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ABSTRACT Accurately predicting traffic flow is paramount for the efficient operation of transportation
systems. The key to enhancing prediction accuracy lies in effectively mining the intricate spatio-temporal
correlations within traffic flow data. However, traditional traffic flow prediction methods that combine Graph
Convolutional Network and Recurrent Neural Network have limitations in capturing comprehensive spatial
correlation information and face challenges in modeling long-term temporal dependencies, consequently
leading to suboptimal prediction performance. This study proposes a hybrid traffic flow prediction model
based on fusion graph convolutional network and enhanced gate recurrent unit. Initially, a fusion graph
structure is constructed based on adjacency graph and adaptive graph to better represent the correlations
between nodes in the road network. Subsequently, the stacked fusion graph convolution module is utilized to
capture multi-level spatial correlations and the enhanced gated recurrent unit is applied to extract multi-scale
temporal correlations. In addition, the model integrates the extracted spatio-temporal features with the direct
features through residual connection units, and utilizes the fused features for prediction, achieving superior
predictive performance. The experimental results from four authentic datasets demonstrate that our proposed
model outperforms state-of-the-art baseline models, showcasing an average enhancement of 3% in Mean
Absolute Error(MAE), 3.3% in Root Mean Square Error(RMSE), and 2.7% in Mean Absolute Percentage
Error(MAPE) across the four datasets.

INDEX TERMS Traffic flow prediction, spatio-temporal correlation, gated recurrent unit, graph convolution
network, residual connect.

I. INTRODUCTION

With the rapid growth of traffic data and the continuous
advancement of artificial intelligence technology, numerous
cities are working on developing intelligent transportation
systems to achieve efficient traffic management, accurate
traffic resource allocation, and high-quality traffic ser-
vices [1]. As a key component of intelligent transportation
systems, traffic flow prediction plays an important role in
realizing the efficient operation of transportation systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Angel F. Garcia-Fernandez

The sensors deployed in the traffic system collect a large
amount of traffic flow data. However, traffic data has a
complex time correlation, spatial correlation, spatio-temporal
correlation, and heterogeneity. Accurately capturing these
correlations between traffic data is crucial to predicting
traffic flow. Figure 1 shows the propagation of correlation
information of central region A and its related regions in
spatio-temporal dimensions.

In Figure 1, the nodes represent the region, and the undi-
rected edges denote the correlation between regions. The
different colors of the nodes and edges represent the var-
ious traffic conditions and the strength of the correlation

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 56477


https://orcid.org/0009-0009-3262-0603
https://orcid.org/0000-0003-3730-9522
https://orcid.org/0009-0005-4877-6259
https://orcid.org/0009-0005-5787-1725
https://orcid.org/0000-0002-6471-8455

IEEE Access

C. Cai et al.: Spatial-Temporal Traffic Flow Prediction

Congested  Spatial Correlation

Temporal Correlation Spatio-temporal Correlation ~ High

3 g
£ o
] 3
] S
Smooth Low
L o mewss L -
t-n t-n+1 t Time

FIGURE 1. Propagation of correlation between different regions.

respectively. The dotted edges represents the temporal cor-
relation between regions. Temporal correlation refers to the
traffic states changing dynamically with time, and the traf-
fic status of adjacent time steps are highly similar. Solid
edges indicate spatial correlation, which means that traf-
fic conditions between neighboring areas affect each other.
It is usually expressed as the traffic flow of upstream roads
affecting downstream roads. The dashed edges represent
spatio-temporal correlation, indicating that the traffic condi-
tions in a region are influenced by the related areas at different
time steps.

Researchers have proposed a series of methods to better
exploit the correlation between traffic data for accurate traf-
fic flow prediction. In terms of exploring time correlation,
recurrent neural networks (RNNs) and its various variants [2],
[3], [4] have been widely applied. Through the RNNs model,
the time dependency and sequential patterns in traffic flow
data can be effectively captured. However, modeling solely
based on temporal features has certain limitations. The meth-
ods that combine graph convolutional networks (GCNs) with
recurrent neural networks have gradually become a research
hotspot [5], [6]. Such methods typically represent the static
road network structure as a topological graph and utilize
GCNes to learn the spatial correlation between nodes. Simul-
taneously, RNNs are used to learn the temporal features of
traffic flow data. This approach can integrate the spatial
structure of the road network with the temporal relationship of
traffic flow data, thereby capturing the spatio-temporal char-
acteristics of traffic flow more comprehensively. However,
due to the complexity of spatio-temporal correlation, these
methods still face two challenges.

First, conventional RNN-based methods cannot capture
long-term dependencies well in traffic flow data. RNNs suffer
from problems such as gradient vanishing and memory decay
in capturing long-term dependencies, making it difficult to
effectively maintain and convey information between distant
time steps. To address this, methonds [7], [8] introduced long
short-term memory(LSTM) for traffic flow prediction, which
utilizes a gating mechanism to selectively retain and transmit
information, alleviating the problems of gradient vanishing
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and memory decay. Although traffic flow prediction based on
LSTM can achieve good results, its model structure is com-
plex and the training time spent is relatively long. FU et al. [9]
employed a structurally simple gated recurrent unit(GRU)
for traffic flow prediction and demonstrated that GRU can
achieve faster and more accurate traffic flow prediction com-
pared to LSTM. Subsequently, scholars [10], [11] have tried
to utilize various variants of GRU for traffic flow prediction
and achieved good results. However, it still cannot solve the
problem that long-term dependencies are gradually faded out
or covered by new information when they are transmitted
through hidden state units with limited capacity.

Second, traditional GCN-based methods typically utilize
predetermined graph structures established by distance met-
rics or other geographical connections. such methods are only
able to capture the spatial correlation generated by roadway
adjacency relationships, and are less capable of modeling
other factors that may affect traffic flow. While methods
such as AGCRN [12] and MTGNN [13] introduce adap-
tive graph structures to uncover potential spatial correlation
within road network data, and ASTCN [14], En-GRN [15]
try to capture different types of dependencies by combining
adaptive graph structures with predefined graphs. However,
these approaches either discard the fixed topological structure
information of the road network and rely solely on adap-
tively generated graph structures from the model, or treat
the adaptive graph as indirect spatial information, separate
from the direct spatial information represented by the adja-
cency graph. This lack of effective fusion between the two
types of spatial information leads to suboptimal prediction
performance.

In view of the advantages and disadvantages of the above
methods, we propose a traffic flow prediction model based
on fusion graph convolution and enhanced gated recurrent
units(FGCN-EGRU). In the spatial dimension, we utilize
a fusion graph to assist the graph convolutional network
in extracting spatial features. In the temporal dimension,
we employ an enhanced gated recurrent unit for temporal
feature extraction. The main contributions of our research are
as follows.
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A fusion graph structure is designed, which enhances the
representation of node relationships by integrating the adap-
tive graph generated through the adaptive graph learning
layer with the adjacency graph based on geographic location.
A convolutional neural network based on the fusion graph is
used to better explore the spatial correlations between traffic
data.

An enhanced gated recurrent unit was designed, which
utilizes attention scores and gating mechanisms to better
preserve and propagate the correlation information in traf-
fic flow data, addressing the limitation of recurrent neural
network in capturing long-term dependencies of traffic flow
data. A traffic prediction model was designed based on the
above methods, which improves the accuracy of traffic flow
prediction.

Il. RELATED WORK

A. TIME SERIES INFORMATION FOR TRAFFIC FLOW
PREDICTION

In the early days, the time series prediction method based on
statistical modeling is very popular. This method is mainly
aimed at the time correlation of traffic flow data and uses
mathematical statistics to calculate the characteristics of his-
torical data as the general characteristics to predict future
data. Typical methods based on statistical modeling include
the auto regressive moving average (ARMA) [16], vector
auto regressive model (VAR) [17], Kalman filter [18], etc.
Most of these prediction methods have simple structures and
fast calculation speeds. While these methods are frequently
employed in preliminary research phases, they exhibit lim-
ited adaptability to the nonlinear attributes of traffic flow.
As the prediction time increases, the prediction error also
rises sharply, which is only suitable for scenes with stable
traffic conditions. Subsequently, machine learning methods
have gradually become research hotspots, such as support
vector machines [19], K-nearest neighbors [20], and Bayesian
networks [21]. This type of method can model nonlinear
factors in traffic data and extract more complex correlations.
However, these methods require manual feature selection and
often perform poorly in traffic prediction tasks with complex
features.

In recent years, traffic flow prediction based on deep
learning methods has become a new trend. Recurrent neural
networks have been more widely used in the field of traffic
prediction due to their adeptness in time-series data. Lu [7]
employed the variational modal decomposition to decompose
unstable raw traffic flow data sequences into multiple sta-
ble sub-sequences, and utilized LSTM to capture the stable
features of each sub-sequence for prediction, significantly
enhancing predictive performance. Redhu and Kumar (8]
proposed PSO-Bi-LSTM for short-term prediction, they used
a nonlinear variable inertia weights improved particle swarm
optimization algorithm to optimize the parameters of the
Bi-LSTM, which effectively improves the speed of model
training convergence and prediction accuracy. Sun et al. [10]
proposed SSGRU, which utilizes stacked GRUs to enhance
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the model’s ability to capture long-term dependencies. How-
ever, it still struggles to effectively address the issue of
memory decay in GRU networks.

The advantages of these traffic flow prediction methods
based on time series information lie in their simplicity, com-
putational efficiency, and suitability for short-term forecast-
ing. Nonetheless, this approach neglects spatial information
within traffic flow, limiting its performance in complex sce-
narios and long-term predictions. Additionally, it struggles
to handle data gaps, noise, and nonlinear variations. In sum-
mary, time series information-based prediction methods are
suitable for straightforward real-time forecasting tasks. Yet,
for more accurate predictions of intricate traffic conditions
and long-term trends, it is necessary to consider more sophis-
ticated approaches that incorporate spatial information and
other factors.

B. SPATIO-TEMPORAL INFORMATION FOR TRAFFIC FLOW
PREDICTION

In the traffic flow prediction problem, the spatial correlation
between traffic flow data has an important influence on the
prediction results. In the early days, many scholars tried
to convert traffic network data into two-dimensional raster
images, and then use convolutional neural networks to predict
raster images. Ma et al. [22] transformed traffic network data
into raster images, used a two-dimensional matrix to repre-
sent the spatio-temporal correlation of data, and then used
two-dimensional convolution to predict. Zhang et al. [23]
mapped traffic flow data to grid images, used convolutional
neural networks to extract spatial features, and processed spa-
tial feature sequences through long and short-term memory
network layers to obtain time features. These method reduces
the complexity of modeling and improves the computational
efficiency of the model by dividing the traffic network into
simplified grid cells, but it loses some of the detailed infor-
mation in the original data, only shows good performance on
data with a relatively simple road network structure, and only
captures the static spatio-temporal correlation of the road
network data.

Subsequently, graph convolutional networks began to be
widely used in traffic flow prediction. Zhao et al. [6] proposed
a method that combines graph convolutional networks with
improved gated recurrent units (GRUs). They straightfor-
wardly concatenate the improved GRU and GCN to achieve
the extraction of spatio-temporal dependencies in the data.
Yu et al. [24] proposed STGCN, which learns features of data
through multiple spatio-temporal convolution modules that
integrate graph convolution and gated temporal convolution,
capturing complex spatio-temporal correlations of data using
only a simple network structure. Li et al. [25] proposed
DCRNN that captures the spatial correlations within traffic
data through random walks using diffusion convolutions, and
captures the spatio-temporal correlations of traffic data using
a GRU embedded with diffusion convolutions. The method
fully considers the spatial dependence and temporal charac-
teristics of traffic data, which improves the accuracy of traffic
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flow prediction. These above methods primarily rely on a
singular predefined adjacency graph structure, which is only
able to capture the spatial correlation between neighboring
locations and can show good performance when dealing with
simple road network data.

In order to solve these problems and capture the
spatio-temporal correlation between data more comprehen-
sively. AGCRN [11] and MTGNN [12] adaptively generate
graph structures by multiplying node embeddings, achiev-
ing performance similar to predefined adjacency matrices
using only adaptive graphs. However, relying solely on a
single adaptive graph structure fails to effectively capture the
dynamic correlations in traffic data and overlooks the sig-
nificant influencing factor of road network structure, which
limits the prediction performance of the model. Chang et
al. proposed En-GRN [15] to obtain indirect spatial infor-
mation based on adaptive graph structure and direct spatial
information based on the neighboring graphs, and fused
these two types of information through the gating mech-
anism. This method synthesizes different types of spatial
information and effectively integrates different information
through a gating mechanism, which has a good prediction
performance. Chen et al. [26] introduced GSTPRN, which
constructed a position graph convolution module based on
attention mechanisms, and expanded the receptive field of
the convolution module through approximate personalized
propagation, then integrated the position graph convolu-
tion and adaptive graph learning into a recurrent network
for spatio-temporal correlation extraction. The two methods
mentioned above make predictions by combining adaptive
graphs with location information, enabling them to capture
various types of dependencies in traffic data. However, they
do not account for the dynamic changes in the correla-
tion of traffic data, which impacts the potential for further
improvement in model performance. Wenger et al. [27] pro-
posed DDGCRN, which involves embedding matrices with
dynamic signals extracted by multi-layer perceptrons to gen-
erate dynamic graph structures. In the model, the optimized
graph convolutional networks are embedded within a GRU
for spatio-temporal feature extraction, which effectively cap-
tures the dynamic spatiotemporal relationships in traffic flow.
Xu and Liu [28] constructed a distance matrix using the Dijk-
stra algorithm and calculated dynamic weight matrices based
on Pearson correlation coefficients, then combined adjacency
matrices, dynamic weight matrices, and distance matrices
into a hybrid adjacency matrix, enhanced the representation
of road node relationships, then utilized graph convolutional
GRU for spatio-temporal feature extraction, effectively cap-
turing dynamic spatio-temporal dependencies between traffic
data.

The aforementioned methods introduce different graph
structures to capture different types of relationships and
dependencies in traffic data, thus improving the accuracy
and robustness of the traffic flow prediction model. How-
ever, these methods may rely too much on a particular
graph structure and ignore other influencing factors, or adopt
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complex model architectures to extract information from
multiple graph structures, or may not be sufficiently adapted
and optimized in the way of fusing information from multiple
graphs, thus having certain limitations.

In recent years, researchers have begun to introduce
Transformer models into traffic flow prediction tasks and
have achieved significant results. STTN [29] and Traf-
fic Transformer [30] used the self-attention mechanism of
the Transformer for spatio-temporal feature extraction from
traffic data, improving the ability to model long-term depen-
dency relationships. MGT [31] and STGHTN [32] took into
account various types of spatial correlations, conducting
spatial feature learning on multiple graphs, thereby enhanc-
ing the capability to capture spatial features.However, these
models have relatively complex structures and require a sub-
stantial amount of training data and computational resources
to fully unleash their powerful performance.

Inspired by these studies, we propose a traffic flow pre-
diction model (FGCN-EGRU) to better handle traffic flow
prediction tasks.

IIl. PRELIMINARIES

A. TRAFFIC TOPOLOGY

The structure of the actual traffic network is defined as a
topology graph G = (V, E, A), where V. = {V|, V>, ... Vy}
is a set of nodes, representing N road sensor nodes in the
traffic network; E is a set of edges, representing connectivity
between nodes; A € RV*V is an adjacency matrix represent-
ing node adjacency relations, whose element A;; represent
connectivity between nodes i and j.

B. DATA REPRESENTATION

The traffic flow value of node i at moment 7 is expressed as
x!, and the traffic flow value of the whole road network at
moment ¢ is expressed as X; = {x!, x2,...x¥} € RV*!. The
input traffic flow sequence of a prediction model is expressed
as xr = {X1, X2, ... X7} € RTNx1 where T is the length of
the input history traffic sequence. The output sequence of a
traffic prediction model is xp = {X7+1, X7 +2, ... X74pP} €
RP*NX1 \where P is the length of the prediction sequence.

C. PROBLEM DEFINITION

The problem of traffic flow prediction can be modeled as
learning a mapping relationship function f'(-) from the histor-
ical input traffic sequence x7 = {X1, X2, ... X7y} € RT*Nx1
and the topology graph G to predict the future traffic sequence
xp = {Xr+1, X742, ... Xryp) € RPNXL The prediction
process can be expressed as formula (1).

{Xr+1, Xr+2, ... Xryp) =f({X1, X2, .. X7}, &) (D)

IV. METHODOLOGY

A. OVERVIEW

The structure of our proposed FGCN-EGRU is shown
in Figure 2. Besides the input and output layers, the
FGCN-EGRU model also includes fusion graph construction
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module, stacked graph convolution module, enhanced gated
recurrent unit, and residual connection unit. The input layer
converts the input data to a high-dimension space by lin-
ear to represent the complex spatial-temporal features. The
fusion graph construction module generates a fusion graph by
combining the adaptive graph and the adjacency graph. Sub-
sequently, the augmented data and fusion graph are fed into
a stacked graph convolutional module to extract multi-level
spatial features. The enhanced gated recurrent unit utilizes the
augmented data and the spatial features obtained from stacked
graph convolutional to extract spatio-temporal features. The
residual connection unit combines the directly extracted fea-
tures from the original input data with the spatio-temporal
features. Finally, the output layer utilizes the features fused
by the residual connection unit to make predictions and obtain
the final prediction results.

Fusion Graph Construction
Adaptive
H Graph #
H Learning
- | l
Adaptive Adjacency
Graph Graph
Input Data
: Fusion
l : Graph
©  InputLayer S .
""""""""""""" Stacked fusion graph convolution |
=N = F
! | Enhanced GRU |
*,—, s —_— e —
,,,,,,, |
L Residual Connection Unit
——> Linear —— —> Relu —— LayerNorm
|
!
Output Layer
el —  ecrwei | — [

FIGURE 2. The architecture of the FGCN-EGRU model.

B. FUSION GRAPH CONVOLUTION

Traffic flow data contains abundant spatial correlation infor-
mation, and effectively constructing the road network graph
structure enables graph convolutional networks to better
capture this spatial correlation information. In the traffic
network, the relationships between nodes are influenced by
various factors, a single adjacency graph structure is not
sufficient to effectively represent the relationships between
road nodes. Although some methods introduce adaptive graph
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to explore hidden relationships between nodes, they often
treat the adaptive graph as indirect spatial information, fail
to effectively integrate the predefined graph structure and the
adaptive graph structure.

To enhance the representation of node relationships and
better extract spatial correlations between traffic flow data,
we propose a fusion graph convolutional network(FGCN).
Firstly, we construct a fusion graph structure to enhance the
representation of node relationships. Then, graph convolution
operations are performed based on the fusion graph structure
and Chebyshev approximation to better extract spatial corre-
lations.

The adjacency graph G; = (V, E, Ayg)) is constructed
based on the road connection relationships which given the
traffic dataset. The adjacency matrix A,q; of the adjacency
graph G is expressed as formula (2).

17
Aadj = [ 0

The adaptive graph G, = (V, E%P A,,,) is generated by
the adaptive graph learning layer in a data-driven manner.
In the adaptive graph learning layer, two Learnable parameter
matrices P; € RV*4 and P, € RTN are generated, where N
is the number of road network nodes and d is the dimension of
the parameter matrix. Then, Py and P, are multiplied to infer
the spatial correlation between nodes, and the correlation
matrix A., of adaptive graph G» is generated as formula (3).

(vi,vj € V) & ((vi vj) € E7)
otherwise

@)

Acor = softmax (ReLU (P - P2)) (€)

In formula (3), the ReLU activation function is used to
eliminate the negative weight between nodes, and the softmax
activation function is used to normalize the matrix.

The fusion graph Gz = (V, Ef, Agys) is obtained by com-
bining the adaptive graph and the adjacency graph. As shown
in formula (4), the spatial matrix Ag, of the fusion graph is
calculated by summing the adjacency A,y and the correlation
matrices Acor.

Afus = Aadj + Acor (4)

Guided by the loss function, the adaptive graph matrix
is continuously updated during the training process, so that
the dynamic correlation between nodes is mined and quan-
tified from the data streams. By combining the adjacency
graph and the adaptive graph, the fusion graph can extract
the spatial dependency relationship from the time-varying
dynamic traffic volume and the static road network structure.
So, the fusion graph can better represent the dynamic spatial
correlation of traffic status based on a given traffic network
structure.

In order to fully leverage the rich representation of node
relationships in the fused graph structure, we use a spectral
graph convolution network [33] to extract the spatial correla-
tion information of traffic data. The Laplacian matrix of the
traffic network is defined as L=D - Ay, where D is the degree
matrix of Ag,s. The Laplacian matrix can be decomposed into
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L = UAUT, A is adiagonal matrix composed of eigenvalues
of L, and U is a Fourier basis composed of eigenvectors of L.
The spectral convolution operation is shown in equation (5)

gc(L,x) =gy (L) x = Ugy (A) U'x )

where, gc represents graph convolution operation, gg is con-
volution kernel, x is input data, and gy(A) is the spectral
domain convolution kernel obtained by Laplacian matrix fea-
ture decomposition.

In traffic flow prediction tasks, the graph structure of realis-
tic traffic road networks is relatively large, and the calculation
of the convolution kernel in the spectral domain by Laplacian
matrix decomposition has a great computational cost, which
affects the training convergence of the model. Therefore,
we use the Chebyshev polynomial approximation [34] of
order K to solve this problem.

The recursive formula of chebyshev polynomial is
To(x) = 1,Ti (0) = x, Te (x) = 2xTj—1 (x) — Tx—2 (x).
Using Chebyshev polynomial approximation to replace the
convolutional kernel as shown in equation (6).

K-1
20 (M) = > 6T (A)
k=0

A= A—1In 6)

)\‘ max

where, 0y, is the polynomial coefficient, and Amay is the largest
eigenvalue. Using polynomial approximation expansion to
solve this formula is equivalent to aggregation 0 ~ K — 1 of
neighbor information around node by a convolution kernel.

The convolution operation after the Chebyshev approxima-
tion substitution is shown in equation (7).

gc(L,x)=U Eekn (A) UTx = Kieka (Z) x
k=0 k=0

The fusion graph convolutional neural network directly
performs convolution based on the Laplacian matrix, elim-
inating the need for feature decomposition and reducing
computational complexity. Moreover, this graph convolu-
tional networks based on fusion graphs can better utilize
the relationships between nodes, thereby capturing spatial
correlations between data more effectively.

C. STACKED FUSION GRAPH CONVOLUTION

The traffic network has a complex road connection rela-
tionship, and there is a wide range of spatial dependencies
between road network data. When congestion occurs in some
sections of the traffic network, it will not only affect the
traffic conditions of nearby sections but also affect the traf-
fic conditions in the distance. This indicates that there are
short and long-range spatial dependencies in traffic flow data.
How to better capture the multi-level spatial dependence
relationship in road network data is important to improve the
performance of traffic flow prediction. Since our fusion graph
convolutional network can only extract K — order neighbor
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information, it cannot well mine the long-range dependence
of road network data, and as K gradually increases, the local
feature extraction ability of the network will become weak.

To capture the multi-level spatial dependence, a stacked
fusion graph convolution module is constructed. This module
stacks three graph convolutional layers together, progres-
sively passing and updating node features layer by layer,
thereby gradually extracting higher-level spatial correlation
information. The stacked graph convolution module can be
represented as formula (8).

Xinge = 8¢ (i gc (Z gc (Z, x))) (8)

D. ENHANCED GATED RECURRENT UNIT

There are not only multi-level spatial correlations between
traffic network data but also multi-scale temporal correla-
tions. For example, the traffic state at a certain moment
will not only affect the traffic state at the next neighbor
moment but also affect the traffic state at multiple subse-
quent moments. Capturing the spatial correlation between
traffic flow data through graph convolutional networks alone
is not sufficient for accurate traffic flow prediction. There-
fore, we introduce recurrent neural networks combined with
graph convolution for spatio-temporal correlation extrac-
tion. However, traditional recurrent neural networks suffer
from the issues of vanishing or exploding gradients, and
when propagating information across time steps with a
limited capacity of hidden state units, they tend to forget
early relevant information. This leads to the network having
difficulties in effectively capturing long-term temporal corre-
lations between traffic flow data.

In order to better capture the correlation information
among traffic flow data, we design an enhanced gated recur-
rent unit(EGRU). By introducing the gating mechanism, the
flow of information is effectively controlled, thus mitigat-
ing the effects of gradient vanishing and gradient explosion.
At the same time, an enhanced attention mechanism is used to
focus and update the early correlation information, reducing
its forgetting during the time-step propagation. The structure
of the enhanced gated recurrent unit is shown in Figure 3.

The inputs of the enhanced gated recurrent unit are H;_1,
Xinge X/T’ where, H;_; is the hidden state at moment ¢ — 1,
which holds the information of the spatio-temporal features
extracted at moment #-1. X, is the output of the stacked
graph convolution, representing the spatial features extracted
by the stacked graph convolution. x;. is the input data after
dimension elevation, with the original temporal features of
the data. In the enhanced gated recurrent unit, the reset gate r
is calculated using X, allowing more relevant information
from the previous state to be retained in the next state. The
attention scores play a crucial role in combining X, and
H;_1, leading to the creation of X, which is subsequently
employed to calculate the update gate z. This update gate
governs the degree to which the previous state influences the
current state.
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FIGURE 3. The architecture of enhanced gate recurrent unit.

The specific computation process for calculating the atten-
tion scores to merge Xyoc and H; | into X, which contains
rich spatio-temporal features, is shown as follow:

Splicing the output X;,¢. of the stacked graph convolution
with the previous hidden state H;_; to obtain M as for-
mula (9).

M = XmgC”Ht—l (9)

The attention scores of Xj,ec and H, 1 are calculated using
the softmax function as follows:

P = softmax (M)

Py, P, = split (P) (10)

where, split () is the tensor splitting operation, Ps and P; are
the attention scores matrices of Xy, and H; 1.

Combining X,,e. and H;_; using the attention scores obtain
X, as formula (11).

XstZPs'Xmgc‘i‘Pt‘Htfl (11)

The X, integrates the temporal and spatial features in the
road network data. Using it to compute the update gate allows
more spatio-temporal features from the previous state to be
copied into the new state, reducing the omission of relevant
information during the gate update process.

The process of calculating the gate unit using Xj¢. and Xy,
and updating the hidden state with y7., is as follows.

r=o (Wr 'Xmgc + U, 'Ht—l)
=0 W, - Xy +U;-H,_1)
h = tanh (Wh . er +r- UhH(;_1))

H =zxHo_1y+ (1 —2)%h (12)

where, h is the candidate hidden unit, H; is the current
moment’s hidden state, o is the sigmode activation function,
the W and U are learnable weight parameters.

The enhanced gated recurrent unit obtains spatio-temporal
features through the original input, the output of the graph
convolution, and the hidden units. It adopts a novel approach
to compute the gate mechanism, effectively avoiding gradi-
ent issues and reducing the loss of correlation information
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during the time step propagation. Additionally, the network
eliminates the bias terms in the update formula, reducing the
number of parameters.

E. RESIDUAL CONNECTION UNIT

Ignoring the direct useful information in the original input
data and relying solely on the spatio-temporal features
extracted by the enhanced gated recurrent unit cannot achieve
accurate predictions. Moreover, as the multiple different net-
work stacks in the model, more and more activation functions
are introduced, and the model begins to degrade and has prob-
lems such as gradient dispersion, resulting in poor prediction
performance.

To solve the gradient vanishing and better utilize the
features in the original data, we introduce a residual con-
nection unit to fuse the origin input data with the extracted
spatio-temporal features. As shown in Figure 1, the residual
connection unit has two input branches, one is the origi-
nal input data y7, and the other is the data processed by
the gated recurrent unit H;. The residual connections unit
employs a linear layer to extract direct features from the
original input data. These direct features are then added and
fused with the spatio-temporal features. Subsequently, the
fused features undergo relu activation function and Layer-
Norm. Utilizing these fused features enables more accurate
prediction of future traffic flow data. Additionally, with the
introduction of residual connections, gradients can propagate
directly through cross-layer connections during backpropa-
gation, avoiding the vanishing gradient issue.

The residual connection unit can be defined as

formula (13).
Xyc = LayerNorm (relu (Linear () + relu (Hy))) (13)

We take the output of the residual connection unit X, as
the final output and use the fully connected layer in the output
layer to convert the output into the final prediction result x;,.
The calculation process is shown in equation (14).

Xp = XreWo + by (14
where, W, and b,, are weight matrices.
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V. EXPERIMENT

A. DATASETS

We selected four benchmark datasets PEMS03, PEMS04,
PEMSO07, and PEMSOS in the field of traffic flow prediction
for experiments. They are from the PEMS (Caltrans Perfor-
mance Measurement System) traffic flow monitoring system.
The system deployed 39,000 detectors in major areas of
California and collected data every 30 seconds. The collected
traffic characteristics include traffic flow, road occupancy,
and traffic speed. The data set aggregates the original data
every five minutes, containing 288 data points per day. The
specific information of the dataset is shown in the following
table.

TABLE 1. Details of four datasets.

Dataset Nodes Edges Time range Time steps
PEMSO03 358 547 9/1/2018-11/30/2018 26208
PEMS04 307 340 1/1/2018-2/28/2018 16992
PEMSO07 883 866 5/1/2017-8/31/2017 28224
PEMSO08 170 295 7/1/2016-8/31/2016 17856

B. EVALUATION METRICS

The experiment selects three commonly used evaluation met-
rics in the research field, including Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), and Root
Mean Square Error (RMSE). The specific calculation formu-
las are as follows.

1 M N
MAE:M—NZZ

i=1 j=I

l ii
MAPE = —
MN = j=1

¥ =3,

Y,

i

1 M N

RMSE = | —
w22

(-5 as

In the above formula, y} and 3 is the real value and the
predicted value of node i at time j, M is the number of nodes
in the road network, and N is the time step length of the
sequence. The lower the value of the three evaluation indexes,
the better the prediction performance of the model.

C. BASELINE METHODS
Compare the proposed model with the following representa-
tive models:

Chebynet [34]: An improved graph convolutional neu-
ral network, which uses Chebyshev polynomials to perform
graph convolution operations, can effectively learn the repre-
sentation of graphical data.
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GRU [35]: An improved recurrent neural network, which
uses an update gate and a reset gate to determine which
information can eventually be used as the output of the gated
recurrent unit.

STLGRU [36]: A spatio-temporal graph gated recurrent
unit, which uses memory-enhanced attention and gating
mechanisms to capture local and global spatio-temporal rela-
tionships of traffic data.

STSGCN [37]: A spatio-temporal network prediction
model, which connects the spatial graphs of multiple neigh-
bor time steps, and uses the graph convolution method to
capture the local spatio-temporal correlation.

STGODE [38]: A spatio-temporal graph ordinary dif-
ferential equation network, which captures dynamic
spatio-temporal correlation through a tensor-based ordinary
differential equation (ODE), and uses time-expanded convo-
lution structure to capture time features.

STFGNN [39]: A spatio-temporal fusion graph neural net-
work, which constructs a spatio-temporal graph by fusing
multiple graphs and learns the spatio-temporal correlations
using stacked gate convolution modules.

STDSGNN [40]: A dynamic fusion graph neural net-
work, which integrates multiple spatial information through
dynamic weighted fusion, and utilizes stacked injection
structures to extract spatio-temporal features across multiple
layers.

STGPCN(Kronecker) [41]: A spatio-temporal graph con-
volutional neural network, which combines graph product
methods to construct graph structures and utilizes graph
product convolutional networks to extract spatio-temporal
features.

D. EXPERIMENT AND PARAMETER SETTINGS

The experiments were conducted in a Python environment
using the Pytorch 1.12.1 framework. The CPU of the device
used is Intel(R) Core(TM)i7-13700KF, and the GPU is
NVIDIA GeForce RTX4090. The dataset was divided into a
training set, validation set, and testing set in a ratio of 6:2:2.
We train the model on a training set, optimize the model
using a validation set, and finally use a testing set to evaluate
the performance of the model. The data was normalized
with zero-mean normalization. This study uses one hour of
historical traffic flow data to predict the next hour of traffic
flow data.

To achieve better model performance, we employed a man-
ual tuning strategy to adjust the main parameters of the model
on the validation set. The adjustments included: bach size =
[8, 16, 32, 64], optimization = [Adam, Nadam, RMSProp,
RAdam], learning rate = [0.1, 0.01, 0.001, 0.0001], the order
of Chebyshev polynomials =[1, 2, 3, 4, 5],embedding dimen-
siond = [5, 10, 15,20, 25], and elevated dimension F = [16,
32, 64, 128, 256]. After conducting experiments, we set the
batch size to 32, chose NAdam as the model optimizer, set the
learning rate to 0.001, and configured the order of Chebyshev
coefficient to be 3. The embedding dimension and elevated
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TABLE 2. The performance of the different models on the four datasets.

PEMS03 PEMS04 PEMS07 PEMS08
Methods MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
Chebynet 3647 5451 5209 52.65 7084 4338 604 7926 37.19 5071 685  45.08
GRU 2047 3467 2063 2646 4112 1823 2938 4498 1296 2137 3324 1370
STSGCN 1748 2921 1678 21.19 33.65 139 2426 39.03 1021 17.13 2686  10.96
STLGRU 1675 27.04 1588 21.05 3344 1388 2306 37.07 999 1683 2635 10.74
STGPCN 1711 2899 1648 2096 3335 1378 2402 3877 1008 1641 2560 1043
(Kronecker)

STDSGNN  16.12 2559 1615 20.67 3240 13.83 2291 3495 1006 1673 2559  10.84
STGODE 165 2784 1669 2084 3282 1377 2299 3754 1014 1681 2597  10.62
STFGNN 1677 2834 163 19.83 31.88 13.02 2207 358 921 1664 2622 106

FGCN-EGRU 1551 2639 1459 1097 31.82 1328 2202 3497 931 1605 2526 10.24

dimension were determined as 10 and 64, with details of the
choices visible in the experimental section.

E. PREDICTION PERFORMANCE COMPARISON

On four datasets, FGCN-EGRU and eight baseline mod-
els are used to predict traffic flow data for the next hour.
The prediction performance of different models is shown
in Table 2. Compared with other methods, FGCN-EGRU
achieves the best prediction performance on PEMS03 and
PEMSO08 datasets. The evaluation index MAE and MAPE
on the PEMSO04 dataset are slightly poorer than the model
STFGNN, and only the MAPE on the PEMSO07 dataset
is slightly higher than the model STFGNN. Overall, our
model shows relatively good prediction performance in four
datasets.

The experimental results are analyzed from four aspects:
time correlation, spatial correlation, spatio-temporal corre-
lation, and heterogeneity of traffic flow. The model GRU,
which only considers temporal correlation, has weak predic-
tion performance. GRU can use gating mechanisms to capture
temporal correlation in traffic flow data and combine relevant
historical information with current traffic flow data for pre-
diction. However, since this model does not exploit spatial
correlation in traffic flow data, its prediction performance
is less than ideal. The model Chebynet, which only con-
siders spatial correlation, has poor prediction performance.
Chebynet combines spatial topology with traffic flow data
for convolution and can extract some spatial correlation in
traffic flow data for prediction. However, because it does not
fully extract spatial correlation in data and ignores temporal
correlation, it performs poorly in traffic flow prediction tasks.
Models based on spatio-temporal correlation, such as STL-
GRU, STSGCN, STDSGNN, and STGPCN (Kronecker),
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have better prediction performance than Chebynet and GRU
models. This is because the change in traffic flow is influ-
enced by both time and space dimensions, and these methods
use multiple convolutions or combine gating mechanisms
to exploit the complex spatio-temporal correlation in traffic
flow data for prediction, achieving good results. STDSGNN
and STGPCN (Kronecker) perform convolution based on
multi-graph information, which allows them to better capture
spatial correlations in the data, resulting in superior pre-
dictive performance compared to STLGRU and STSGCN.
Models considering heterogeneity, such as STGODE and
STFGNN, have better prediction performance than STDS-
GNN and STGPCN (Kronecker) because the spatio-temporal
correlation in traffic flow data is dynamic. These two models
use some modules to exploit the dynamic spatio-temporal
correlation in traffic flow data for prediction and achieve good
results. FGCN-EGRU has better prediction performance than
STGODE and STFGNN, mainly because the stacked fusion
graph convolutional layers and enhanced gated recurrent unit
in our model can capture spatio-temporal correlation in data
effectively.

F. ABLATION STUDY

In order to optimize the model structure and verify the validity
of the model components. Experiments were conducted on
the PEMS04 and PEMSO08 datasets to explore the effects of
different hyper parameters, different components, and differ-
ent graph matrices on the model prediction performance.

1) EFFECT OF HYPER PARAMETER

The dimension F of the input layer elevated data has
a significant impact on the predictive performance of
the model. Either too high or too low a dimension is
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FIGURE 4. MAE,RMSE and MAPE of different elevated dimensions on two datasets.
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FIGURE 5. MAE,RMSE and MAPE of different embedding dimension on two datasets.

detrimental to the performance of model. In order to find the
optimal elevated dimension, the elevated dimension F is set
to [16,32,64,128,256] for the experiments respectively, and
the experimental results are shown in Figure 4.

From the evaluation index of prediction performance, it can
be seen that with the increasing dimension, the prediction
performance of the model first increases and then decreases.
When the dimension is 64, the model performance is rela-
tively good. The reason for this phenomenon is that the higher
dimension can enhance the expression ability of the data and
improve the fitting ability of the model. However, too high
a dimension will cause the model to learn abnormal sample
data characteristics, resulting in overfitting.

The dimension d of the parameter matrix is of great signif-
icance for exploring the spatio-temporal correlation between
road nodes. Too large or too small a matrix dimension will
affect the quality of the generated correlation matrix. The
embedding dimension d is set to [1,5,10,15,20,25] for the
experiments respectively, and the experimental results are
shown in Figure 5.

As the embedding dimension increases, the prediction per-
formance of the model first increases and then decreases.
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When the dimension is 10, the model performance is rela-
tively good. This is because the small embedding dimension
will limit the representation of node information so that
the model cannot infer the accurate spatial correlation from
the limited node information. As the embedding dimension
increases, the node information is enriched, and the corre-
lation matrix derived by the model is more accurate. The
prediction performance is better, but as the embedding dimen-
sion continues to increase, the number of model parameters
also increases rapidly, model optimization becomes difficult,
and the prediction performance is weakened.

According to the above two sets of experimental results,
the number of elevated dimensions of the model is set to 64,
and the embedding dimension is set to 10.

2) EFFECT OF DIFFERENT COMPONENTS

FGCN-EGRU consists of four main units: fusion graph con-
volution neural network, stacked graph convolution module,
enhanced gated recurrent unit, and residual connection unit.
To verify the validity of each unit of the model, we designed
four variant models for ablation experiments on PEMS04
and PEMSO0S.
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FIGURE 6. Performance of different model variants at different time steps.

FGCN-EGRU(LRC): removes the residual connection unit
from the model.

FGCN-EGRU(LFGCN): uses a traditional graph convolu-
tion neural in the model instead of the fusion convolution
neural to capture spatial features.

FGCN-EGRU(LMGCN): removes the stacked graph con-
volution layers and uses only a single layer of graph
convolution for spatial feature extraction.

FGCN-EGRU(LEGRU): uses conventional gated recurrent
units in the model instead of enhanced gated recurrent units
to capture temporal features.

The experimental results are shown in Fig. 6. The
FGCN-EGRU model achieves the best prediction perfor-
mance on both datasets, indicating that the model frame-
work can effectively integrate different units. The FGCN-
EGRU(LRC) model has the worst prediction performance as
a whole, because the residual connection unit can solve the
problem of model optimization caused by multi-layer net-
work stacking, after removing the residual connection unit,
this problem will seriously affect the prediction performance
of the model. The prediction performance of the FGCN-
EGRU(LMGCN) model is slightly lower than that of the
FGCN-EGRU, which reflects that the stacked graph convolu-
tional network can capture multi-level spatial correlation and
improve the prediction performance.
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The FGCN-EGRU(LEGRU) model has a very poor pre-
diction performance on the PEMS08 dataset, because the
number of road network nodes in the PEMSO08 dataset is
relatively small, and the spatial correlation between data
is weak. At this time, the model mainly relies on mining
the time correlation between data streams for prediction.
After the lack of enhanced gated recurrent units, the model
cannot capture the time correlation between data well, and
the prediction performance is poor. FGCN-EGRU(LEGRU)
has a similar prediction performance to the FGCN-EGRU
model on the PEMS04 dataset, because the number of road
network nodes in the PEMSO04 datasets is relatively large,
and the spatial correlation between data is strong. Using
the stacked fusion graph convolution block in the model to
capture the rich spatial correlation between data can achieve
good prediction accuracy. The prediction performance of the
FGCN-EGRU(LFGCN) model on the PEMS04 data set is
poor, and the prediction performance on the PEMS08 data set
is slightly lower than that of the FGCN-EGRU, because the
model does not capture the complex spatial correlation in the
PEMSO04 dataset well using traditional graph convolutional
networks, the prediction performance is weak. The spatial
correlation of the PEMSOS data set is relatively simple, using
the enhanced gated recurrent unit to obtain time features can
achieve good prediction.
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TABLE 3. Prediction results of different adjacency matrices on two datasets.

Datasets Metrics 1 A Aoy Aps
PEMS04 MAE 22.97 21.92 21.04 19.97
RMSE 36.45 34.55 33.20 31.82
MAPE (%) 15.45 14.63 14.00 13.28

PEMS08 MAE 17.76 16.83 16.05 16.05
RMSE 28.16 26.28 25.37 25.26
MAPE (%) 11.14 10.56 10.18 10.24

3) EFFECT OF DIFFERENT GRAPH MATRIX

This part explores the influence of four different graphs on
the prediction performance. Table 3 shows the prediction
evaluation index scores of the model using unit matrix /,
adjacency matrix Aggj, correlation matrix Ao, and fusion
matrix Ay, at different time steps. When using unit matrix /,
the model does not obtain the spatial correlation informa-
tion of traffic flow data, but FGCN-EGRU still has good
prediction performance on two data sets, which shows the
effectiveness of our proposed framework. When using the
adjacency matrix A,gj, the model obtains the spatial correla-
tion generated by the spatial connection relationship, and the
prediction performance has been improved. The prediction
performance of the model using the correlation matrix A, is
better than that using the adjacency matrix A,qj, because the
node correlation information contained in the A.,, is more
comprehensive than A,g;. The fusion matrix Ag,s combines
the adjacency matrix A,g; and the correlation matrix Acoy,
which contains abundant spatial correlation information and
has better prediction performance in the model.

4) COMPUTATIONAL COMPLEXITY ANALYSIS

To further assess FGCN-EGRU, we compared the model and
its different variants in terms of parameter count, training
time, and model performance on the PEMSO08 dataset (as
shown in Table 4).

GCN-GRU: The base model for FGCN-EGRU, sharing
the same model structure as FGCN-EGRU. FGCN-EGRU
improves upon GCN-GRU by replacing the GCN with FGCN
and replacing GRU with EGRU, achieving optimal model
performance.

FGCN-GRU: In FGCN-GRU, FGCN is introduced to
replace GCN for spatial feature extraction while retaining the
GRU for temporal feature extraction.

GCN-EGRU: In GCN-EGRU, EGRU is introduced to
replace GRU for temporal feature extraction while retaining
the GCN for spatial feature extraction.

GCN-GRU employs traditional graph convolutional net-
works and GRU for spatiotemporal feature extraction, with
minimal parameter count and training time, but lower
predictive performance. With the introduction of FGCN,
FGCN-GRU showed some increases in parameter count and
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TABLE 4. Comparison of parameters, training time, and model
performance of different models.

Model ~ Number of Training Metric
Parameters  Time(s/100epoch)  (MAE)
((}}%I{IJ_ 104685 2503.37 21.52
Fggg_ 108085 2805.79 21.47
SC?II{\II-J 130016 3486.22 16.46
1;%(}2\[2— 133416 3930.86 16.05

training time, as FGCN combines adaptive graph structures
with adjacency graph structures for spatial feature extraction,
thereby adding to parameter count and training time. Upon
introducing EGRU, GCN-EGRU exhibited a significant
increase in parameter count, primarily because EGRU utilizes
attention scores to combine spatial and temporal information
for update gate computation. The introduction of attention
mechanisms led to an increase in parameter count and train-
ing time. FGCN-EGRU, with the incorporation of FGCN and
EGRU, experienced some increases in model parameter count
and training time, but displayed significant improvements
in predictive performance. Considering the balance between
computational cost and performance enhancement, the com-
putational complexity of FGCN-EGRU remains reasonable.

G. VISUALIZATION

1) PREDICTION RESULTS VISUALIZATION

To better showcase the model’s prediction performance,
we visualized the traffic flow values of Section 123 from the
PeMSO04 dataset and Section 80 from the PeMS08 dataset.
The visualization included real traffic flow values of the road
and the model’s traffic flow predictions for 5 minutes, 30 min-
utes, and 60 minutes. For these two roads, we visually display
the traffic flow of one day and one week respectively, and the
results are shown in Figure 7 and Figure 8. It can be seen
from the figure that the traffic flow data curves predicted in
different time domains are very close to the real data curves,
which indicates that the model can capture the traffic flow
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FIGURE 8. Visualization of traffic flow on the PEMS08 dataset.
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FIGURE 9. Heatmap of four kinds of adjacency matrix on PEMS08.

characteristics under the real road network and make accurate adjacency matrix Ag,gj, correlation matrix Acy,, and fusion
matrix Agps on the PEMS04 and PEMS08 datasets. Hotspots

of different colors represent the correlation weights between
2) DIFFERENT GRAPH MATRIX VISUALIZATION different nodes. It can be seen from the graph that the
To better validate the effectiveness of our proposed fusion non-zero elements of the / on the two datasets are concen-
graph. Figure 9 and Figure 10 visualize the unit matrix 7, trated on the diagonal, which ignores the correlation between

predictions.
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FIGURE 10. Heatmap of four kinds of adjacency matrix on PEMS04.

different nodes. The A,g; is sparse, and only a small amount of
data is non-zero, which means that the matrix only captures
the node relationships from the spatial adjacency. The A.,,
contains more non-zero elements than the A4, indicating that
the correlation matrix obtained by the data-driven method
contains richer node relationship information. The Ay is
dense than the A.,,, and the overall element value is greater
than the correlation matrix, which reflects that the fusion
correlation matrix has more perfect spatial node relationships.

VI. CONCLUSION

In this paper, a new traffic flow prediction model based on
fusion graph convolution and enhanced gated recurrent units
is proposed. The model uses the fusion graph convolutional
network combined with enhanced gated recurrent unit to
extract temporal and spatial features, and fuses the extracted
spatio-temporal features with the direct features through the
residual connect unit for flow prediction. We conducted
ablation experiments on partial hyper parameters, different
adjacency matrices, and some model variants to select the
optimal model structure. The results of rich experiments on
four real data show that the prediction performance of the
FGCN-EGRU model is better than other comparison models.

We visualized the prediction results to demonstrate the
accuracy of the predictions. And the different graph matrices
are visualized too, which shows that the fusion graph pro-
posed by us has better spatial correlation information.

In future work, we will consider constructing an abun-
dant graph structure, designing a better multi-graph fusion
method, and combining weather information, holidays, and
other external factors to further improve the accuracy of the
model prediction.

REFERENCES

[11 M. R. Jabbarpour, H. Zarrabi, R. H. Khokhar, S. Shamshirband, and
K.-K.-R. Choo, “Applications of computational intelligence in vehicle
traffic congestion problem: A survey,” Soft Comput., vol. 22, no. 7,
pp- 2299-2320, Apr. 2018.

K. Cho, C. Gulcehre, D. Bahdanau, F. Bougares, and H. Schwenk, “Learn-
ing phrase representations using RNN encoder—decoder for statistical
machine translation,” 2014, arXiv:1406.1078.

D. Kang, Y. Lv, and Y.-Y. Chen, “Short-term traffic flow prediction with
LSTM recurrent neural network,” in Proc. IEEE 20th Int. Conf. Intell.
Transp. Syst. (ITSC), Oct. 2017, pp. 1-6.

J. Zheng and M. Huang, ““Traffic flow forecast through time series analysis
based on deep learning,” IEEE Access, vol. 8, pp. 82562-82570, 2020.

[2]

[3]

[4]

56490

[5]

[6

[71

[8

—

[91

[10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

[21]

(22]

Acar

L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li,
“T-GCN: A temporal graph convolutional network for traffic prediction,”
IEEE Trans. Intell. Transp. Syst., vol. 21, no. 9, pp. 3848-3858, Sep. 2020.
Y. Zhao, X. Han, and X. Xu, “Traffic flow prediction model based on the
combination of improved gated recurrent unit and graph convolutional net-
work,” Frontiers Bioeng. Biotechnol., vol. 10, Feb. 2022, Art. no. 804454.
J. Lu, “An efficient and intelligent traffic flow prediction method based
on LSTM and variational modal decomposition,” Meas., Sensors, vol. 28,
Aug. 2023, Art. no. 100843.

P. Redhu and K. Kumar, “Short-term traffic flow prediction based on
optimized deep learning neural network: PSO-Bi-LSTM,” Phys. A, Stat.
Mech. Appl., vol. 625, Sep. 2023, Art. no. 129001.

R. Fu, Z. Zhang, and L. Li, “Using LSTM and GRU neural network
methods for traffic flow prediction,” in Proc. 31st Youth Academic Annu.
Conf. Chin. Assoc. Autom. (YAC), Nov. 2016, pp. 324-328.

P. Sun, A. Boukerche, and Y. Tao, “SSGRU: A novel hybrid stacked GRU-
based traffic volume prediction approach in a road network,” Comput.
Commun., vol. 160, pp. 502-511, Jul. 2020.

Q. Li, R. Cheng, and H. Ge, “Short-term vehicle speed prediction based
on BiLSTM-GRU model considering driver heterogeneity,” Phys. A, Stat.
Mech. Appl., vol. 610, Jan. 2023, Art. no. 128410.

L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, “Adaptive graph convolu-
tional recurrent network for traffic forecasting,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 33, 2020, pp. 17804-17815.

Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting
the dots: Multivariate time series forecasting with graph neural networks,”
in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
California, CA, USA, Aug. 2020, pp. 753-763.

L. Zhao, Y, Zhang, and Z. Zhang, ‘‘Adaptive spatial-temporal convolution
network for traffic forecasting,” in Proc. KSEM, 2022, pp. 287-299.

L. Chang, C. Ma, K. Sun, Z. Qu, and C. Ren, “Enhanced road information
representation in graph recurrent network for traffic speed prediction,” IET
Intell. Transp. Syst., vol. 17, no. 7, pp. 1434-1453, Feb. 2023.

J. Klepsch, C. Kliippelberg, and T. Wei, ‘‘Prediction of functional ARMA
processes with an application to traffic data,” Econometrics Statist., vol. 1,
pp. 128-149, Jan. 2017.

Z.Z. Wang, A. Safikhani, Z. Y. Zhu, and D. S. Matteson, “Regularized
estimation in high-dimensional vector auto-regressive models using spatio-
temporal information,” 2020, arXiv:2012.10030.

X.-S. Trinh, D. Ngoduy, M. Keyvan-Ekbatani, and B. Robertson, “Incre-
mental unscented Kalman filter for real-time traffic estimation on motor-
ways using multi-source data,” Transportmetrica A, Transp. Sci., vol. 18,
no. 3, pp. 1127-1153, Dec. 2022.

T. Devi, K. Alice, and N. Deepa, ““Traffic management in smart cities using
support vector machine for predicting the accuracy during peak traffic
conditions,” Mater. Today, Proc., vol. 62, pp. 4980-4984, Jan. 2022.

G. Lin, A. Lin, and D. Gu, “Using support vector regression and K-
nearest neighbors for short-term traffic flow prediction based on maximal
information coefficient,” Inf. Sci., vol. 608, pp. 517-531, Aug. 2022.

J. L, Kong, X. M. Fan, X. B. Jin, and M. Zuo, “Traffic flow prediction via
variational Bayesian inference-based encoder—decoder framework,” 2022,
arXiv:2212.07194.

X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, ‘““Learning traffic as
images: A deep convolutional neural network for large-scale transportation
network speed prediction,” Sensors, vol. 17, no. 4, p. 818, Apr. 2017.

VOLUME 12, 2024



C. Cai et al.: Spatial-Temporal Traffic Flow Prediction

IEEE Access

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

J, B. Zhang, Y. Zheng, and D. K. Qi, “Deep spatio-temporal residual
networks for citywide crowd flows prediction,” in Proc. AAAI, vol. 31,
no. 1. San Francisco, CA, USA, Feb. 2017, pp. 1655-1661.

B. Yu, H. T. Yin, and Z. X. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” 2017,
arXiv:1709.04875.

Y. G. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” 2017, arXiv:1707.01926.
Y. Chen, K. Li, C. K. Yeo, and K. Li, “Traffic forecasting with graph
spatial-temporal position recurrent network,” Neural Netw., vol. 162,
pp. 340-349, May 2023.

W. Weng, J. Fan, H. Wu, Y. Hu, H. Tian, F. Zhu, and J. Wu, “A
decomposition dynamic graph convolutional recurrent network for traffic
forecasting,” Pattern Recognit., vol. 142, Oct. 2023, Art. no. 109670.

M. Xu and H. Liu, “A flexible deep learning-aware framework for travel
time prediction considering traffic event,” Eng. Appl. Artif. Intell., vol. 106,
Nov. 2021, Art. no. 104491.

M. X. Xu, W. R. Dai, C. M. Liu, and X. Gao, ‘““Spatial-temporal trans-
former networks for traffic flow forecasting,” 2020, arXiv:2001.02908.
H. Yan, X. Ma, and Z. Pu, “Learning dynamic and hierarchical traffic
spatiotemporal features with transformer,” IEEE Trans. Intell. Transp.
Syst., vol. 23, no. 11, pp. 22386-22399, Nov. 2022.

X. Ye, S. Fang, F. Sun, C. Zhang, and S. Xiang, ‘“‘Meta graph transformer:
A novel framework for Spatial-Temporal traffic prediction,” Neurocom-
puting, vol. 491, pp. 544-563, Jun. 2022.

J. Liu, Y. Kang, H. Li, H. Wang, and X. Yang, “STGHTN: Spatial—
temporal gated hybrid transformer network for traffic flow forecasting,”
Int. J. Speech Technol., vol. 53, no. 10, pp. 12472-12488, May 2023.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

M. Defferrard, X. Bresson, and P. Vandergheynst, ‘“Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 29, 2016, pp. 1-9.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recur-rent neural networks on sequence modeling,” 2014,
arXiv:1412.3555.

K. K. Bhaumik, F. F. Niloy, S. Mahmud, and S. Woo, “STLGRU:
Spatio-temporal lightweight graph GRU for traffic flow prediction,” 2022,
arXiv:2212.04548.

C. Song, Y. Lin, S. Guo, and H. Wan, “Spatial-temporal synchronous
graph convolutional networks: A new framework for spatial-temporal
network data forecasting,” in Proc. 34th AAAI Conf. Artif. Intell., vol. 34,
no. 1. New York, NY, USA: AAAI Press, Apr. 2020, pp. 914-921.

Z. Fang, Q. Long, G. Song, and K. Xie, “Spatial-temporal graph ODE
networks for traffic flow forecasting,” in Proc. 27th ACM SIGKDD Conf.
Knowl. Discovery Data Mining, Aug. 2021, pp. 364-373.

M. Li and Z. Zhu, “Spatial-temporal fusion graph neural networks for
traffic flow forecasting,” in Proc. AAAI Conf. Artif. Intell., vol. 35, no. 5,
May 2021, pp. 4189-4196.

R. Zhang, F. Xie, R. Sun, L. Huang, X. Liu, and J. Shi, “Spatial-temporal
dynamic semantic graph neural network,” Neural Comput. Appl., vol. 34,
no. 19, pp. 16655-16668, Oct. 2022.

Z.Tan, Y. Zhu, and B. Liu, “Learning spatial-temporal feature with graph
product,” Signal Process, vol. 210, Sep. 2023, Art. no. 109062.

CHUANG CAI received the bachelor’s degree
from the Shandong University of Technology,
in 2021, where he is currently pursuing the mas-
ter’s degree. His research interests include cloud
computing, big data analysis, and traffic flow pre-
diction.

VOLUME 12, 2024

ZHUIAN QU received the Ph.D. degree in engi-
neering from the Beijing University of Posts and
Telecommunications, in 2011. He is currently an
Associate Professor. His research interests include
data analysis algorithms and application tech-
nologies, intelligent computing, and evolutionary
algorithms and their applications.

LIQUN MA was born in Zibo, Shandong. She is
currently pursuing the master’s degree with the
Shandong University of Technology. Her research
interests include artificial intelligence and intelli-
gent data processing.

LIANFEI YU is currently pursuing the master’s
degree with the Shandong University of Tech-
nology, with a major research focus on cloud
computing, big data analysis, and traffic flow pre-
diction.

WENBO LIU received the bachelor’s degree from
the Shandong University of Technology, in 2020,
where he is currently pursuing the master’s degree.
His research interests include cloud computing,
big data analysis, and network traffic prediction.

CHONGGUANG REN received the Ph.D. degree
in computer science and technology from the
Nanjing University of Science and Technology,
in 2013. He currently serves as the Direc-
tor of the Data Intelligence Research Center
at Shandong University of Technology and the
Leader of the Outstanding Young Innovation Team
at Shandong Higher Education Institutions. His
research interests include artificial intelligence,
intelligent robots, and intelligent data processing.

56491



