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ABSTRACT Deep reinforcement learning (DRL) methods have emerged as a feasible solution for
addressing the power resource allocation problem in ultra-dense small-cell networks (UDSCNs). In this
paper, we propose a novel actor-critic-based low-coupling policy optimization (LCPO) framework. Our
framework aims to achieve practicality by employing a design that consists of training and executionmodules
with low coupling. By adopting policy optimization methods, including advantage actor-critic (A2C) and
proximal policy optimization (PPO) with state-dependent exploration (SDE) technique, LCPO demonstrates
stable performance. In this study, we define the research problem of power resource allocation in UDSCNs
and present the mathematical algorithm employed in the LCPO framework. We compare the performance of
LCPOwith other algorithms, such as deep deterministic policy gradient (DDPG) and fractional programming
(FP) algorithms. Through extensive simulations, our proposed LCPO framework outperforms DDPG and FP
algorithms in terms of both performance and execution time. Furthermore, to provide an up-to-date overview
of the current state-of-the-art, we incorporate recent research papers in the field. The inclusion of these
papers enhances the relevance of our study and allows readers to gain insights into the latest advancements
in power resource allocation in UDSCNs. The results of our research highlight the effectiveness of the LCPO
framework in addressing the power resource allocation problem in UDSCNs. The proposed framework offers
superior performance compared to existing algorithms, making it a promising solution for optimizing power
allocation in UDSCNs.

INDEX TERMS Actor-critic, power allocation, policy optimization, small-cell networks

.I. INTRODUCTION
Ultra-dense small-cell networks (UDSCNs) technique, as one
of the important means to realize next-generation com-
munication networks, can increase network capacity and
coverage, and reduce energy consumption [1]. Small-
cell refers to the use of small cell base stations (SBSs)
with low transmitting power, coverage range between ten
meters and two hundred meters, operating at authorized
frequencies, and can be classified into Femtocell, Microcell
and Picocell according to coverage range and operating
environments. SBSs can improve communication quality
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of cellular networks in indoor and other coverage blind
spots, improve total throughput of the system, and reduce
energy consumption of the networkwhile ensuring the quality
of service (QoS) of users, and achieve energy saving and
environmental protection. But there exists serious problem
in UDSCNs due to intra-cell interferences. Interference
control and resource allocation for UDSCNs are hot topics of
current research, which specifically include user association,
spectrum resource allocation and power control.

Currently, it seems a trend to solve the power allocation
problem for wireless networks by adopting deep reinforce-
ment learning methods [2], [3], [4]. We notice that solutions
for UDSCNs in previous work had no consideration of
coupling problem, which means that components such as
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local and central controllers of the framework are tightly
depended and have low robustness.

Q-learning and deep Q-learning (DQL) based power
allocation frameworks such as [5], [6], [7], and [8] are original
suitable for discrete action spaces. For power allocation
problems, it needs to be quantified, which has low accuracy.
[9] presents a power control framework for energy-efficient
power allocation in wireless networks. It introduces a
branch-and-bound procedure with problem-specific bounds,
enabling faster convergence for global optimization. The
reduced complexity of the framework allows for its practical
implementation using deep neural networks, offering a
promising approach for optimal power allocation. The power
allocation frameworks based on deep deterministic policy
gradient (DDPG) such as [10] and [11] are efforts for the
use of DQL in continuous action spaces. References [12]
and [13] use a centralized training and distributed execution
framework and [14] designed a multiple-actor-shared-critic
(MASC)method to synchronize the actor network parameters
between local and central controller, which effectively solves
the latency problem and realistic feasibility. However, due
to DDPG algorithm using action noise for the action
spaces exploration, its convergence is usually not stable and
utterly depends on the settings of a great amount of hyper-
parameters. For a specific environment, it needs to do a lot
of work for tuning and is difficult to deploy in a different
environment directly, that is, the fixed hyper-parameters
can only have significant effect in a specific environment.
Reference [15] presents a deep reinforcement learning
framework for collaborative power management in dense
radio access networks, achieving improved energy efficiency
compared to Q-learning and sleep schemes. The proposed
approach utilizes a deep Q-network to optimize individual
base station energy efficiency and maximize the overall
network energy efficiency. Our previous work [16] proposed
a solution to the power allocation problem in UDSCNs.
The proposed algorithm, called policy optimization of the
power allocation algorithm (POPA), adopts the actor-critic
framework with PPO to update the policy and is designed
to operate in real-time without the need for global real-time
CSI. However, it does not consider the low-coupling issues
and has relatively inferior performance. In the previous paper,
POPA considers a scenario of a relatively simple single-link
network, which may be considered less complex compared to
real-world environments. Additionally, it requires the same
number of Actor-Critic pairs as the number of users, which
can lead to reduced performance and high storage space
requirements. In contrast, The method proposed in this paper,
which considers scenarios closer to reality, stands out for its
novelty and brings improvements in terms of performance
and practicality.

In this paper, we focus on power allocation for UDSCNs
and propose a low-coupling deep reinforcement learning
framework based on an actor-critic architecture, named
low-coupling policy optimization (LCPO), which is able to
achieve an expected good performance both in efficiency

FIGURE 1. Small-cell network environment.

and feasibility. The low-coupling means that the training and
execution process can work more independently. In LCPO,
we compared different policy optimization methods includ-
ing proximal policy optimization (PPO) [17] and advantage
actor critic (A2C) [18]. The state-dependent exploration
(SDE) method [19] is also adopted for action space explo-
ration. The main contribution are summarized as follows.

1) We propose a novel policy optimization framework
for power allocation in UDSCNs using actor-critic
architecture, named low-coupling policy optimization
(LCPO) framework. The training and execution pro-
cess in our proposed LCPO framework are lowly
coupled. This novel design will greatly reduce the
computational complexity of SBSs and ensure that
SBSs can obtain power policy in real time. To achieve
this, the observation, action space and reward function
for deep reinforcement learning are specially designed
in our proposed LCPO framework. And we set up
reward processor which can obtain reward without
interaction with the environment.

2) We adopt A2C methods for policy optimization. The
convergence effect of A2C is fast with high robustness
and has great performance. Besides, the framework can
be highly customised and some other methods are also
compared in this paper.

3) For action exploration in deep reinforce learning,
we adopt state-dependent exploration (SDE) in A2C to
achieve better total spectral efficiency of UDSCNs.

The remainder of this paper is organized as follows.
We give the system model and the power allocation problem
formulation in Sec. II. We describe the proposed power
allocation framework in Sec. III. In Sec. IV, we give the simu-
lation results. Conclusions and discussion are given in Sec V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In this paper, we consider a typical network structure with
power allocation problem as shown in Fig. 1, consisting of
M SBSs and N user equipment (UE). The system model
considers the downlink interference, SBSs share K sub-
carriers with OFDM and one UE is equipped with a single
antenna. The SBSs are connected via back-haul links to a
centralized controller, which has sufficient computing and
storage capacity.
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A. CHANNEL MODEL
Let M = {1, 2, . . . ,M} denotes the set of indexes of the
SBSs, N = {1, 2, . . . ,N } for UE and K = {1, 2, . . . ,K } for
sub-carriers. The channel gains gtmn,k , m ∈ M, n ∈ N, k ∈ K
from SBS m to UE n on sub-carrier k in time slot t are
consisted of large-scale fading β tmn,k and small-scale fading
htmn,k :

gtmn,k = β tij,k |h
t
mn,k |

2 (1)

where large-scale fading considers path loss and shadow
fading and does not vary over long time slots. The small
scale fading is a first order complex Gauss-Markov process
according to the Jakes channel model [20]:

htmn,k = ρht−1
mn,k +

√
1 − ρ2δtmn,k (2)

The correlation factor ρ = J0(2π fdTs), where J0(·) is
the first class zero-order Bessel function, fd is the maximum
Doppler frequency, and Ts is the period of the time-slotted
system. The h0mn,k and δtmn,k are independent identically
distributed complex Gaussian random variables with unit
variance, i.e., following to CN (0, 1).

B. PROBLEM FORMULATION
Assume that UE n is served by SBSm on sub-carrier k in time
slot t , then the signal-to-interference-plus-noise ratio (SINR)
at UE n is:

SINRtn,k =
gtmn,kp

t
m,k∑

i∈M,i̸=m g
t
in,kp

t
i,k + σ 2 (3)

where σ 2 is the additive Gaussianwhite noise (AGWN). Then
the spectral efficiency of UE n is

C t
n,k = log2(1 + SINRtn,k ) (4)

and the total spectral efficiency of the system is

C t
=

∑
n∈N,k∈K

C t
n,k (5)

With the limit of the power ranges of each link, the
optimization problem is

max C t

s.t. 0 ≤ ptm,k ≤ pmax , ∀m ∈ M, ∀k ∈ K (6)

where pmax is the maximum transmitter power of the links.
The optimization problem is non-convex and NP-hard [21],
and each SBS needs to get the power allocation scheme at
the beginning of each time slot t . Model-based optimization
algorithms such as FP [22] andWMMSE [23] have extremely
high computational complexity and require real-time global
channel state information (CSI), which is not feasible in
practice.

III. THE PROPOSED POWER ALLOCATION FRAMEWORK
In order to ensure that the SBSs can get the results in real-
time, and to reduce the computing and storage pressure
on the SBSs, this paper proposes the low-coupling policy
optimization (LCPO) framework for power allocation in
UDSCNs, shown in Fig. 2. In LCPO, proximal policy
optimization (PPO) [17] and advantage actor critic (A2C)
[18] combining with SDE [19] are adopted as policy
optimization methods and redesigned based on the scenario.

A. ALGORITHM DESIGN
1) OBSERVATION AND ACTION SPACE
Given the practical feasibility, the algorithm proposed in this
paper does not require information exchange between SBSs,
which only collect CSI from SBSs and all the operation are
done in the centralized controller. Let stn is the observation for
UE n in time slot t which is only including the information to
determine the spectral efficiency:

stn = {m, k, gt1n,k , g
t
2n,k , . . . , g

t
Mn,k} (7)

where m is the index of SBS which serves UE n and k is
the sub-carrier index. Then the observation of environment
in time slot t is composed by observations of each UE:

st = {st1, s
t
2, s

t
3, . . . , s

t
N } (8)

The action space is the power assigned to the link of UE in
time slot t:

at = {pt1, p
t
2, . . . , p

t
N } (9)

2) REWARD FUNCTION
In our proposed LCPO framework, we design a new reward
function r t as follows

r t = C t
− Ĉ t (10)

where C t is the total spectral efficiency achieved by LCPO,
while the baseline Ĉ t is the total spectral efficiency achieved
by maximum power allocation policy in the same observa-
tion. In our design, the reward r t represents the improvement
of LCPO relative to the baseline power allocation policy, and
can be calculated by using the observation st and the action
at . This novel design guarantees that the policy optimization
process has a stable convergence effect.

3) ACTION SPACE EXPLORATION
For the common case, action space exploration for actor
network while training in DRL is adding noise to the output
action. That is

at = πθ (st ) + ξ t (11)

where πθ (st ) is the output of actor network with the input
st , and ξ t is a noise vector independently sampled from
a Gaussian distribution in time slot t . In LCPO, we use
state-dependent exploration (SDE), which is a well-designed
method for action space exploration [19]. For SDE, the noise
ξ t depends on the state of the environment and is a linear
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FIGURE 2. Our proposed low-coupling policy optimization (LCPO)
architecture.

function of st . That is ξ t = ξφ(st ), where the parameters φ of
the function are sampled from a Gaussian distribution at each
episode. Thus, the exploration is smoother than step-based
exploration and the action for a given state will be the same
during one episode.

B. LOW-COUPLING POLICY OPTIMIZATION
ARCHITECTURE
As shown in Fig. 2, our proposed low-coupling policy
optimization (LCPO) framework consists of the online
execution module and the low-coupling training module.
Different from the frameworks presented in the previous
works where no low-coupling processing were considered,
the low-coupling training module and the online execution
module have no need to exchange large amounts of data
and their connection does not require high real-time in our
proposed LCPO framework. In our proposed LCPO, the
online execution module can still work even if the training
module breakdown, while the training process can continue
by using information in buffers when disconnected from the
execution module. The benefit of our LCPO framework is
obvious, i.e., we can put the low-coupling training module
on any server with powerful computing power while the
execution module which has low computing load on the

centralized controller. Thus, LCPO has high feasibility due
to the low-coupling design.

The online execution module consists of the online actor
network and the observation processor, which converts CSI
into observations. The online actor network is used as the
policy network where the input is the observation st of the
environment and the output is the action at , i.e., the power
allocation policy. The environment obtains the best action
from the online actor network at each time slot and acts before
the next time slot starts to achieve the effect of real-time
power control, while transmitting CSI to the observation
processor.

The low-coupling training module consists of a observa-
tion buffer, a A2C with SDE component, a reward processor
and a reward buffer. The observation buffer stores the
observations st from the online execution module. The offline
actor network, which has the same structure as the online
actor network in the online execution module, completes
the action space exploration and obtains the action at by
using SDE. Thanks to the design of observation and reward
function, the reward processor can calculate the reward r t by
using st and at , and then store it in the reward buffer. The
cumulative reward value Rt is calculated as

Rt = r t + γ r t+1
+ γ 2r t+2

+ . . . + pow(γ,T − t + 1)rT−1

(12)

where γ is the discount factor. The critic network is used as
value network for policy optimization and its input is the state
st , while its output value is V (st ) which is an estimate of the
cumulative reward value Rt for the last T time slots.

The A2C with SDE component performs the policy
optimization process for the offline actor network and critic
network. There is an advantage processor in the A2C with
SDE component, which is responsible for computing the
advantage function At . The advantage function represents the
performance of the current action relative to the old policy
average. For nearest T time slots, At is estimated by using
the widely used method proposed in [18] as

At = χ t
+ (γ λ)χ t+1

+ (γ λ)2χ t+2
+ . . .

+ pow(γ λ,T − t + 1)χT−1 (13)

where χ t
= r t + γV (st+1) − V (st ) is the advantage of the

action in time slot t and r t is the reward of the current action.
The smoothing parameter λ is used for reducing the variance
in training. For the offline actor network, the advantage
function At is first calculated in the advantage processor,
and then the gradient ascent optimization algorithm is
carried out. For the critic network, the cumulative reward
value Rt is used as the target value. The critic network is
trained using the gradient descent algorithm to make its
output value V (st ) close to the cumulative reward value Rt .
The parameters of the offline actor network with the best
reward effect are passed to the online actor network for soft
updating.
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FIGURE 3. The small-cell network scenario in simulation.

TABLE 1. Simulation parameters.

In our proposed LCPO framework, the reward calculation,
action space exploration and training process are all done
in the low-coupling training module, which will reduce the
computational pressure of the online execution module and
ensure the real-time performance.

IV. SIMULATION
A. SIMULATION SETUP
As shown in Fig. 3, the small-cell network withM SBSs ans
N UE is simulated. The length and width of the simulation
area are both 100 meters. Unless otherwise stated, the
parameters for simulation are as follows. For every SBS, the
maximum power Pmax is 30 dBm over 100 MHz frequency
band. In the simulation, we get the distance dependent path
loss by 120.9 + 37.6 log10(d) (in dB) following the LTE
standard, where d is the SBS-to-UE distance in km. The
AGWN power σ 2 is -144 dBm and the log-normal shadowing
standard deviation is taken as 8 dB.

The same architecture is taken for actor and critic
networks, which has one input layer, two hidden layers and
one output layer, and the number of neurons per hidden
layer is 64 as the default network architecture of stable-
baselines3 [24]. The activation function of output layer is
sigmod, and the ReLU is adopted in the hidden layers. The
output is linearly aligned to the power range. The Adam
algorithm [25] is adopted as the optimizer, and the learning
rate for actor network is lra and critic network is lrc are shown
in Table 1with some other parameters. T is the step length of a
training episode and ε is the clip range of PPO algorithm [17].
By default, the offline actor network and the critic networks
are trained 50 times per episode.

FIGURE 4. Episodic average rewards while training with different policy
optimization methods in our proposed LCPO.

FIGURE 5. Average spectral efficiency (bps/Hz) in 1000 time slots with
different policy optimization methods in our proposed LCPO.

B. POLICY OPTIMIZATION METHODS COMPARISON
LCPO framework can be highly customised and adopt
different policy optimization methods. We choose A2C
and PPO as policy optimization methods for its significant
performance and both methods are considered with and
without SDE. All methods are trained for one million steps
and the average episode reward during training are shown
in Fig. 4. In our simulation, A2C and PPO both have good
coverage effect while training, and A2C is the best. The
performance of online execution module is shown in Fig. 5
which is close to training results. As shown, the performance
of A2C can be further improved and the performance of
PPO will be worse when using SDE in our environment.
In the following, we use A2C with SDE as the default policy
optimization method for LCPO.

C. PERFORMANCE OF DIFFERENT ALGORITHMS
The DDPG [13], ideal FP algorithm [22], random power and
maximum power are chosen as benchmarks, and the results
are shown in Fig. 6. For small-cell network scenarios, the
amount of UEwill affect the network interference. Therefore,
the simulation experiments take into account the changes in
the number of UE, and the results are shown in Table 2 and
Fig. 7. The results show the average spectral efficiency per
UE that each algorithm can achieve when the number of UE
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FIGURE 6. Average spectral efficiency (bps/Hz) in 1000 time slots with
different power allocation algorithms.

TABLE 2. Average spectral efficiency (bps/Hz) per UE with different
number of UE.

FIGURE 7. Average spectral efficiency (bps/Hz) per UE with different
number of UE.

TABLE 3. Comparison in average execution time between our proposed
LCPO and others.

are 30, 60, 90, and 120, respectively. It can be seen from the
results that LCPO can achieve the best rate optimization effect
even when the number of UE varies.

Our simulation computer is equipped with a Intel(R)
Core(TM) i7-10700 CPU @ 2.90GHz, 16 GB RAM and a
GeForce RTX 3060 LHR GPU. Fig. 8 shows the average
execution time per step in millisecond, and the specific
numerical values are shown in Table 3.
We can see that the execution time of our proposed

LCPO framework has the same magnitude as random or
maximum power which is mostly basic program cost, while
random and maximum power allocation both have far lower
average spectral efficiency as mentioned in Fig. 6. On the
other hand, the ideal FP algorithm exhibits extremely high

FIGURE 8. Average execution time with different power allocation
algorithms.

computational complexity, rendering it impractical for real-
world implementation. The computational complexity of the
LCPO framework is relatively low compared to the FP
algorithm. The FP algorithm involves solving a complex
optimization problem, resulting in a computational cost that
grows exponentially with the number of cells and users in the
network. On the other hand, LCPO leverages the efficiency of
deep reinforcement learning techniques, which require fewer
computations for the policy optimization process. This makes
LCPO more practical and scalable for real-world imple-
mentation in large-scale ultra-dense small-cell networks.
In contrast, our proposed LCPO algorithm achieves the
best performance while requiring minimal execution time to
obtain the power allocation policy. Compared to the baseline
algorithm maximum power, LCPO and DDPG consume
approximately 50.27% and 54.59% more execution time,
respectively, while FP consumes 741.08% more. Meanwhile,
the performance improvements achieved by LCPO, DDPG,
and FP are 93.25%, 20.69%, and 21.28%, respectively.
It follows that for each additional one percent of execution
time, FP only brings about a 0.02% performance improve-
ment, while DDPG can improve performance by approxi-
mately 0.38%, and LCPO can achieve an improvement of
about 1.86%.

V. CONCLUSION
In this paper, we propose LCPO, a novel actor-critic-
based low-coupling policy optimization (LCPO) framework
for power allocation in ultra-dense small-cell networks
(UDSCNs). The LCPO framework aims to achieve practical-
ity and significant performance enhancement with minimal
computation. It consists of an online actor network for
power allocation policy generation and a low-coupling
training module for computational efficiency and practical
feasibility. LCPO demonstrates low latency, robustness, and
high customizability due to its low-coupling design. Our
research highlights the potential of policy gradient-based
deep reinforcement learning methods in solving critical
tasks in wireless networks, specifically power allocation in
UDSCNs.

6750 VOLUME 12, 2024



H. Chen et al.: Low-Coupling Policy Optimization Framework for Power Allocation in UDSCNs

REFERENCES
[1] M. Dryjanski and A. Kliks, ‘‘A hierarchical and modular radio resource

management architecture for 5G and beyond,’’ IEEE Commun. Mag.,
vol. 58, no. 7, pp. 28–34, Jul. 2020.

[2] A. Alwarafy, M. Abdallah, B. S. Çiftler, A. Al-Fuqaha, and M. Hamdi,
‘‘The frontiers of deep reinforcement learning for resource management in
future wireless HetNets: Techniques, challenges, and research directions,’’
IEEE Open J. Commun. Soc., vol. 3, pp. 322–365, 2022.

[3] H. Yang, J. Zhao, K.-Y. Lam, Z. Xiong, Q. Wu, and L. Xiao, ‘‘Distributed
deep reinforcement learning-based spectrum and power allocation for
heterogeneous networks,’’ IEEE Trans. Wireless Commun., vol. 21, no. 9,
pp. 6935–6948, Sep. 2022.

[4] M. Kouchaki and V.Marojevic, ‘‘Actor-critic network for O-RAN resource
allocation: XApp design, deployment, and analysis,’’ in Proc. IEEE
Globecom Workshops (GC Wkshps), Dec. 2022, pp. 968–973.

[5] Y. S. Nasir and D. Guo, ‘‘Multi-agent deep reinforcement learning for
dynamic power allocation in wireless networks,’’ IEEE J. Sel. Areas
Commun., vol. 37, no. 10, pp. 2239–2250, Oct. 2019.

[6] R. Amiri, H. Mehrpouyan, L. Fridman, R. K. Mallik, A. Nallanathan, and
D.Matolak, ‘‘Amachine learning approach for power allocation inHetNets
considering QoS,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2018,
pp. 1–7.

[7] F. Meng, P. Chen, and L. Wu, ‘‘Power allocation in multi-user cellular
networks with deep Q learning approach,’’ in Proc. ICC - IEEE Int. Conf.
Commun. (ICC), May 2019, pp. 1–6.

[8] Y. Zhang, C. Kang, T.Ma, Y. Teng, andD.Guo, ‘‘Power allocation inmulti-
cell networks using deep reinforcement learning,’’ in Proc. IEEE 88th Veh.
Technol. Conf. (VTC-Fall), Aug. 2018, pp. 1–6.

[9] B.Matthiesen, A. Zappone, K.-L. Besser, E. A. Jorswieck, andM. Debbah,
‘‘A globally optimal energy-efficient power control framework and its
efficient implementation in wireless interference networks,’’ IEEE Trans.
Signal Process., vol. 68, pp. 3887–3902, 2020.

[10] A. Alwarafy, B. S. Çiftler, M. Abdallah, M. Hamdi, and N. Al-Dhahir,
‘‘Hierarchical multi-agent DRL-based framework for joint multi-RAT
assignment and dynamic resource allocation in next-generation HetNets,’’
IEEE Trans. Netw. Sci. Eng., vol. 9, no. 4, pp. 2481–2494, Jul. 2022.

[11] T. Zhang, K. Zhu, and J. Wang, ‘‘Energy-efficient mode selection
and resource allocation for D2D-enabled heterogeneous networks: A
deep reinforcement learning approach,’’ IEEE Trans. Wireless Commun.,
vol. 20, no. 2, pp. 1175–1187, Feb. 2021.

[12] F. Meng, P. Chen, L. Wu, and J. Cheng, ‘‘Power allocation in multi-user
cellular networks: Deep reinforcement learning approaches,’’ IEEE Trans.
Wireless Commun., vol. 19, no. 10, pp. 6255–6267, Oct. 2020.

[13] Y. Sinan Nasir and D. Guo, ‘‘Deep actor-critic learning for distributed
power control in wireless mobile networks,’’ in Proc. 54th Asilomar Conf.
Signals, Syst., Comput., Nov. 2020, pp. 398–402.

[14] L. Zhang and Y.-C. Liang, ‘‘Deep reinforcement learning for multi-
agent power control in heterogeneous networks,’’ IEEE Trans. Wireless
Commun., vol. 20, no. 4, pp. 2551–2564, Apr. 2021.

[15] Y. Chang, W. Chen, J. Li, J. Liu, H. Wei, Z. Wang, and N. Al-Dhahir,
‘‘Collaborative multi-BS power management for dense radio access
network using deep reinforcement learning,’’ IEEE Trans. Green Commun.
Netw., 2023.

[16] H. Chen, Z. Huang, X. Zhao, X. Liu, Y. Jiang, P. Geng, G. Yang, Y. Cao, and
D. Wang, ‘‘Policy optimization of the power allocation algorithm based on
the actor–critic framework in small cell networks,’’ Mathematics, vol. 11,
no. 7, p. 1702, Apr. 2023.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
‘‘Proximal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[18] V.Mnih, A. P. Badia,M.Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, ‘‘Asynchronous methods for deep reinforcement
learning,’’ in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[19] A. Raffin, J. Kober, and F. Stulp, ‘‘Smooth exploration for robotic
reinforcement learning,’’ 2020, arXiv:2005.05719.

[20] P. Dent, G. E. Bottomley, and T. Croft, ‘‘Jakes fading model revisited,’’
Electron. Lett., vol. 29, no. 13, p. 1162, 1993.

[21] Z.-Q. Luo and S. Zhang, ‘‘Dynamic spectrum management: Complexity
and duality,’’ IEEE J. Sel. Topics Signal Process., vol. 2, no. 1, pp. 57–73,
Feb. 2008.

[22] K. Shen and W. Yu, ‘‘Fractional programming for communication
systems—Part I: Power control and beamforming,’’ IEEE Trans. Signal
Process., vol. 66, no. 10, pp. 2616–2630, May 2018.

[23] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, ‘‘An iteratively weighted
MMSE approach to distributed sum-utility maximization for a MIMO
interfering broadcast channel,’’ IEEE Trans. Signal Process., vol. 59, no. 9,
pp. 4331–4340, Sep. 2011.

[24] A. Raffin, A. Hill, A. Gleave, A. Kanervisto,M. Ernestus, andN.Dormann,
‘‘Stable-Baselines3: Reliable reinforcement learning implementations,’’
J. Mach. Learn. Res., vol. 22, no. 268, pp. 1–8, 2021. [Online]. Available:
http://jmlr.org/papers/v22/20-1364.html

[25] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

HAIBO CHEN received the B.Sc. degree in the Internet of Things
engineering from Shandong University, China, in 2020, where he is currently
pursuing the M.Sc. degree with the School of Information Science and
Engineering. His research interests include deep reinforcement learning,
communication systems, and cloud computing.

XIAO LIU received the B.Sc. degree in communication engineering from
Shandong University, China, in 2022, where he is currently pursuing the
M.Sc. degree with the School of Information Science and Engineering.
His research interests include communication systems and reinforcement
learning.

ZHONGWEI HUANG received the B.Sc. degree in electronic and infor-
mation engineering from the China University of Mining and Technology,
in 2021. He is currently pursuing the M.Sc. degree with the School of
Information Science and Engineering, Shandong University. His research
interests include communication systems and deep reinforcement learning.

YEWEN CAO received the B.Sc. degree in communications from the
Chengdu Institute of Information Technology, Sichuan, China, in 1986,
the M.Eng. degree in electronic engineering from the University of
Electrical Science and Technology, China, in 1989, and the Ph.D. degree
in communication and electronic system from Peking University, China,
in 1995. Since October 1999, he has been a Professor of communications
with Shandong University, Jinan, China. He was a Research Fellow with
the National University of Singapore, Singapore, from September 2000 to
August 2002; and a Postdoctoral Research Fellow with the University
of Bradford, U.K., from September 2002 to September 2003, and the
University of Glamorgan, from October 2003 to September 2005, U.K. His
current research interests include 4G and 5G communications, sound and/or
picture signal processing, artificial intelligence andmachine learning, mobile
computing, and cloud computing. He is the author or coauthor of more than
150 technical published articles and a co-inventor of over 30 patents in these
areas.

DEQIANG WANG (Senior Member, IEEE) received the B.S. degree in
radio technology and the M.S. degree in signal processing from Shandong
University, Jinan, China, in 1990 and 1995, respectively, and the Ph.D. degree
in communication and information systems from the Beijing University of
Posts and Telecommunications, China, in 2005. Since 1995, he has been with
the Faculty of the School of Information Science and Engineering, Shandong
University, where he is currently a Full Professor. His research interests
include ultra-wideband communications, multicarrier communications, and
adaptive signal processing.

VOLUME 12, 2024 6751


