
datasets is very time-consuming and expensive, even for a
relatively small area, because not only does a dataset have to
contain a vast amount of images, but it also needs to cover a
whole town uniformlywith reasonably low distances between
scenes.

Consequently, a lot of information in RGB images is
affected by changes in the same scene, such as varying
daytime, illumination, seasonal changes, and the presence
of dynamic objects (people, vehicles). And it is almost
impossible to accommodate all of these changes by simply
adding more data. Every location will have to be repeated
a colossal number of times under different circumstances.
In addition, a massive number of locations is needed to make
sure there is an entry in the index database close to a potential
query. This results into a big difference between the images
in the used dataset and queries taken by a person in real life
at the same place.

It seems that the issue of dealing with such dynamic
changes during geolocation is not well reported. Most of
the current works accept the paradigm with RGB images
and popular benchmarks. Our paper tries to fill this research
gap. In particular, we propose the novel pipeline that relies
mainly on geometrical information and less on particular
details (Fig. 1). Indeed, some problems mentioned above can
be overcome using depth sensors [14] or depth estimation
in supervised [15], [16] and self-supervised learning set-
tings [17] instead of RGB images. Adding segmentationmaps
to depth information allows us to capture the main features
of objects, such as shape and relative position. Furthermore,
they are more resilient to visual changes that do not affect the
shapes of buildings or roads. Additionally, depth sensors are
more robust to illumination or time of day changes as they do
not capture visual information.

Our approach performs localization based on depth and
segmentation maps coupled with a refining strategy, the goal
of which is to reduce the amount of dynamic objects in the
scene. Firstly, a user takes a query picture. Then, we apply
the model which extracts refined depth and segmentation
maps. Refining means it will use inpainting to remove the
effects of dynamic objects on depth and semantic maps. In the
final part, a model will use already prepared refined depth
and segmentation maps of images from an index database
to find the closest to the presented query. Finally, when the
model succeeds, it can return the known location of the
closest database item to a user with optional information
about it. Therefore, the main contributions of this paper are as
follows:

• We propose a novel approach to GIS image retrieval that
relies solely on geometrical information obtained from
depth and semantic maps.

• We provide a novel pipeline based on inpainting
techniques to minimize the impact of dynamic objects.

• Wehighlight the usefulness for synthetic data to improve
the inpainting pipeline quality. In particular, it could

allow reducing the amount of real images needed for
training and an index database.

To sum up, we propose a novel image retrieval pipeline
that can be used for geopositioning and navigating in
the absence of the Global Positioning System (GPS). The
novelty of our approaches lies in visual recognition systems
based on depth estimation and semantic segmentation.
The importance of such a system in practical applications
lies in the novel opportunities for augmented reality, and
Self-driving GIS (Geographic Information System) services
robust to the absence of precise local geopositioning from
GPS.

II. RELATED WORKS
A. SEMANTIC SEGMENTATION
The problem of semantic segmentation is one of the classic
problems in computer vision [18], [19], [20], [21]. It chal-
lenges the algorithm to assign one of the predefined classes
to every pixel on the image. This problem was successfully
addressed with the development of convolutional neural
network architectures.

One of the earliest and most important convolutional
architectures, U-Net [22], was developed for biomedical
images and received its name from a symmetrical U-
shaped encoder-decoder structure. Another essential feature
of this model was the usage of residual connections and
transposed convolution operators. It is still used for various
applications in some state-of-the-art models as a building
block or an inspiration of the pipeline like [23], [24], [25],
and [26].

Other crucial convolutional architectures are the ResNet
family of architectures [27] and the VGG16 deep neural
networks [28]. However, the research landscape noticeably
changed after the release of the Visual Transformer (ViT) [18]
architecture. After that, many strong transformermodels were
created [19], [20], [21].

We utilize one of these architectures, SegFormer-B5 [19],
to extract semantic information from images. It has an
encoder-decoder structure with a hierarchical transformer in
the encoder and the multilayer perceptron (MLP) decoder.
It is one of the most popular models for semantic segmen-
tation. We chose it due to its high efficiency on various
benchmark datasets and the availability of high-quality code
and checkpoints (trained on large datasets with many outdoor
images). The B5 version was chosen as it has the strongest
metrics from the SegFormer family on benchmarks. We use
a pre-trained model considering the complexity of collecting
a dense ground truth for the dataset.

B. DEPTH ESTIMATION
Monocular depth estimation is another widespread computer
vision problem [23], [29], [30], [31], [32], [33]. It is
concerned with assigning a number to each pixel, which
will indicate how far the object in this particular pixel is
away from the camera. It became a vast field of research
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due to its usefulness in robotics, self-driving vehicles, 3D
reconstruction, and augmented reality [30].

Initially, the state-of-the-art models were also fully con-
volutional [29]. Due to the complexity of collecting dense
depth maps to train supervised models, the unsupervised and
self-supervised models became the center of attention [23],
[31], [34].

Considering the recent success of transformer-based
architectures, we used the pre-trained state-of-the-art Dense
Prediction Transformer (DPT) model [32] for depth map
extraction. This model creates multiple embeddings for
various parts of an input image. They are coupled with
their positional embeddings and processed by a sequence
of transformer blocks, which treat them similarly to tokens
in natural language processing. Their outputs are being
reassembled and fused to produce a final depth map.
Similarly to SegFormer, it is a modern, strong architecture
that achieved great success on many benchmarks.

C. INPAINTING
Another core part of our pipeline is the inpainting module.
Overall, the inpainting task focuses on substituting a part of
an image while keeping it natural. The task we are interested
in for this paper is object removal. With it, we typically pass
an image and a binary mask to the model. The model then
has to switch masked pixels for parts that will look natural in
this image. For example, if a car stands in front of the building
and we mask this car, a model should be able to paint covered
parts of the building instead of a car.

Considering the complexity of formally describing the
natural plausibility of the inpainted images, the field is
dominated by generative adversarial networks (GANs) [35],
[36], [37], [38], [39].

We use the modern State-of-the-Art large mask inpaint-
ing (LaMa) model [39] for object removal. LaMa has a
ResNet-like structure utilizing downscale and upscale blocks.
However, its biggest feature is the usage of fast Fourier
convolution-based residual blocks in the middle. This model
shows state-of-the-art results across a range of inpainting
benchmarks, making it our choice.

D. IMAGE RETRIEVAL AND VISUAL PLACE RECOGNITION
The final block that we use is based on the image retrieval
problem. In the classic image retrieval task, a model is being
trained to generate image embeddings in a space where the
closeness of embeddings indicates original images having
similarity in target features. Typically, a model has a large
index database of images. When a new query image arrives,
a model builds an image embedding and compares it to
embeddings of database pictures. The closest ones are being
retrieved from the database. In our case, we want to use an
image retrieval block to generate embeddings from refined
segmentation and depth maps, which will be close in a
latent space if the original images were taken close to each
other.

This is a less explored field. However, it still has various
strong contenders based on modern architectures [6], [7], [8],
[9], [40], [41], [42], [43], [44], [45], [46], [47], [48]. A lot of
these works, however, focus on visual place recognition from
raw RGB images and are mainly concerned with improving
scores on existing ‘‘frozen’’ benchmarks or improving the
training speed of the model [49], [50], [51], [52].

To a certain extent, advancements in navigation and
visual place recognition have been achieved in simulated
game environments [53], [54], which circumvent the issues
associated with datasets. However, these environments differ
substantially from real-life scenarios. These results inspired
our idea of using synthetic data in one of the refining
strategies proposed further in Section III-A.

Like the mentioned papers, we also utilize image retrieval
as part of our solution. For the retrieval part, we chose
to use the NetVLAD [6] and the CosPlace [9] models.
NetVLAD was chosen as it is a time-tested and strong
architecture. It relies on the NetVLAD layer inspired by
the Vector of Locally Aggregated Descriptors (VLAD)
image representation. We also used CosPlace because it
is a modern and efficient image retrieval architecture that
avoids the classic costly contrastive learning approach by
casting training as a classification and achieves state-of-the-
art results on various datasets.

III. OUR PIPELINE
The pipeline of the augmented reality application which
might be completed with our solution is presented in Fig.1.
Firstly, a user makes an image (query) with their mobile
device [55]. Then, this image is processed by a neural
network that extracts refined depth and segmentation maps
(depth and segmentation maps without any dynamic objects:
people and vehicles). An application has access to an index
database of images with known GPS coordinates. They
were preprocessed with the same neural network beforehand
to reduce computational time during inference. Another
neural network takes refined depth and semantic maps from
the query image and retrieves an element of an index
database which is supposed to be in the closest location to
a query. After that, we output a location of the predicted
index database element. We also extract some additional
information about the GPS location (for example, interesting
facts about landmarks) and provide it to the user with their
location.

In this section, we present the details of the modules that
extract refined depth and segmentation maps and retrieve the
closest image. To achieve this goal, we developed two novel
pipelines shown in Fig. 2. Their difference is in the extraction
of the refined depth and semantic features. In the first pipeline
(strategy 1, inpainting-based refining), we preprocess an
image with the Big-LaMa model [39] to inpaint all the
dynamic classes, such as vehicles or people. After that,
we extract the final depth and segmentation maps with pre-
trained DPT [32] and SegFormer [19] networks. In the second
pipeline (strategy 2, synthetic refining), we utilize available
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FIGURE 2. The general pipeline. It can use two refining strategies based on the availability of the synthetic ground truth. The inpainting-based refinement
is used when there is no ground truth available. In this module, the SegFormer generates masks for dynamic classes. Then, the Big-LaMa uses these
masks and the original RGB to inpaint a query. This is followed by the semantic and depth maps extraction by the SegFormer and the DPT, respectively.
The second refining strategy uses synthetic ground truth to remove dynamic objects. Here, we train two separate U-Net-inspired models. Each has the
architecture presented in the Fig. 3. Firstly, we extract the initial segmentation and depth maps with the SegFormer and the DPT. This is followed by
refining them with a respective refinement model. After achieving the refined maps, they are processed by the CosPlace, which generates embedding for
the query. The final step is to choose a similar embedding from the index database. On outputs from each model, you can find their sizes. Note that
Refined segmentation map has two shapes depending on the refining used: top size (512, 512) is obtained from the inpainting-based refining; bottom
size (512, 512, 4) refers to the synthetic refining. This difference happens because the pre-trained SegFormer outputs 150 classes, which are being put
into a single image with the class label in each pixel due to many output classes. Segmentation refining model outputs only four classes: sky, buildings,
terrains, and trees. Therefore, here, for each class, a map of probabilities is being used, resulting in a third dimension of size 4.

static synthetic ground truth to refine depth and segmentation
maps obtained without direct inpainting. The synthetic
refining strategy uses supervised learning to inpaint depth
and semantic maps and, therefore, works more efficiently and
is preferable. However, it can only be used when synthetic
depth and segmentationmaps are available for all the required
locations. As this might be rare, we also proposed the direct
inpainting-based refining strategy.

A. REFINING FEATURES VIA SYNTHETIC DATA
Image inpainting and object removal are very challenging
tasks, especially when a big part of the picture requires
inpainting. This is precisely the setup that relatively often
appears in images for visual place recognition due to
a large number of people or vehicles (including huge
vehicles) in many public areas. To make a model less noisy,
we would like to utilize a supervised learning approach
instead of direct adversarial learning, which might lead to
noise and hallucinations of generative inpainting models.
However, the ground truth for such images is typically not
available.

Inspired by the success of visual place recognition in some
simulated scenarios, we decided to use synthetic data as
the ground truth. When a 3D map of an area of interest is

available, it is relatively easy to scrape semantic and depth
maps from any point on it. Therefore, by knowing in which
direction the camera was looking and where the photo was
taken, it is possible to obtain synthetic ground truth maps
from the 3D map of an area of interest. Such 3D render
will have only static classes such as buildings or roads. This
will allow the training of a model in a supervised manner,
taking depth and semantic maps from the original image and
using them to obtain static, refined ones. Such an approach
will lead to the efficient supervised inpainting of dynamic
objects.

That is precisely what we do in the synthetic refining
strategy (see Fig.2 (refining strategy 2)). Note, we apply our
refining model to initial depth and semantic features and not
to the original RGB image as it should be easier to inpaint
them than the whole image with all fine details and colors.

For this approach, we used the HoliCity dataset [56] as
it has synthetic depth and semantic maps scraped from the
3D map of London for every RGB. These maps are not
identical to the actual data in terms of geometry. However,
they only feature a few classes we want to obtain during
preprocessing and are free of dynamic types. The classes
that are present in the original semantic segmentation maps
are the following: sky, buildings, roads, terrains, and trees.
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FIGURE 3. The refining model architecture. This is a U-Net-inspired
model. It has similar blocks. However, instead of one encoder, we have
two: one for depth and another for segmentation maps. Each of these
encoders has dimensions twice smaller than the dimensions of the
symmetric decoder layer. That is done to preserve the residual
connections by concatenating the outputs of both encoders before
passing them to the common decoder. The refined output is either refined
depth or refined segmentation. We train one model for each of them to
use in the synthetic refining strategy presented in Fig.2. On the network
layers, one can see the sizes of outputs from this layer. The out_dim
equals 1 for the depth map (grayscale) and 4 for the semantic map
(4 segmentation classes).

Due to the inconsistency of road and terrain markup and the
general similarity of the two categories, we merge these two
classes to improve the robustness of the model.We utilize this
synthetic data to build two refinement models: one should
generate refined depth maps, while the other will provide
refined semantic maps.

Firstly, we extract the initial depth and segmentation maps
from the original RGB (x) by using pre-trained DPTD(.) [32]
and SegFormer-B5 S(.) [19] (pre-trained on the ADE20K
dataset [57], [58]) respectively:

d = D(x) (1)

s = S(x) (2)

Then, we apply refining models which are supposed to
remove any dynamic objects from depth and semantic maps.
However, segmentation maps alone could often be noisy
while depth maps alone do not carry valuable information
about distinction between different objects and can mix
multiple different classes together if their instances happen
to be similar distance from the camera and next to each other.
This becomes especially problematic during refinement if
they are refined completely separately. For example, any
noise on a border of a building and a terrain in a segmentation
map can propagate and get worse during removal of a vehicle
object which stands on this terrain in front of this building.
However, depth information can help to clarify a proper
border between a building and a terrain because a wall of a
building at any point typically has a similar distance to the
camera. Adding depth information not only helps to improve
refinement, but also to smooth any noisy edges from the
initial segmentation procedure. On the other hand, with depth
maps alone a model can have issues finding a difference

between a dynamic and a static object if they are close to each
other and similar distance away from the camera. A failure
like this will obviously damagemodel’s capability to properly
remove dynamic objects.

Therefore, we utilize the refinement architecture which
relies on both depth and semantic initial features to recon-
struct static maps. One can see its structure in Fig. 3. It is
the U-Net-inspired architecture. However, instead of a single
encoder, we use two encoders of the same structure, which
output twice less channels than a symmetric single decoder.
The first encoder processes only the segmentation map, while
the second is used only for the depth map.

We create embeddings for semantic and depth features
separately because we want to encourage a model to properly
extract and use information from both of them. Each of
these encoders can focus on its specific modality minimizing
chances of falling into a local optimum where a model
fails to extract any useful information from one of the
modalities.

When such well-formed separate embeddings are already
created, they are mixed in the decoder to ensure that it
learns to utilize all of the knowledge for future refine-
ment. It is important to mix them as both depth and
segmentation carry unique geometric information about a
scene.

The first block of each encoder consist of the double
convolution layer made of two convolutional layers with a
kernel size of 3. Each of them is followed by the batch
normalization and the ReLU activation function. The first
convolution of the first layer maps the amount of channels
to 32, while the second preserves this amount. Consecutive
encoder blocks consist of poolings with MaxPool followed
by the same double convolution layer. Like in the Unet, each
consecutive encoder block decreases image size twice during
MaxPool and increases the number of channels two times
during the first convolution in the double convolution layer.
After being processed by respective encoders, we receive
embeddings of size (32, 32, 512) of a segmentationmap (from
the segmentation encoder) and of a depthmap (from the depth
encoder).

Then, we mix these features by concatenating them in
channel dimension into a single embedding of size (32,
32, 1024). This combined embedding with both depth and
semantic information is then processed by the decoder. This
is represented by the first decoder block. Each consecutive
block of the decoder, apart from the final one, has the same
structure. Firstly, it applies the transposed 2D convolution
to the input, reducing twice the number of channels and
upsampling an image two times. Then, it takes outputs
from the symmetric encoder blocks and concatenates them
together similarly to the final encoder outputs. This residual
embedding is then being concatenated in channel dimension
with the upsampled decoder data, forming a new embedding.
Finally, this new embedding is being passed into the double
convolution layer, which reduces the number of channels
twice once again.
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For example, the third decoder block in Fig. 3 takes as the
main input a tensor of shape (64, 64, 512) from the second
decoder block and two residual tensors of shape (128, 128,
128)which are the outputs of the third blocks of two encoders.
Both residual inputs are being concatenated into the tensor of
shape (128, 128, 256). At the same time, the main input is
being upsampled with transposed convolution from size (64,
64, 512) into the (128, 128, 256). Now, both the concatenated
residual tensor and the main tensor have the same shape.
Together they are being concatenated into a single embedding
of size (128, 128, 512). This embedding is being passed into
the double convolution resulting in a shape (128, 128, 256),
which becomes the output of this block. The final decoder
layer only applies a single convolution with kernel size 1 and
maps 64 received channels into the required output amount.

Such architecture has separate encoders, but the same
decoder which helps the neural network to learn features from
both initial depth and segmentation maps properly without
one of them dominating the other in the encoder. However,
both embeddings are further mixed in the decoder to ensure
that it is able to utilize all of the available unique geometric
information.

We use two of such models: one to output depth and
another to output segmentation maps. Notice that both
of these networks take non-refined depth and semantic
maps as an input, but are being trained separately: first to
output a refined depth map and second to output refined
segmentation. The network that outputs depth has an output
channel dimension of one by the nature of depth maps. The
segmentation network has 4 output channels representing
4 semantic classes (sky, building, terrain, and trees).

Fd refinement network outputs a refined depth map (3),
whileFs results in a segmentationmap (4). The overall results
are obtained in the following way:

dr = Fd (d, s), (3)

sr = Fs(d, s), (4)

where dr and sr are refined depth and semantic maps.
Themodels are being trained independently in a supervised

fashion with synthetic ground truth. We used the masked
L1 loss (masking and ignoring the depth values that are
too large in the ground truth depth maps due to the
common issue of noisiness of depth estimation at large
distances) for depth estimation and the Cross-Entropy loss
for semantic segmentation. In both cases, we utilize the Adam
optimizer with a starting learning rate of 10−3 coupled with
a scheduler, which reduces the learning rate ten times if
there are no improvements on the validation dataset for three
epochs. Additionally, we use the early stopping to avoid any
overfitting.

B. REFINING VIA INPANTING
High-quality synthetic ground truth, especially for a large
area, is often unavailable for supervised training. Therefore,
this section introduces its alternative, used in the pipeline

at Fig.2 (refining strategy 1). The goal of the refinement
described in Section III-A is to remove the dynamic objects
(people and vehicles) from the depth and segmentation maps.
However, where no ground truth is available, we propose a
framework that utilizes the RGB inpainting model instead.

Inpainting consists of substituting parts of the image with
different content while keeping the image look natural. Object
removal is one of the most popular forms of inpainting, where
the neural network replaces an object with its background.
If we can remove dynamic objects from the original RGB
image and pass them to the DPT and the SegFormer,
we should also obtain depth and segmentation maps that do
not contain these objects.

Therefore, one can see our inpainting procedure in
Fig. 2 (refining strategy 1). Firstly, we apply the SegFormer-
B5 model to the original RGB image to obtain the
segmentation maps. These maps contain 150 known classes,
some are static, and others are dynamic. We get binary
masks of dynamic objects by marking every pixel having
any dynamic object class (5). After that, we pass these
binary masks and the original RGB image into the pre-
trained Big-LaMa [39] inpainting model L(., .). Therefore,
the Big-LaMa produces images that are supposed to have only
static classes (6).

mask = IS(x)∈N , (5)

y = L(x,mask), (6)

where x is the original RGB image, and N is the set of classes
of dynamic objects among SegFormer output classes.

The resultant inpainted image y is then passed into the
DPT and the SegFormer models to obtain final depth and
segmentation maps without dynamic objects (7), (8):

dr = D(y) (7)

sr = S(y) (8)

Such an approach is promising and compares well with
the synthetic data refinement described in Section III-A.
Some comparisons of the segmentation maps obtained by the
synthetic and inpainting-based refining are available in Fig. 4.
One can notice on these images that it is simpler to inpaint
semantic maps than original RGB images. Some dynamic
objects on the original RGB do look blurry or noisy on the
inpainted RGBs. However, this becomes significantly less
pronounced on the segmentation maps obtained from these
inpainted RGBs. Synthetic and inpainting-based refining
produce different colors of semantic classes in Fig.4. This
happens because SegFormer has way more static output
classes than the synthetic refinement model (which only
leaves buildings, terrains, sky, and trees). The main goal of
this image is to show that both strategies produce maps with
removed dynamic classes. Synthetic-based refining is still
overall more robust as it uses additional high-quality data for
supervised training of the refinement models.

Another positive of an inpainting-based approach is that it
only relies on the pre-trained networks, and there is no need
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to train new large models from scratch, which would require
a lot of time and computational resources.

C. IMAGE RETRIEVAL FOR VISUAL PLACE RECOGNITION
After obtaining the final depth and segmentation maps by
refining them with synthetic data or direct inpainting, they
are used for image retrieval. This block is the final in both
pipelines at Fig.2. Image retrieval involves building a latent
space L = Rn for depth and segmentation inputs d, s. This
latent space should have the following properties:

∀sq, dq ∈ Dq : sj, dj = argmin
si,di∈Dindex

L2(f(sq, dq), f(si, di)) ⇒

j = argmax
i∈index

closeness(q, i), (9)

where Dq and Dindex stand for the queries and index
databases, respectively. In other words, we have a set of depth
and segmentation maps named index database for which we
know the required information (in our case, a GPS location
of the image or the name of the landmark). We also have
a similarly structured set of potential queries. It has depth
and semantic maps for images for which we do not know
the required geographical information. Therefore, our goal
is to find a mapping f : D → L to the latent space
such that the closeness of vectors in the latent space means
the similarity of images in the real world regarding the
geographical information we are interested in. For example,
the closest vector from an index database to a query was
obtained from an image taken geographically close to the
place in a query image. This closeness relation is represented
in (9). That way, we can take known information about the
closest index database image and predict it for a query image.
For example, we can find index database images from the
same location as a query and give their location as an answer.

In this work, we explore two architectures for this task.
The first is the classic NetVLAD architecture [6]. It uses
the end-to-end convolutional neural network with a particular
generalized VLAD layer inspired by the Vector of Locally
Aggregated Descriptors image representation. The second
model is the modern state-of-the-art architecture named
CosPlace [9]. It takes a different approach during training
and casts the training as a classification problem. This
approach helps to reduce the computational complexity
and leads to high results on the visual place recognition
task. For the CosPlace, we tested backbones based on
the ResNet-18, ResNet-50, ResNet-101, ResNet-152, and
VGG16 architectures [27]. The NetVLAD model, however,
has VGG16 [28] backbone.
All architectures were trained for 50 epochs. We used

triplet margin loss with a margin of
√
0.1. As an optimizer,

we used the stochastic gradient descent with momentum with
a starting learning rate of 10−4 with a StepLR scheduler,
which decreased the learning rate two times every five
epochs. For the CosPlace family of models, we used the
Large Margin Cosine Loss [59] for every group partitioned,
as explained in detail in the original CosPlace paper [9].

FIGURE 4. The segmentation maps were compared with different refining
strategies and relevant RGB images. The first column displays the original
images, while the second column shows the inpainted photos used
in the pipeline with inpainting-based refining. The fourth column depicts
the segmentation maps extracted from the inpainted images employed in
the inpainting-based refining. The third column shows the same refined
segmentation maps obtained using synthetic refining instead of direct
inpainting. Inpainting is not perfect. However, the segmentation maps are
still quite good, as even some areas that appear blurry on RGBs after
inpainting are still properly segmented (notice a blurry bus in the first
row of column 2 and its absence in column 4). The inpainting does not
introduce much noise to the pipeline because we use inpainted
segmentation maps, which are significantly less noisy than inpainted RGB
images. However, it is also clear that the quality of synthetic refinement is
higher. That is expected as the additional artificial ground truth was used
here to improve the models. Note a color difference between
segmentation maps in columns 3 and 4. That happens because SegFormer
(which is used to obtain segmentation maps in the inpainting scenario,
column 4) is trained to predict significantly more classes than the refining
model used in the synthetic refining (column 3). Due to the existence of
static synthetic ground truth, synthetic refining models are trained to
predict only classes: sky, building, terrain, and tree, while the SegFormer
outputs 150 classes. The main focus of this image is to show how well the
segmentation maps represent RGB images and how dynamic objects are
being inpainted on semantic maps in both refinement scenarios.

A model was trained using the Adam optimizer with 10−5

learning rate.

IV. EXPERIMENT SETUP
A. HOLICITY DATASET
The first dataset that we explore is the HoliCity dataset [56].
It contains images taken outdoors in the dense area of over
20 km2 in London. More importantly, it contains a lot of
additional information, such as GPS coordinates, synthetic
semantic segmentation, and depth maps. Synthetic data for
this dataset was scraped from the computer-aided design
(CAD) model of this area and did not include people or
vehicles.

The total size of the dataset is 47528 images representing
5941 different locations (8 images per location taken with
horizontal rotations of the camera by 45◦). Forty-five
thousand thirty-two images (5629 locations) were taken as a
training dataset, and 2496 images (312 locations) were used
for testing.

The only objects present on synthetic semantic and depth
maps are the sky (29.38% of pixels for the class), buildings
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(44.88% of pixels), roads (0.43% of pixels), terrains (19.65%
of pixels), and trees (5.66% of pixels). Therefore, no dynamic
objects were present in them. Consequently, the synthetic
semantic segmentation maps consist of the same five classes:
sky, building, road, terrain, and tree. Sky and buildings are
self-explanatory. Roads are supposed to represent the area
for driving vehicles, while terrains represent any walkable
section. Trees outline only trees themselves. Other green
spaces, like grass, are not included in this class. During our
experiments, we merged roads and terrains on segmentation
maps into a single class due to their semantic similarity
and due to the noticed inconsistencies in the ground truth
markup between these two classes (we saw various examples
of driving roads being classified as terrains in ground truth
semantic maps). We report the results for this dataset on the
validation split.

This dataset is essential as it allows us to test our synthetic
refinement pipeline and to check the difference in performing
visual place recognition while having dense and noiseless
ground truth depth and segmentation maps versus making the
alternative inpainting approach.

To indicate closeness, we use GPS coordinates. Consid-
ering the relatively small area and dense collection of GPS
locations, we thought two places would be close if there was
at most a 25-meter difference between them.

B. GOOGLE LANDMARKS V2 DATASET
As the second dataset, we chose the Google Landmarks V2
dataset [60]. This is a large dataset of images of worldwide
landmarks collected from Wikimedia resources. It does not
have synthetic data. However, each image has its landmark
and a link to the Wikimedia knowledge graph.

Considering the inequality of landmarks among countries
in the dataset, we decided to work with a single state from the
dataset, a popular tourist destination. We chose to work with
landmarks from France as they seem to fit this criterion and
are well-represented in the dataset. To imitate the situation
with the lack of training data (as not for every country,
there is a wide variety of pictures available), we only took
1/4 of the train images available for France. The total size
of the dataset was 79004 images representing 10157 unique
landmarks. Out of this list, there were 49370 training images
(4770 unique landmarks) and 29634 test images (5387 unique
landmarks). From this, the test set consisted of query-index
pairs, representing completely new landmarks not present in
the train set, making this dataset more challenging. There
were about 10.35 images per landmark in the training dataset
and 5.5 in the testing.

In this dataset, we used landmarks as a binary indicator of
closeness. Namely, images are close if they are of the same
landmark and distant otherwise.

C. METRICS
For this experiment, we used traditional Recall@N metrics.
They measure the percentage of queries with at least one

TABLE 1. Results on the HoliCity dataset. The refinement column
indicates the type of refinement used: synthetic indicates the type
described in Section III-A; inpainting indicates the type described in
Section III-B. In the middle are the results of the ablation study, where
only depth maps or semantic maps are used in the synthetic refinement
scenario. The CosPlace with the ResNet-50 works stronger in both
inpainting scenarios. The only architecture that has slightly better
performance is the ResNet-152-based CosPlace. However, it is
significantly larger and takes more time to train. VGG16-based
architectures (NetVLAD and VGG16 CosPlace) perform worse than the
ResNet-based CosPlace. All models show stronger results when synthetic
data is used. The models using only depth or semantic features with
synthetic refinement are stronger than inpainting models. However, they
cannot reach the level set by CosPlace with ResNet-50, which utilizes
both depth and segmentation maps.

close element among the model’s top N predictions. It can
be written as follows:

Recall@N =
1
M

M∑
i=1

Imin (disti,j,...,disti,N )<t (10)

where disti,j stands for the distance between two places: first
is a place where a query image qi was taken, and second is
a place where an image from an index database was taken,
which model predicted to be j-th closest to a query qi (for
example, disti,1 is the distance between a query qi and an
index database element that model thinks is the closest to a
qi); t is a distance threshold;M is a number of queries.

For the HoliCity dataset, the distance function is the
distance inmeters between two points fromwhich the original
images were taken, and the threshold is 25 m.

For Google Landmarks V2, the distance is binary: one if
the original images represent different landmarks and 0 if
they are from the same landmark. The threshold is 1. In other
words, the indicator function will only count cases where
landmarks of a predicted image and a query are the same.

We utilize only Recall@1, Recall@5 and Recall@10
following the best practices from evaluation pipelines in
localization literature [6], [7], [8], [9], [46], [47], [48], [49],
[50], [51], [52]. These metrics provide the most meaning-
ful information for the image retrieval-based geolocation.
Recall@1 shows the most interesting data and addresses how
well a model can perform on the first try. Recall@5 and
Recall@10 show model’s accuracy when a relatively small
amount of mistakes is allowed.

D. HARDWARE
Our models were trained with a single NVIDIA A100 with
80GB VRAM. For reference, here are the repositories for the
state-of-the-art models used in our pipeline: 1) SegFormer B5
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FIGURE 5. Queries from the HoliCity where the CosPlace (ResNet-50)
shows significantly stronger results than the NetVLAD. In the first column
one can see RGBs of queries. Note: we show RGBs to achieve more
insightful visualizations; during training and inference both models were
working with depth and semantic maps. The second column shows top-1
predictions of the CosPlace (they are all correct, shown in green frames).
For these queries all top-10 predictions of the NetVLAD were wrong. For
compactness we show only top-3 predictions in the final three columns.
One can see that CosPlace’s predictions seem to be more robust to
differences in orientation of the camera between queries and index
database elements.

(checkpoint: Segformer MIT-B5 512 × 512, ADE20K); 2)
DPT (checkpoint: dpt-hybrid-midas-501f0c75.pt); 3) LaMa
(checkpoint: big-lama.zip); 4) NetVLAD (trained ourself); 5)
CosPlace (trained ourself).

V. RESULTS
We started with the HoliCity dataset due to the availability
of both refinement techniques. Therefore, we can see the
potential differences between the two techniques. We tested
the NetVLAD with the VGG16 backbone and the CosPlace
with the ResNet-18, ResNet-50, ResNet-101, ResNet-152,
and VGG16 backbones. The overall results are in the Table 1.
During the synthetic refinement experiment, NetVLAD had
decent metrics but is still being outperformed by the Cos-
Place. Almost all CosPlace variants perform similarly, having
almost identical recall values for all tested N. An obvious
outlier is the VGG16 backbone. It still outperforms the
NetVLAD, but the ResNet-based CosPlace models have
better metrics. The ResNet-50 still claims overall victory as
it performs better for the lower N values, which are the main
point of interest. The only model that slightly outperforms
it is the CosPlace with the ResNet-152 backbone. However,
the difference is slight, while the ResNet-50 is noticeably
faster to train and less affected by potential overfitting.
It seems like it could be the issue for larger models based on
the ResNet-101 lower performance. The CosPlace winning
against theNetVLAD is an expected behavior as the CosPlace
is a modern state-of-the-art approach, and it is supposed
to outperform the NetVLAD, which came out a couple

TABLE 2. Results on the Google Landmarks V2 dataset. The inpainting
refinement was used for all experiments described in Section III-B. The
CosPlace with ResNet-50 backbone still tops the ranking and wins by a
large margin.

of years before the CosPlace. Also, the ResNet-50 has
more parameters and, therefore, more degrees of freedom
to learn complicated features than the ResNet-18. However,
the ResNet-50, especially with the fast training proposed in
the CosPlace paper, is still not too heavy. The ResNet-101
might have worse results due to being more affected by the
overfitting. Due to the similarity in performance, we prefer
lighter models, which might run inference better on simpler
hardware. Therefore, we focus on the ResNet-18 and the
ResNet-50 backbones in other experiments.

In Fig. 5 one can see some of the queries where the
CosPlace significantly outperformed the NetVLAD. More
specifically, for all of these queries top-1 predictions of the
CosPlace were correct every time, but all top-10 predictions
of the NetVLAD were wrong (only top-3 shown in Fig. 5
to avoid overloading it). One can see from the figure that
the CosPlace is being noticeably more robust to camera
orientation. For all presented queries NetVLAD’s guesses
were in a similar orientation to the query. In the first row
both the query and NetVLAD’s predictions have the camera
looking straight while the CosPlace predicted an image with
the camera looking up. The opposite situation can be seen
in the other rows. The CosPlace retrieves images where the
camera looks straight, while the NetVLAD prefers upwards
camera angles like in given queries. Also, the NetVLAD
relies too much on general features and positions of objects
rather than on some specific traits of presented buildings.
For example, in the first row one can see that the NetVLAD
is searching for the image where a building with a roughly
similar shape is on the side of an image like in the provided
query. On the other hand, the CosPlace relies more on
details of the building and retrieves an image where the
same building is in the center of the picture. This might be
happening due to the way the model is trained. The approach
proposed in [9] relies on building CosPlace groups from the
data. Images from different classes in the same group comply
with minimal distance or angle thresholds. This approach can
help CosPlace to differentiate images with similar angles, but
different content.

During the inpainting experiment, the situation changes
significantly. The NetVLAD receives a significant drop in
all metrics and cannot perform well in this setting. On the
other hand, both CosPlace models handle the transition rather
well. They still experience a performance drop. However,
it is expected while moving from the supervised refining
scenario with dense ground truth maps. Nevertheless, the

5172 VOLUME 12, 2024

https://github.com/isl-org/DPT
https://github.com/advimman/lama
https://github.com/QVPR/Patch-NetVLAD
https://github.com/gmberton/CosPlace


I. Semenkov et al.: Inpainting Semantic and Depth Features to Improve Visual Place Recognition

decrease is not as dramatic, especially for the ResNet-50
backbone.

Additionally, we performed a series of experiments to
test various branches of our pipeline. In particular, we tried
to use only depth maps or segmentation maps instead of
both in the synthetic refinement scenario. The results are
indicated in Table 1 with ‘‘CosPlace depth’’ and ‘‘CosPlace
segmentation’’ titles, respectively. Both of them perform
similarly and manage to show high metrics. They even
outperform CosPlace with ResNet-50, which utilizes a direct
inpainting approach. Depth and semantic maps are expected
to provide models with important geometrical features that
sometimes share some common information. For example,
by looking for dramatic jumps in depth between neighboring
pixels, one might estimate the boundaries of objects. They
also utilize synthetic data in the refining, improving their
quality. However, CosPlace, with ResNet-50 and synthetic
refinement, which uses semantic and depth maps, performs
noticeably better. This happens because both modalities still
provide the model with unique geometrical information.
Also, having them share features during the synthetic
refinement allows for more efficient inpainting.

Knowing previous experiments, we tested all three models
on the significantly more complicated and diverse Google
Landmarks V2 dataset. The results are presented in the
Table 2. This dataset shows a similar picture to the one in the
inpainting-based refining of the HoliCity dataset. In partic-
ular, NetVLAD performs way worse than its competitors in
this scenario. The CosPlace with the ResNet-50 remains the
strongest and confidently claims victory over the same model
with the ResNet-18 as a backbone. It is again expected due
to a large number of parameters and utilization of the state-
of-the-art approach to visual place recognition. It is worth
mentioning that the metrics of all models on the Google
Landmarks V2 dataset are lower than on the HoliCity. This
is because this dataset has a much more complex structure
and a lot of landmarks in the test set that were not present in
the training set.

VI. DISCUSSION
From the experiments on the HoliCity dataset, it is clear that
the synthetic refinement scenario gives stronger performance
than direct inpainting. This is expected because, with
synthetic refinement, we utilize our Unet-inspired models,
which are carefully trained to utilize both depth and semantic
features. Additionally, we train them in the supervised
scenario using noiseless synthetic ground truth data, which
does not include any dynamic objects in a scene. On the
other hand, direct inpainting of a large number of images will
typically introduce some noise into some of them. This noise
is especially likely if there are many large dynamic objects in
a scene and the inpainting model is required to recover a large
part of the picture. Even though such noise is significantly
less problematic on depth and semantic maps than on original
RGB images, the SegFormer and the DPT models may still
have issues dealing with it.

Among the tested models, CosPlace shows stronger
performance than NetVLAD. This is expected, as a similar
trend was illustrated in the classic RGB-only scenario in
the original paper [9]. The Recall@1 difference between the
two models on multiple datasets was at least 10%+, which
is consistent with our experiments. Overall, VGG16-based
models performed worse than ResNet-based networks. How-
ever, the VGG16-based NetVLAD is still noticeably far
from the VGG16-based CosPlace. This consistency with the
RGB-based geolocation performed in the original paper [9]
is maintained because both RGB and semantic/depth maps
provide models with similar geometrical features. The core
difference is the amount of additional dynamic details
provided in the RGB.

The ResNet-50-based CosPlace performed the best overall,
with similar quality to the larger models. This is because,
at this point on HoliCity, the performance was already strong
enough, and a larger model was only occasionally providing
marginal improvements. Additionally, these larger models
start overfitting sooner. The best quality ResNet-50-based
CosPlace was able to provide in a scenario with depth and
segmentation maps refined by our Unet-based models.

Additionally, ablation experiments clearly show the impor-
tance of using both depth and semantic features. While
models that rely only on one of them are reasonably effective,
they still fall behind the best-performing model, which
utilizes both.

VII. LIMITATIONS
A. REQUIRED SYNTHETIC DATA
the strongest pipeline in our experiments relies on synthetic
ground truth data. While this is not necessary for the
pipeline with direct inpainting, the pipeline with Unet-based
refinement models provides a significant improvement in
terms of quality. It is also more robust as there is no noise
that could be introduced during direct inpainting.

B. SCENES WITH SIMILAR GEOMETRIC FEATURES
some of the potential scenes a model will have to deal with
might have less valuable geometric information, which will
be reflected on depth or semantic maps. For example, a scene
might mostly include a generic-looking building. Such a
building will be easier to blend with another without having
some of the visual details available, like in RGB images.

C. SINGLE VIEW LOCALIZATION
like most of the current models, we utilize a single image
for geolocation. This is less effective as sometimes the views
could be very different if a person turns around. In addition,
some different places might look similar. To some extent, this
is being mitigated by the possibility of sampling from a 3D
map to generate new synthetic data representing more views.
However, the shared information from views taken as a short
video might lead to significantly easier identification. In this
case, a model could also know about the relative positions
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of more objects in a scene, which is especially useful when
dealing with only static objects.

VIII. CONCLUSION
In this work, we explored the possibility of performing
the task of visual place recognition using geometrical
information from segmentation and depth maps only. Such
a solution helps to focus on the stable features of the image,
such as shapes, and is not affected as much by the time of the
day, time of the year, billboards, and other factors that might
change over a reasonably small amount of time. This saves
a lot of resources required to keep the index database up to
date.

We tested two potential refining strategies for extracting
high-quality depth and segmentationmaps using the synthetic
data and the inpainting module. The synthetic refining
strategy used two U-Net-inspired refining modules that mix
the initial depth and segmentation features to build the
refined maps. One of these modules was trained to output
segmentation maps and the other to output depth maps. The
training was supervised based on the synthetic ground truth
depth and segmentation maps obtained from the 3D map of
the area. The inpainting-based refining did not require the
ground truth or the additional training procedure. It used
SegFormer’s masks and the Big-LaMa inpainting model to
remove dynamic objects from the image. Then, the final maps
were obtained from the inpainted image.

Firstly, we analyzed both strategies on the HoliCity dataset,
which has all the required data for both refining options.
Our findings on the HoliCity dataset show that the quality
of the inpainting-based approach depends on the model.
While the classic NetVLAD approach has troubles and its
metrics plummet, the CosPlace algorithm performs well with
inpainting for both tested backbones. With synthetic refining,
the metrics are better across all of the models. Here, the
NetVLAD achieves more robust results and comes closer to
the CosPlace-based models. The CosPlace with the ResNet-
50 as a backbone is overall the most robust model in this
comparison. It does not drop its metrics significantly even
in a more challenging scenario without synthetic ground
truth. The ablation study on the HoliCity dataset revealed the
importance of using depth and semantic maps instead of only
one of them.

Further, we explore the possibility of using the same
direct inpainting approach on the complex and diverse
Google Landmarks V2 dataset for France. The overall trend
continued as the CosPlace models were significantly stronger
using inpainting, and the CosPlace with the ResNet-50 as a
backbone became the winner in all tested recall metrics.

This shows the potential of such an approach. However,
there is a clear room for improvement in terms of metrics.
Additionally, in this work we focused on introducing the
novel pipeline and trying to find the most efficient version of
it using one of the few publicly available datasets which have
synthetic depth and semantic maps available for localization.
We compared different backbones and retrieval methods

as well as various refinement techniques. However, more
tests against more models is an important part of the future
research. As the leading direction of potential improvements,
we see the possible usage of video sequences instead of
single images. From a practical point of view, it typically
does not require a lot of additional work for the user to
move the camera for several seconds. Therefore, such a
solution will not make the user experience significantly
worse. On the other hand, a video feed that is several seconds
long can provide more information about a location and its
surrounding area. It will allow us to use image sequences as
pseudo-stereo images to improve the depth estimation and,
consequently, predictions.
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