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ABSTRACT Recently, it is shown that a spectrally-efficient low-complexity quadrature amplitude
modulation (QAM) filter-bank multicarrier (FBMC) system can be designed by relaxing the constraints
on the time-frequency (TF) product at the transmitter (TX) and the time-domain localization at the
receiver (RX). However, it turns out that the attainable signal-to-interference-plus-noise ratio (SINR) is
not satisfactory enough to support certain high-order modulations. This is because, given the PHYDYAS
TX prototype filter, only the RX filter is optimized under a sparsity constraint. In this paper, we propose
an improved QAM-FBMC system to further reduce self-interference by jointly optimizing the TX and RX
prototype filters. The sparsity constraint on the RX prototype filter is now removed, and a new polyphase
network (PPN)-based structure is introduced to maintain the complexity at the RX to almost the same level.
The joint optimization is formulated as an approximate SINR maximization and converted to a line search,
under the constraint on the fall-off rate of the TX prototype filter for high spectral confinement. For each
search-parameter value which is a lower bound on the post-processing signal-to-noise ratio (SNR), the
prototype filters are optimized to maximize the signal-to-interference ratio (SIR). The line search stops at a
saturation point of the SINR, and the pair of fixed TX and RX filters obtained at the point is used for all SNR
ranges. Numerical results show that the prototype filters combined with the PPN-based structure achieve low
self-interference and lead to a spectrally-efficient low-complexity QAM-FBMC system.

INDEX TERMS Bi-orthogonality, polyphase network, prototype filter, QAM-FBMC, spectral efficiency.

I. INTRODUCTION
Orthogonal frequency-division multiplexing (OFDM) is
mainly employed as the waveform for the fourth and
fifth generation cellular communication as well as the
most updated Wi-Fi systems [1], [2], [3]. However, the
rectangular-like transmit waveform, together with the cyclic
prefix (CP) used to easily remove inter-symbol interference
(ISI), not only reduces the spectral efficiency (SE) of the sys-
tem but also makes the system vulnerable to synchronization
error, causing intercarrier interference (ICI) [4], [5], [6], [7].

Filter-bank multicarrier (FBMC) has been considered as
one of the promising waveforms for the next generation
communication systems, because several shortcomings of
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OFDM can be well addressed [5], [6], [7], [8], [9].
In particular, unlike offset quadrature amplitude modulation
(OQAM)-FBMC, quadrature amplitude modulation (QAM)-
FBMC allows direct application of modern coding/decoding
schemes and multiple-input multiple-output (MIMO) tech-
niques [10], [11], [12]. However, QAM-FBMC systems
inherently face challenges stemming from the Balian-Low
theorem [12]. Specifically, the theorem implies that the
transmitter (TX) and receiver (RX) prototype filters cannot
simultaneously achieve complex (bi-)orthogonality, excellent
time-frequency (TF) localization, and a TF symbol density of
unity [13].

Most QAM-FBMC systems developed so far have tackled
these challenges without relaxing the unit TF symbol
density [11], [12], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23]. This leads to inevitable degradation in complex
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(bi-)orthogonality or TF localization and, consequently,
increases self-interference or out-of-band emission of the
systems. Among these, conventional QAM-FBMC systems
that have a frequency-domain (FD) channel equalizer and
a fixed matched filter at the RX, struggle to attain both
low self-interference and high spectral confinement at the
same time [11], [12], [14], [15], [16], [17]. The primary
focus in designing these systems has been the design of
the prototype filters. Some of the systems employ a pair of
alternating prototype filters at the TX and a matched filter
at the RX [11], [12], [14], [15]. However, they mostly have
relatively high out-of-band emission [11], [12], [14], while
the others have high self-interference [15]. In an attempt to
enhance spectral confinement, some systems propose the use
of a single prototype filter at the TX and a matched filter
at the RX [16], [17], which effectively reduces out-of-band
emission but self-interference is still comparatively high.

Recent proposals of QAM-FBMC systems feature various
structures, moving beyond just the design of prototype
filters. These advancements present alternative approaches
to enhancing system performance. Recently proposed
QAM-FBMC systems, which have a linear minimum
mean-squared error (LMMSE) RX that is a type of
mismatched filter, achieve an improved self-interference level
and the TF localization of the TX filter to a certain extent
but suffer from high complexity [18]. To further reduce
self-interference, some systems integrate additional iterative
interference cancellation (IIC) at the RX, which escalates
complexity [19], [20]. Systems using a hexagonal lattice
structure are also proposed, but show limited performance
improvements, only effective for 4-QAM [22], [23]. Also,
systems with shorter filters are proposed by using the
overlapping factor of one [20], [21], [22] for low latency
specifically.

Unlike these QAM-FBMC systems, there are few systems
that attempt to relax the TF symbol density from unity. While
a system with halved TF symbol density is discussed in [24],
it is deemed impractical due to a significant reduction in
spectral efficiency. Systems proposed in [25] slightly relax
the TF symbol density. Interestingly, these systems employ
a uniquely high overlapping factor of 16 or 32, compared to
typical FBMC systems which generally have an overlapping
factor of around 4. This large overlapping factor aids in
enhancing spectral confinement, and the systems effectively
reduce self-interference with the relaxed TF symbol density.
They are suitable for multi-user uplink scenarios where each
user utilizes a small number of subcarriers. However, using
themwith a large number of subcarriers becomes challenging
due to the increased computational complexity from the
large overlapping factor. Additionally, they use a matched
filter, leading to limited improvements in self-interference
reduction.

Recently, a QAM-FBMC system is proposed that relaxes
both the TF symbol density at the TX and the time-domain
(TD) localization at the RX [26]. At the TX, this system
employs the PHYDYAS filter as the prototype filter, which

has excellent spectral confinement [27]. At the RX, unlike
the conventional QAM-FBMC systems [11], [12], [14], [16],
[18], [19], it has a one-tap channel equalizer followed by
a fixed mismatched filter that is sparse in the frequency
domain. The system achieves both low self-interference
and high spectral confinement by means of sacrificing the
TF symbol density slightly as well as the TD localization
at the RX. Moreover, it maintains low complexity by
using the separate channel equalizer and fixed mismatched
filter, and by optimizing the RX prototype filter under an
FD sparsity constraint. Hence, among the QAM-FBMC
systems with excellent spectral confinement, the system
proposed in [26] shows the signal-to-interference-plus-noise
ratio (SINR) performance inferior only to the QAM-FBMC
systems in [18], [19], and [25] with high-complexity RXs
or high overlapping factors. However, the achieved SINR
performance is not yet satisfactory enough to support certain
high-order modulations.

In this paper, we propose an improved QAM-FBMC
system that further reduces self-interference. Like the
QAM-FBMC system in [26], the proposed system relaxes
the constraints on the TF symbol density slightly and the TD
localization at the RX, and has a one-tap channel equalizer
followed by a fixed mismatched RX filter. Unlike the system
in [26] that employs the PHYDYAS filter at the TX and an
FD sparse prototype filter at the RX, the proposed system
jointly optimizes the TX and RX prototype filters without
the sparsity constraint on the RX prototype filter in order
to achieve further performance improvement. Consequently,
the self-interference is further reduced without degrading
the spectral confinement of the system because the spectral
characteristics of a system are affected by the TX prototype
filter, not by the RX prototype filter.

Since the RX prototype filter no longer has sparsity in the
frequency domain, the proposed system uses a new polyphase
network (PPN)-based structure to keep the complexity of
the system low. For low complexity, PPN structures have
often been used to perform the TX or RX filtering in FBMC
systems [7], [8], [27]. In these systems, FD equalization is
performed after RX filtering [6], [7], [27], which results
in degradation from adjacent subcarrier interference already
incurred in the RX filtering. To avoid this problem, some
QAM-FBMC systems perform FD equalization before RX
filtering without using a PPN structure at the RX [11], [12],
[16], [26], and the system in [26] is one of them. The proposed
system using the PPN-based structure maintains performing
FD equalization before RX filtering to avoid the degradation.
Moreover, the PPN-based structure uniquely accommodates
both the excess delay and extended observation window
introduced by the relaxed constraints on the TF symbol
density and the TD localization at the RX. Hence, it is distinct
from the ordinary PPN structures employed by other FBMC
systems [8], [27], [28].
The joint optimization in this paper is formulated as an

approximate SINR maximization and converted into a line
search, under a constraint on the fall-off rate of the TX
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prototype filter for the high spectral confinement. A lower
bound on the post-processing signal-to-noise ratio (SNR) is
used as the search parameter and, at each lower bound, both
prototype filters are optimized to maximize the signal-to-
interference ratio (SIR). Since the RX prototype filter can
be written as a function of the TX prototype filter, the joint
optimization problem of the TX and RX prototype filters
becomes an optimization problem with the TX prototype
filter as the only decision variable. Once the line search is
stopped at a saturation point of the SINR, a pair of fixed TX
and RX filters that achieve near-perfect bi-orthogonality is
used for all SNR values.

For practical applications, we present two optimized TX
prototype filters, which are suitable for slightly different
use cases. Although both filters have excellent spectral
confinement, the first filter is better suited for scenarios
that prioritize low complexity and latency, whereas the
second filter is better suited for scenarios that prioritize
high spectral confinement and SIR. The performance of
the systems that use the proposed PPN-based structure and
these prototype filters is evaluated and compared with that
of other systems. The numerical results reveal that the
SINR of the proposed systems is high enough across all
SNR ranges, and thus can satisfactorily support high-order
modulations like 1024-QAM at high SNR regime without
using a high-complexity RX, such as full-tap LMMSE or IIC,
and without increasing the overlapping factor. Furthermore,
the complexity of these systems is comparable to the system
in [26]. In summary, the proposed systems achieve excellent
spectral confinement and low complexity at the same time.

The rest of this paper is organized as follows. In Section II,
the signal and system models of the proposed QAM-FBMC
are presented. In Section III, the proposed PPN-based
structure at the TX and RX is described. In Section IV, the
joint optimization problem to find the TX and RX prototype
filters is formulated, and the proposed prototype filters are
presented. In Section V, the performance of the proposed
systems is numerically evaluated and compared with that of
other systems. Finally, in Section VI, the paper concludes
with final remarks.

Throughout this paper, AT denotes the transpose of a
matrix (or vector) A, and AH denotes its Hermitian transpose.
The notation s∗ represents the complex conjugate of s. The
matrices In and 0n×m indicate the identity matrix of size
n and the all-zero matrix of size n × m, respectively. The
diag(·) operator, when applied to a vector, converts it into a
square matrix with its diagonal entries corresponding to the
entries of the vector. When applied to a matrix, it extracts
its diagonal entries into a vector. The tr(·) denotes the trace
and E[·] denotes the expectation. The ⊙ operator represents
the Hadamard product operator, that is, the entrywise product
operator. We use a zero-based indexing system for vectors
and matrices when referring to their entries, with the notable
exception of the unit basis vectors. Specifically, for a vector v,
the notation [v]n refers to the (n+ 1)-th entry of v, where n is
a non-negative integer. Similarly, for a matrix A, the notation

[A]m,n refers to the entry at the (m+ 1)-th row and (n+ 1)-th
column of A, where both m and n are non-negative integers.
It is important to note that the unit basis vectors begin from
index 1, such as e1, e2, · · · .

II. SIGNAL AND SYSTEM MODELS
In this section, we present the signal and system models for
a QAM-FBMC system. The models are specifically designed
for the proposed system, ensuring the system in the models
can accommodate a positive excess delay or an expanded
observation window. Additionally, the system has a channel
equalizer, followed by a fixed mismatched filter at the RX.
Note that these are also present in the system in [26], and the
models are based on those of [26]. To make this paper self-
contained, we briefly present some parts that are common
with [26] as well as the parts that differ from the models
in [26]. The signal models are described in discrete-time (DT)
complex baseband.

A. TX MODEL
The QAM-FBMC signal transmitted by a TX can be written
as

x[n] =

∞∑
k=−∞

M−1∑
m=0

pm[n− k(M + S)]dm[k], (1)

where M is the number of subcarriers including Mnull null
subcarriers, S is the excess delay, pm[n] as a function of n is
the TXwaveform for them-th subcarrier, and dm[k] is the k-th
QAM symbol at them-th subcarrier. For anym corresponding
to one of the Mnull null subcarriers, the QAM symbol dm[k]
is assigned a value of zero.

The TX waveform pm[n] for the m-th subcarrier is related
to the impulse response p0[n] of the TX prototype filter,
as represented by

pm[n] ≜ p0[n]ej2π
mn
M . (2)

Hence, the TX waveforms for different subcarriers are
essentially prototype filter responses, each individually
adjusted for a specific frequency shift. The model focuses on
a QAM-FBMC system that employs a single TX prototype
filter for simplicity, not on a system that employs a pair of
alternating prototype filters like the systems in [11], [12],
and [14]. The TX waveform p0[n] is used in the following
definitions of the TX TD and FD prototype vectors of length
N .
Definition 1: The TX TD and FD prototype vectors are

defined as

pt ≜
[
p0[0] p0[1] · · · p0[N − 1]

]T (3a)

and

pf ≜ WNpt , (3b)

respectively, where p0[n] = 0 for n < 0 or n ≥ N , and
WN ∈ CN×N is the unitary discrete Fourier transform (DFT)
matrix of size N .
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FIGURE 1. TX block diagram of QAM-FBMC system with the direct FD
structure.

FIGURE 1 shows the block diagram of a QAM-FBMC
TX that generates the signal x[n] to transmit. The TX in
FIGURE 1 is implemented by using an FD pulse-shaping
filter, and this structure is referred to as the direct FD
structure throughout this paper.
In the serial-to-parallel conversion (S/P) block of

FIGURE 1, given a sequence (d[l])l∈Z of QAM symbols,
a sequence (d[k])k∈Z of length-M vectors is generated. The
QAM symbols dm[k] in (1) and the QAM symbol vector d[k]
are related as

d[k] =
[
d0[k] d1[k] · · · dM−1[k]

]T
. (4)

For convenience, the symbols are normalized so that

E
[
d[k]dH[k ′]

]
= δ[k − k ′]ĨM ∀k, k ′, (5)

where δ[n] is the unit sample function, and ĨM is a modifi-
cation of IM in which the diagonal entries corresponding to
null subcarriers are set to zero.

In the FD filtering block, the QAM symbol vector d[k] is
transformed into the FD vector xf [k]. Let CN ∈ RN×N be the
circular down-shift matrix defined by

CN ≜
[
e2 e3 · · · eN e1

]
, (6)

and thus Ck
N circularly down-shifts a column vector of length

N by k . The output xf [k] of the block can be represented as

xf [k] = P f d[k], (7)

where P f ∈ CN×M is the TX FD filter matrix defined as

P f ≜
[
pf C

K
Npf · · · C(M−1)K

N pf
]

(8)

and K is defined as

K ≜ N/M . (9)

Note that P f is a quasi-cyclic matrix, whose (m + 1)-th
column is obtained by circular down-shifting pf by mK .
Additionally, this process is equivalent to first upsampling
by K , and then applying FD pulse shaping using a circulant
matrix whose first column is pf [26]. As a result,K is referred
to as the upsampling factor. Although K is often termed
the overlapping factor in conventional FBMC systems with
S = 0, this terminology is not suitable for K when S > 0.
Instead, a different quantity serves as the overlapping factor,
which will be further discussed later in this subsection.

In the inverse discrete Fourier transform (IDFT) block, the
FD vector xf [k] is converted into the FBMC symbol vector
xt [k] as

xt [k] = WH
Nxf [k] = WH

NP f d[k]. (10)

The fast Fourier transform (FFT) algorithm can be used to
implement this block efficiently, particularly when N is a
power of two.

In the parallel-to-serial conversion (P/S) and overlap-and-
sum (O/S) block, a sequence (xt [k])k of FBMC symbol
vectors is converted to a DT signal (x[n])n through P/S and
O/S operations. The output (x[n])n is the O/S of the FBMC
symbol vectors given by

x[n] =

∞∑
k=−∞

[xt [k]]n−k(M+S), (11)

where [xt [k]]n for n = 0, 1, · · · ,N − 1 is the (n + 1)-
th entry of xt [k] of length N , and [xt [k]]n = 0 for
n < 0 or n ≥ N . Hence, the k-th FBMC symbol
is parallel-to-serial converted and delayed by k(M + S).
If N exceeds M + S, which results in pulse overlaps
between adjacent FBMC symbols, the overlapping symbols
are consequently superimposed and summed in the time
domain. The overlapping factor, representing the average
number of overlapped FBMC symbols contributing to x[n],
is denoted as

Kavg ≜
N

M + S
, (12)

from which it follows that Kavg = K if S = 0 and Kavg < K
if S > 0.
To briefly compare the data transmission efficiencies of

different systems, we define the TF-product as the product of
the symbol period and the subcarrier spacing [6], [26], which
is represented by

TF ≜
M + S
M

(13)

in terms of the parameters we have previously defined. This is
equivalent to the reciprocal of the TF symbol density. In CP-
OFDM systems,M and S correspond to the size of the IDFT
matrix and the length of the CP, respectively. For instance,
the CP-OFDM system described in [1] has a TF value of
approximately 1.07, whereas the conventional QAM-FBMC
systems detailed in [11], [12], [14], [16], [18], [29], [30],
and [19] have a TF value of 1. The proposed QAM-FBMC
system in this paper has a TF-product slightly greater than
unity, similar to the system in [26]. Specifically, the TF
value of the proposed system is 1.0625 with an excess delay
S = M/16.

B. CHANNEL AND RX MODELS
The channel is assumed to be slowly time-varying and
subjected to additive noise. During the transmission of the
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FIGURE 2. RX block diagram of QAM-FBMC system with the direct FD
structure.

k-th QAM symbol vector d[k], the complex envelope of the
DT received signal, y[n], is represented by

y[n] =

Lch−1∑
m=0

h(k)[m]x[n− m] + w[n], (14)

where h(k)[n] is the impulse response of the channel for the
k-th FBMC symbol, Lch is the channel length, and w[n] is
the additive white Gaussian noise (AWGN). The channel is
approximated by a linear time-invariant (LTI) system for each
symbol transmission.

FIGURE 2 shows the block diagram of the QAM-FBMC
RX that takes y[n] as input and produces the estimated QAM
symbol d̂[l] as output. The RX employs an FD filter, which is
either matched or mismatched to the TX filter. This structure
is also termed the direct FD structure, consistent with the
terminology used for the TX.

In the windowing and S/P block of FIGURE 2, the received
signal (y[n])n is windowed and converted into a sequence
(yt [k])k of vectors of length Ñ , where Ñ is the length of the
observation window. In conventional QAM-FBMC systems
[11], [12], [14], [16], [18], [19], [29], [30], the length Ñ
is equal to N . However, it can be extended both forward
and backward from the conventional length-N window by
Lpre and Lpost, respectively, in order to improve the RX
performance [26]. Thus, in the proposed system, Ñ is defined
as

Ñ ≜ Lpre + N + Lpost. (15)

Also, we define r and K̃ as

r ≜
Ñ
N

and K̃ ≜ rK . (16)

In the following discussions, we set Lpre equal to Lpost. Thus,
Ladd ≜ Lpre = Lpost. The output yt [k] ∈ CÑ×1 of the block,
which we refer to as a windowed signal vector, is then given
by

yt [k] ≜


y[k(M + S) − Ladd]

y[k(M + S) − Ladd + 1]
...

y[k(M + S) + N + Ladd − 1]

 (17)

in terms of y[n].
To express yt [k] in terms of the transmitted signal x[n],

we first define the TD channel matrix H t [k] and the
signal vector x̃t [k]. The TD channel matrix H t [k] ∈

C(Ñ+Lch−1)×(Ñ+Lch−1) is a Toeplitz matrix with its first

column given by
[
h(k)[0] h(k)[1] · · · h(k)[Ñ + Lch − 2]

]T
.

The signal vector x̃t [k] ∈ C(Ñ+Lch−1)×1 is defined by

x̃t [k] =


x[k(M + S) − Ladd − Lch + 1]
x[k(M + S) − Ladd − Lch + 2]

...

x[k(M + S) + N + Ladd − 1]

 , (18)

which is a vector of the transmitted signal x[n]. Consequently,
the windowed signal vector yt [k] can be expressed as

yt [k] = TH t [k]x̃t [k] + w[k], (19)

where the row-pruning matrix T ∈ CÑ×(Ñ+Lch−1) is defined
by

T =
[
0Ñ×(Lch−1) I Ñ

]
(20)

which prunes the top (Lch−1) rows ofH t [k]x̃t [k]. The vector
w[k] ∼ CN (0Ñ×1, σ

2
W I Ñ ) is a proper-complex AWGN

vector with variance σ 2
W .

In the DFT block, the windowed signal vector yt [k] is
converted into the FD vector yf [k] as

yf [k] = W Ñ yt [k], (21)

where the FFT algorithm can be used for efficiency,
particularly when Ñ is a power of two.

In the FD equalization block, the channel effect on yf [k]
is mitigated to generate the output x̂f [k]. The output x̂f [k] is
given by

x̂f [k] = Gf [k]yf [k], (22)

where Gf [k] is the time-varying channel equalization matrix
for the k-th FBMC symbol vector. This matrix Gf [k] is
optimized so that its output Gf [k]yf [k] can approximate
W ÑTx̃t [k] as closely as possible, thereby mitigating the
channel effect [26]. The optimization problem to find the
optimal Gf [k] is expressed as

minimize
Gf [k]

E
[
∥Gf [k]yf [k] −W ÑTx̃t [k]∥

2
]
. (23)

The solution to this problem can yield the full-tap LMMSE
equalization matrix Gf [k] [26]. However, determining the
exact solution every time the channel matrix H t [k] changes
can be computationally intensive.

In order to reduce the complexity of the RX, we use
the one-tap LMMSE equalization matrix Gf ,one[k] as an
approximation for Gf [k], based on the approach described
in [26]. Let us define H̃ f as the diagonalized FD channel
matrix represented by

H̃ f [k] ≜ diag(diag(W ÑTĤ t [k]TTWH
Ñ
)). (24)

We also define R̃f as the correlation matrix of W ÑTx̃t [k].
Then, the one-tap LMMSE equalization matrix Gf ,one[k] is
given by

Gf ,one[k] ≜ H̃
H
f [k]

(
H̃ f [k]H̃

H
f [k] +

σ 2
W

σ 2
S

I Ñ

)−1

, (25)
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where σ 2
S is the signal variance, which is the mean of the

diagonal entries of R̃f with null subcarriers excluded.
In the FD filtering block, the output x̂f [k] from the

equalizer is processed to obtain the estimate d̂[k] of the QAM
symbol vector d[k]. This estimate d̂[k] can be expressed as

d̂[k] = QH
f x̂f [k], (26)

where QH
f is the RX FD filter matrix. In QAM-FBMC

systems, like those in [12] and [16], which employ a matched
RX filter and have Ñ = N , the RX FD filter matrix is equal
to the Hermitian conjugate of the TX FD filter matrix, i.e.,
QH
f = PH

f . However, in the proposed system which employs
a mismatched filter and has Ñ > N , the RX FD filter matrix
QH
f differs from PH

f .
In the proposed system, the mismatched filter is con-

structed using an RX prototype filter, analogous to the
construction of the TX FD filter that uses a TX prototype
filter. This enables the RX to use the PPN-based structure, and
also simplifies the joint optimization process of the filters.
The details of the PPN-based structure and the optimization
will be discussed in the following sections.

Analogous to (2) for the TX, the impulse response q0[n] of
the RX prototype filter is related to the waveform qm[n] for
the m-th subcarrier, as represented by

qm[n] ≜ q0[n]ej2π
mn
M . (27)

In other words, the RX waveforms for different subcarriers
are essentially RX prototype filter responses, each individu-
ally adjusted for a specific frequency shift. To proceed further,
we define the RX TD and FD prototype vectors.
Definition 2: The RX TD and FD prototype vectors are

defined as

qt ≜ [q0[−Ladd] q0[−Ladd + 1] · · · q0[N + Ladd − 1]]T

(28a)

and

qf ≜ W Ñqt , (28b)

respectively, where q0[n] = 0 for n < −Ladd or n ≥ N+Ladd.
The RX FD prototype vector qf corresponds to the first

column of Qf . Subsequently, it is shown that the matrix Qf
can be expressed in terms of the vector qf . To begin, let us
define C̃ as

C̃ = (−1)m(K̃−K )CK̃
Ñ
, (29)

where CÑ is the circular down-shift matrix of size Ñ .
Proposition 1: The Hermitian conjugate Qf of the RX FD

filter matrix can be written as

Qf =

[
C̃
0
qf C̃

1
qf · · · C̃

M−1
qf
]
. (30)

Proof: For n = 0, 1, . . . , Ñ − 1, the (n+ 1)-th component
of qf , which is the first column of Qf , is given by

[qf ]n =

Ñ−1∑
l=0

q0[l − Ladd]e
−j2π ln

Ñ . (31)

Then, for n = 0, 1, . . . , Ñ − 1, the (n + 1)-th component of
the (m+ 1)-th column of Qf is expressed as

[Qf ]n,m =

Ñ−1∑
l=0

(
q0[l − Ladd]ej2π

m(l−Ladd)
M

)
e−j2π ln

Ñ (32a)

=

Ñ−1∑
l=0

q0[l − Ladd]e
j2π m(l−Ladd)K̃

Ñ e−j2π ln
Ñ (32b)

=

Ñ−1∑
l=0

q0[l − Ladd]e
−j2π l(n−mK̃ )

Ñ e−j2π LaddmK̃
Ñ (32c)

= e−j2π Laddm
M [qf ]mod

(
n−mK̃ ,Ñ

), (32d)

where we have used the relation Ñ/K̃ = M and (27). From
the relation Ñ = N + 2Ladd, we have

[Qf ]n,m = e−j2π (Ñ−N )m
2M [qf ]mod

(
n−mK̃ ,Ñ

) (32e)

= (−1)m(K̃−K )[qf ]mod
(
n−mK̃ ,Ñ

), (32f)

where we have used the relations Ñ/M = K̃ and N/M = K .
Hence, the (m+1)-th column ofQf is determined by applying
a downward circular shift of mK̃ components to its first
column qf and then multiplying by (−1)m(K̃−K ). □
When both K and r are even integers, each column of Qf

is a downward circular shift of the first column without any
phase factor and Qf becomes a quasi-cyclic matrix. Hence,
the system proposed in [26] with K = 4 and r = 2 stands as
a special case of this model.

Lastly, in the P/S block, the sequence (d̂[k])k of estimates
of the QAM symbol vectors is converted into a sequence
(d̂[l])l of estimates of the QAM symbols.
Contrary to the RX presented here, it is worth mentioning

that the LMMSE RX can be employed, similar to the system
described in [18]. This type of RX effectively combines the
functionalities of the channel equalizer and symbol detector
and attempts to solve the optimization problem given by

minimize
L[k]

E
[
∥L[k]yt [k] − d[k]∥2

]
. (33a)

However, this type of RX inherently carries significant
computational complexity. The LMMSEmatrixL[k] depends
on the slowly varying channel H t [k], and updating the
solution to the LMMSE problem each time the channel
changes can be computationally demanding [26]. As a
combination of a channel equalizer and a symbol detector, the
LMMSE RX may require even more complex computations
than the full-tap LMMSE equalizer that can be derived
from (23).

III. PPN-BASED STRUCTURE
In this section, we present the proposed PPN-based structure
at the TX and RX. Given that a positive excess delay S >

0 and an extended observation window Ñ > N are integrated
into the proposed system, a direct adaptation of the PPN
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FIGURE 3. TX block diagram of QAM-FBMC system with the PPN-based
structure.

structure of the conventional FBMC systems is infeasible.
Hence, we develop a new structure based on the PPN structure
found in other FBMC systems [27].

A. TX
The new structure for the TX of the proposed system is based
on the conventional PPN as illustrated in its block diagram in
FIGURE 3, Compared to the direct FD structure described
in the previous section, this new structure typically offers
a substantial reduction in computational complexity. It is
similar to the polyphase synthesis filter bank to transform the
QAM symbol vectors into the FBMC signal in other FBMC
systems [27].

A structure based on the PPN with (M + S) polyphase
subfilters is utilized for the generation of the FBMC signal
x[n]. The QAM symbol vector d[k] is first transformed into
the vector c[k] =

[
c0[k] c1[k] · · · cM−1[k]

]T using the IDFT
as

c[k] ≜
√
MWH

Md[k], (34)

whereWM is the unitary DFT matrix of sizeM .
The output c[k] is then transformed into c̃[k, l] =[
c̃0[k] c̃1[k] · · · c̃M+S−1[k]

]T, where each component is
given by

c̃n[k, l] = cmod(n+lS,M )[k] (35)

for n = 0, 1, · · · ,M + S − 1. This transformation can
be implemented by adding a cyclic postfix of length S and
performing a circular shift for each l = 0, 1, · · · ,K − 1. The
transformed vector c̃[k, l] is then component-wise multiplied
and summed to generate the FBMC signal vector for the k-th
QAM symbol vector. The vectors xPPN[k] and pPPN[l], both
belonging to C(M+S)×1, are defined as

xPPN[k] ≜


x[k(M + S)]

x[k(M + S) + 1]
...

x[k(M + S) + (M + S − 1)]

 (36a)

and

pPPN[l] ≜


p0[l(M + S)]

p0[l(M + S) + 1]
...

p0[l(M + S) + (M + S − 1)]

 , (36b)

respectively. Then, xPPN[k] can be expressed as

xPPN[k] =

K−1∑
l=0

pPPN[l] ⊙ c̃[k − l, l]. (36c)

FIGURE 4. RX block diagram of QAM-FBMC system with the PPN-based
structure.

This output is then converted by the P/S into the DT signal
x[n]. The generated FBMC signal x[n] is equivalent to the
signal in (1) and (11). This structure can be used in systems
even with an excess delay S > 0.
We show that the PPN-based structure indeed produces the

signal in (1) as follows.
Proposition 2: The output x[n] of the TX using the

PPN-based structure as presented in (36a) and (36c) is equal
to the signal to transmit by the TX as defined in (1).
Proof: From (1) and (2), x[k(M + S) + n] is given by

x[k(M + S) + n] =

∞∑
l=−∞

M−1∑
m=0

pm[(k − l)(M + S) + n]dm[l]

(37)

On the other hand, for n = 0, 1, · · · ,M+S−1, the (n+1)-th
component of xPPN[k] in (36c) is given by

[xPPN[k]]n

=

K−1∑
l=0

p0[l(M + S) + n]c̃n[k − l, l] (38a)

=

K−1∑
l=0

p0[l(M + S) + n]
M−1∑
m=0

dm[k − l]ej2π
m(n+lS)

M (38b)

=

∞∑
l=−∞

p0[(k − l)(M + S) + n]
M−1∑
m=0

dm[l]ej2π
m((k−l)S+n)

M

(38c)

=

∞∑
l=−∞

pm[(k − l)(M + S) + n]
M−1∑
m=0

dm[l] (38d)

= x[k(M + S) + n], (38e)

which completes the proof. □
Note that this PPN-based structure is similar to one of the

TX PPN structures provided in [28]. However, rather than
pre-multiplying phase shifts prior to the IDFT, we circularly
shift the intermediate vector.

B. RX
The RX FD filter QH

f can be constructed by using a new
structure based on the PPN. The entire RX using this
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PPN-based RX FD filter is illustrated in the block diagram in
FIGURE 4. In particular, a structure based on the polyphase
analysis filter bank is employed to derive the estimated QAM
symbol vector d̂[k] from the equalizer output vector x̂f [k].
This can reduce the computational complexity of the RX FD
filter, especially when the number of nonzero FD coefficients
of the RX prototype vector qf is large.

The equalizer output vector x̂f [k] is first transformed back
to the time domain by the IDFT operation, given by

x̂t [k] = WH
Ñ
x̂f [k], (39)

This transformation is necessary because the input of the
polyphase analysis filter bank should be in the time domain.

We begin by defining Ku and Kw as

Ku =

⌈
∗
Ladd
M + S

⌉
and Kw =

⌈
∗
KM + Ladd
M + S

⌉
− 1. (40)

Next, we introduce the vectors x̂t,PPN,i[k] and qPPN,i[l] for
i = 0, 1, all of which belong to CM×1. These vectors are
defined as

x̂t,PPN,0[k] ≜

 [x̂t [k]]Ladd+l(M+S)
...

[x̂t [k]]Ladd+l(M+S)+(M−1)



x̂t,PPN,1[k] ≜


[x̂t [k]]Ladd+l(M+S)+M

...

[x̂t [k]]Ladd+l(M+S)+(M+S−1)
0(M−S)×1

 (41a)

and

qPPN,0[l] ≜


q0[l(M + S)]

q0[l(M + S) + 1]
...

q0[l(M + S) + (M − 1)]



qPPN,1[l] ≜


q0[l(M + S) +M ]

...

q0[l(M + S) + (M + S − 1)]
0(M−S)×1

 (41b)

respectively. Subsequently, the output x̂t [k] of the IDFT
operation is processed through a component that is based on
M polyphase subfilters, resulting in the vector v[k, l]. This
operation can be represented as

v[k, l] = q∗

PPN,0[l] ⊙ x̂t,PPN,0[k] + q∗

PPN,1[l] ⊙ x̂t,PPN,1[k]

(41c)

for l = −Ku, −Ku + 1, · · · ,Kw. Any components of x̂t [k]
with indices less than 0 or larger than Ñ − 1 are considered
to be 0.

We define ṽ[k] whose (n+ 1)-th component ṽn[k] is given
by

ṽn[k] =

Kw∑
l=−Ku

vmod(n−lS,M )[k, l] (42)

for n = 0, 1, · · · ,M . The vector ṽ[k] is then transformed
into the vector d̂[k] by applying the DFT, which is given
by

d̂[k] =
√
MWM ṽ[k]. (43)

This structure can be used in systems even with an excess
delay S > 0 and an extended observation window
Ñ > N .
We show that the RX FD filter implemented with the

PPN-based structure is equivalent to that with the direct FD
structure.
Proposition 3: The output from the RX FD filter, as pre-

sented in (43), which uses the PPN-based structure,
corresponds to the estimated QAM symbol vector d̂[k]
in (26).
Proof: The (m + 1)-th component of the right-hand side

of (43) is given by

[
√
MWM ṽ[k]]m

=

M−1∑
n=0

e−j2π mn
M

Kw∑
l=−Ku

vmod(n−lS,M )[k, l] (44a)

=

M−1∑
n=0

Kw∑
l=−Ku

vn[k, l]e−j2π m(n+lS)
M (44b)

=

M+S−1∑
n=0

e−j2π mn
M

Kw∑
l=−Ku

q∗

0[l(M + S) + n]

[x̂t [k]]Ladd+l(M+S)+ne−j2π mlS
M (44c)

=

Kw∑
l=−Ku

M+S−1∑
n=0

q∗

0[l(M + S) + n]

[x̂t [k]]Ladd+l(M+S)+ne−j2π m(l(M+S)+n)
M (44d)

=

KM+Ladd−1∑
n=−Ladd

q∗

0[n][x̂t [k]]Ladd+ne
−j2π mn

M (44e)

=

KM+Ladd−1∑
n=−Ladd

q∗
m[n][x̂t [k]]Ladd+n, (44f)

which is equal to (Qf em+1)Hx̂f [k] = [QH
f x̂f [k]]m in the

frequency domain. □
In FIGURE 4, as opposed to the proposed system structure,

one could consider moving the entire RX FD filter to a
position ahead of the FD equalizer, rather than positioning
it behind. This would make the Ñ -point DFT and IDFT
operations cancel out. Such an arrangement has the potential
to reduce the overall complexity of the RX, as it would
perform fewer DFT and IDFT operations and would allow
equalization on a vector of lengthM instead of a large Ñ . This
structure would be similar to the conventional OQAM-FBMC
structure where equalization is the concluding process. How-
ever, it is worth noting that such an arrangement might lead to
decreased RX performance, especially in situations where the
channel is highly frequency-selective, as highlighted in [12]
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and Section V. This performance degradation occurs because
the RX FD filter would be applied to a signal heavily affected
by the channel, rather than to a signal where interference has
been mitigated.

IV. JOINT FILTER OPTIMIZATION
In this section, we describe our method for the joint optimiza-
tion of the TX and RX prototype filters. The optimization
is formulated as an approximate SINR maximization, which
is the SIR maximization subject to a constraint on the
post-processing SNR lower bound. Since maximizing the
SIR is equivalent to minimizing the mean squared error
(MSE) ignoring the noise [31], the prototype filters are
optimized such that the MSE in the noiseless AWGN
channel is minimized. It is shown that the RX prototype
filter that maximizes the SIR is a function of the TX
prototype filter, and our joint optimization is simplified to an
optimization with the TX prototype filter as the only decision
variable. Under a constraint on the fall-off rate for high
spectral confinement, the approximate SINR maximization
is converted to a line search with the SNR lower bound as the
search parameter. At each search-parameter value, the filters
are optimized to maximize the SIR. We conclude this section
by presenting the coefficients of the proposed prototype
filters.

A. OBJECTIVE FUNCTION
For the proposed system to achieve high SINR performance,
the TX and RX prototype filters are jointly optimized. The
SINR maximization can be approximated by maximizing the
SIR given a lower bound on the post-processing SNR, which
can be represented by

min
pf ,qf

1
SINR

= min
pf ,qf

( 1
SIR

+
1

SNR

)
≤ min

pf ,qf

1
SIR

+
1

�SNR
,

(45)

where �SNR is a lower bound on the post-processing SNR,
i.e., SNR ≥ �SNR. Hence, in this subsection, we present the
objective function of the joint optimization problem, which
is shown to be the SIR maximization in essence. Then, the
approximate SINR maximization can be converted to a line
search to maximize the SIR using the SNR lower bound as
the search parameter, which is further investigated in a later
subsection.

We start by deriving the SIR maximization from the
optimization of the mismatched RX filter as follows. Since
the input of the mismatched RX filter is the output of the
FD equalizer, the channel effect of the input of the filter
is designed to be minimized [26]. Hence, the mismatched
RX filter is designed to minimize the MSE between the
transmitted QAM symbol vector d[k] and its estimated
counterpart d̂[k] in an AWGN channel.

We first express the input of the mismatched filter
assuming the channel effect is fully mitigated. Let us
define a time-shift matrix E[i], which is of size Ñ × N ,

given by

E[i] ≜



[
0r1,i×c1,i Ir1,i

0(Ladd−i(M+S))×N

]
, for i ≤ −

Ladd
M + S[

0(Ladd+i(M+S))×N

Ir2,i 0r2,i×c2,i

]
, for i >

Ladd
M + S0(Ladd+i(M+S))×N

IN
0(Ladd−i(M+S))×N

 , elsewhere,

(46a)

where the numbers of rows or columns r1,i, c1,i, r2,i, and c2,i
are given by

r1,i ≜ N + Ladd + i(M + S), (46b)

c1,i ≜ −Ladd − i(M + S), (46c)

r2,i ≜ N + Ladd − i(M + S), and (46d)

c2,i ≜ −Ladd + i(M + S), (46e)

respectively. Let P̃ f [i] ∈ CÑ×M be the time-shifted TX FD
filter matrix given by

P̃ f [i] ≜ W ÑE[i]W
H
NP f . (47)

Then, in the noiseless AWGN channel, the output of the
mismatched filter for the k-th QAM symbol vector is given
by

d̂opt[k] =

Kw∑
i=−Kw

QH
f P̃ f [i]d[k + i]. (48)

The optimization problem for the mismatched filter can be
formulated to minimize the MSE between d̂opt[k] and d[k],
which can be written as

minimize
qf

E


∥∥∥∥∥∥

Kw∑
i=−Kw

QH
f P̃ f [i]d[k + i] − d[k]

∥∥∥∥∥∥
2
 . (49)

The decision variable is qf becauseQf is uniquely determined
by qf following the relation in (30). Note that this MSE only
accounts for the effects of the TX and RX filters, without the
noise.

The objective function of the optimization problem (49) to
find the optimal mismatched filter can be reformulated as

E


∥∥∥∥∥∥

Kw∑
i=−Kw

QH
f P̃ f [i]d[k + i] − d[k]

∥∥∥∥∥∥
2


= tr
( Kw∑
i=−Kw

QH
f P̃ f [i]ĨM P̃ f [i]

HQf − ĨM

)
(50a)

=

Kw∑
i=−Kw

tr
(
QH
f P̃ f [i]ĨM P̃ f [i]

HQf − δ[i]ĨM
)

(50b)
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=

Kw∑
i=−Kw

∥∥∥QH
f P̃ f [i]ĨM − δ[i]ĨM

∥∥∥2
F

(50c)

by using (5). Note that this can be also derived by using
the bi-orthogonality condition of the TX and RX prototype
filters [26]. Subsequently, we introduce some lemmas to
simplify the optimization problem and find its solution.
Lemma 1: The matrix P̃ f [i] in (47) can be written as

P̃ f [i] =


(C̃

0
W ÑE[i]W

H
Npf )

T

(C̃
1
W ÑE[i]W

H
Npf )

T

...

(C̃
M−1

W ÑE[i]W
H
Npf )

T


T

(51)

for i = −Kw, −Kw + 1, · · · ,Kw in terms of pf .
Proof: For n = 0, 1, . . . , Ñ − 1, the (n+ 1)-th component

of the first column of P̃ f [i] is given by

[P̃ f [i]]n,0 =

Ñ−1∑
l=0

[E[i]pt ]le
−j2π ln

Ñ , (52)

from (3b) and (47). Then, for n = 0, 1, . . . , Ñ−1, the (n+1)-
th component of the (m+ 1)-th column of P̃ f [i] is expressed
as

[P̃ f [i]]n,m =

Ñ−1∑
l=0

(
[E[i]pt ]le

j2π m(l−Ladd)
M

)
e−j2π ln

Ñ (53a)

= (−1)m(K̃−K )[P̃ f [i]]mod
(
n−mK̃ ,Ñ

)
,0

, (53b)

similar to the proof of Proposition 1. Hence, the (m + 1)-
th column of P̃ f [i] is determined by applying a downward
circular shift of mK̃ components to its first column and then
multiplying by (−1)m(K̃−K ). hfill□
Lemma 2: The matrix QH

f P̃ f [i] is a circulant matrix.
Proof: Using Proposition 1 and Lemma 1, for any m, n ∈

{0, 1, · · · ,M − 1} and i ∈ {−Kw, −Kw + 1, · · · ,Kw}, the
(n+1)-th entry of the (m+1)-th row ofQH

f P̃ f [i] can bewritten
as

[QH
f P̃ f [i]]m,n = (C̃

m
qf )

H(C̃
n
W ÑE[i]W

H
Npf ) (54a)

= (C̃
0
qf )

H(C̃
n−m

W ÑE[i]W
H
Npf ) (54b)

= [QH
f P̃ f [i]]0,mod(n−m,M ), (54c)

which is the (mod(n−m,M )+ 1)-th entry of the first row of
QH
f P̃ f [i]. Thus, the (m+1)-th row is a rightward circular shift

of the first row bym components, which implies thatQH
f P̃ f [i]

is a circulant matrix.hfill□
By using these lemmas, we can simplify the optimization

problem (49) further as the following proposition. For that,
we define

8(pf , qf ) ≜
Kw∑

i=−Kw

∥∥∥P̃H
f [i]qf − δ[i]e1

∥∥∥2, (55)

where δ[i] is the unit sample function, and P̃ f [i] is uniquely
determined by the TX prototype vector pf as specified in
Lemma 1.
Proposition 4: The optimal solution of the optimization

problem of the mismatched filter in (49) is equal to the
optimal solution of the optimization problem given by

minimize
qf

8(pf , qf ). (56)

Proof: By using (50) and Lemma 2, we find that the
squared Frobenius norm of QH

f P̃ f [i]ĨM − δ[i]ĨM equals the
squared norm of its first row multiplied by the number of
nonzero rows of ĨM . This can be represented as

Kw∑
i=−Kw

∥∥∥QH
f P̃ f [i]ĨM − δ[i]ĨM

∥∥∥2
F

=

Kw∑
i=−Kw

(M −Mnull)
∥∥∥eT

1

(
QH
f P̃ f [i] − δ[i]IM

)∥∥∥2 (57a)

= (M −Mnull)8(pf , qf ), (57b)

where the first column of Qf is equal to qf from (30). □
Then, 8(pf , qf ) can be interpreted as the per-subcarrier

MSE in the noiseless AWGN channel. The optimal RX
prototype vector qf ,opt(pf ) as a function of pf can be derived
from solving the optimization problem (56) and is given by

qf ,opt(pf ) =

( Kw∑
i=−Kw

P̃ f [i]P̃
H
f [i]

)−1( Kw∑
i=−Kw

δ[i]P̃ f [i]e1
)

=

( Kw∑
i=−Kw

P̃ f [i]P̃
H
f [i]

)−1
P̃ f [0]e1. (58)

Next, we demonstrate that minimizing our objective
function is equivalent to maximizing the SIR. The SIR can
be represented by

SIR =

M−1∑
m=0

∣∣[QH
f P̃ f [0]]m,m

∣∣2
Kw∑

i=−Kw

∥∥∥QH
f P̃ f [i] − δ[i]

M−1∑
m=0

em+1[QH
f P̃ f [0]]m,meT

m+1

∥∥∥2
F

(59)

because each diagonal entry of QH
f P̃ f [0] corresponds to the

desired signal for each subcarrier in the frequency domain.
Using Lemma 2, we can rewrite the SIR as

SIR =

∣∣(P̃ f [0]e1)Hqf ∣∣2∑Kw
i=−Kw

∥∥P̃H
f [i]qf − δ[i](P̃ f [0]e1)Hqf e1

∥∥2 . (60)

The minimum MSE (MMSE) per subcarrier in the
noiseless AWGN channel can be obtained as

MMSENL = 8(pf , qf ,opt(pf ))

= 1 − (P̃ f [0]e1)H
( Kw∑
i=−Kw

P̃ f [i]P̃
H
f [i]

)−1
(P̃ f [0]e1).

(61)
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Similarly, the maximum SIR (MSIR) can be obtained by
substituting qf ,opt(pf ) from (58) for qf in the expression for
SIR given in (60). This substitution leads to

MSIR =

(P̃ f [0]e1)H
(∑Kw

i=−Kw P̃ f [i]P̃
H
f [i]

)−1
(P̃ f [0]e1)

1 − (P̃ f [0]e1)H
(∑Kw

i=−Kw P̃ f [i]P̃
H
f [i]

)−1
(P̃ f [0]e1)

=
1

MMSENL
− 1 (62)

Therefore, theMSEminimization problem,with the objective
function represented by 8(pf , qf ), is equivalent to the SIR
maximization problem.

Given that the optimal RX prototype vector is determined
by the TX prototype vector, the joint optimization problem
involving both TX and RX prototype vectors can be
reformulated into a single optimization problem with the TX
prototype vector as the only decision variable. This can be
represented by

min
pf , qf

8(pf , qf ) = min
pf

min
qf

8(pf , qf ) (63a)

= min
pf

8(pf , qf ,opt(pf )) (63b)

To simplify the optimization process, the TX prototype
vector pf is given a specific structure, thereby reducing
the number of free variables that need to be adjusted. Let
pf have consecutive NTX nonzero components, beginning
with the first component and alternating between adjacent
components and their corresponding components from the
end, where NTX is an odd number to maintain its symmetry.
This can be expressed as

pT
f en+1 = 0, ∀n ∈

{NTX + 1
2

, · · · ,N −
NTX + 1

2

}
. (64)

If NTX increases, the spectrum of a subcarrier becomes
broader, i.e., the FD localization of the TX prototype filter
is reduced, while it provides greater flexibility to improve the
SIR.

Moreover, the impulse response of the TX prototype
filter must be real-valued. Hence, pf must be complex
conjugate-symmetric about its first component, which can be
expressed as

pT
f en+1 = (pT

f eN−n+1)∗, ∀n ∈

{
1, 2, · · · ,

NTX − 1
2

}
. (65)

If one desires the impulse response to be symmetric, pf
must also be real symmetric about the first component. This
structure makes the optimization problem simpler, as the
number of free variables is nearly halved.

To maintain constant energy in the TX waveform, a con-
straint on the norm of the TX prototype vector, denoted by
∥pf ∥

2
= 1, is imposed. When designing the waveform,

factors other than the SIR should also be considered.
Such considerations will be integrated into the optimization
problem as additional constraints, detailed as follows.

B. FALL-OFF RATE
To find a practical prototype filter, the FD localization of
the filter must be considered. The FD localization of the
TX prototype filter is significantly affected by the value
of K . A large K implies that the filter has a long pulse,
which enables a narrow spectrum and reduced out-of-band
emission. However, this increases the overall computational
complexity of the system in general. Also, NTX can be
reduced to make the spectrum narrower, but this decreases
the SIR performance.

As another way to make the spectral confinement higher,
we can impose a constraint on the fall-off rate of the spectrum
of the TX prototype filter. The term fall-off rate refers to the
rate of decay of the spectrum of the filter as the frequency
approaches either positive or negative infinity. It is known
that the fall-off rate can be restricted by imposing a certain
constraint [16], [32] as follows. Define the column vector
9(R) as a function of a nonnegative integer R as

9(R) =



δ[R]
1R

2R
...

(N2 − 1)R

(−N
2 )

R

...

(−1)R


. (66)

In this column vector, the second to the N/2-th components
are the R-th powers of integers from 1 to N/2 − 1. On the
other hand, the (N/2 + 1)-th to the last components are the
R-th powers of integers from −N/2 to −1. Then, for any
nonnegative integer Rmax, if the condition expressed by

(9(R))Tpf = 0, ∀R ∈ {0, 1, · · · ,Rmax} (67)

holds, then the decay rate of the spectrum of the prototype
filter with FD vector pf is at least as fast as f

−(Rmax+1), where
f is the frequency. The condition (67) is derived by imposing
continuity on the R-th order derivative of the pulse [16], [32].

Note that the fall-off rate constraint only guarantees that
the spectrum decreases at a certain rate for frequencies that
are far from the center frequency. Hence, relying solely on
the fall-off rate constraint does not ensure the capability of
the filter to suppress out-of-band emission, meaning that both
K and NTX should be adjusted accordingly.

C. SNR LOWER BOUND
Maximizing the SIR only does not guarantee a high SINR.
Hence, as previously shown in (45), the SNR lower bound is
imposed as a constraint to ensure high SINR performance.

Let us denote the post-processing SNR as ρ(pf , qf , σ
2),

given the prototype vectors pf and qf in the AWGN channel
with received SNR of σ 2. It can be written as

ρ(pf , qf , σ
2) =

∣∣(P̃ f [0]e1)Hqf ∣∣2
σ 2
∥∥P̃ f [0]e1∥∥2∥qf ∥2 (68a)

3746 VOLUME 12, 2024



T. Jang, J. H. Cho: PPN-Based Improved QAM-FBMC System

=

∣∣(W ÑE[0]W
H
Npf )

Hqf
∣∣2

σ 2∥pf ∥2∥qf ∥2
. (68b)

where Lemma 2 is used in the same way as in the derivation
of (60). It can be rewritten as

ρ(pf , qf , σ
2) =

1
σ 2∥pf ∥2

·
qH
f Aqf
qH
f qf

, (69a)

where the matrix A is given by

A = (W ÑE[0]W
H
Npf )(W ÑE[0]W

H
Npf )

H. (69b)

The matrixA is a Hermitian matrix, so that (69a) has the form
of a Rayleigh quotient multiplied by a scalar value. Since
the rank of A is 1 and one of its eigenvalues is ∥pf ∥

2
= 1,

ρ(pf , qf , σ
2) satisfies the inequality given by

λmin = 0 ≤ σ 2ρ(pf , qf , σ
2) = ρ(pf , qf , 1) ≤ 1 = λmax,

(70)

where λmin and λmax are the minimum and maximum
eigenvalues of A, respectively. We can then enforce an
SNR constraint given by ρ(pf , qf , 1) ≥ 1 − ε, where
ε > 0 is a small value indicating the allowable SNR
degradation. Note that the RX prototype vector has the value
qf = qf ,opt(pf ).

Adding the constraints we have discussed, the final
optimization problem to find the optimal TX prototype vector
is presented as

minimize
pf

8(pf , qf ,opt(pf )) (71a)

subject to ∥pf ∥
2
= 1 (71b)

(9(R))Tpf = 0, ∀R ∈ {0, · · · ,Rmax} (71c)

ρ(pf , qf ,opt(pf ), 1)≥ 1 − ε. (71d)

Given the relation

1
SINRσ 2

=
1

SIR
+

1
ρ(pf , qf ,opt(pf ), σ 2)

≤
1

SIR
+

σ 2

1 − ϵ
,

(72)

where SINRσ 2 represents the SINR when the received
SNR is σ 2, it becomes evident that maximizing the SIR
correspondingly increases the SINR. ByfixingNTX andRmax,
we perform a line search on the value of ϵ to solve the
optimization problem (71b). Note that increasing the lower
bound of the post-processing SNR does not necessarily result
in better performance, since the SIR may decrease with the
increase of the lower bound. During each iteration, we ensure
the resultant filters achieve satisfactory SIR or SINR values,
allowing us to identify the best filter for the purpose. The
RX prototype filter is then obtained as qf ,opt(pf ) as given
in (58).

TABLE 1. FD coefficients of proposed Tx prototype filters.

D. OPTIMIZED TX PROTOTYPE FILTERS
In this subsection, we present two TX prototype filters opti-
mized by numerically solving (71b), each uniquely identified
by the triplet (K , r,M/S). The filter with (K , r,M/S) =

(3, 4/3, 16) consists of 11 FD taps, equivalent to 6 dis-
tinct taps due to symmetry, and is characterized by real
symmetric FD coefficients. On the other hand, the filter
with (K , r,M/S) = (4, 2, 16) consists of 7 FD taps,
equivalent to 4 distinct taps due to conjugate-symmetry,
and is characterized by complex conjugate-symmetric FD
coefficients. The coefficients for these TX prototype filters
are presented in TABLE 1. These coefficients in the table
have been normalized so that the center coefficient is equal
to unity.

The applicability of the prototype filter is not restricted to a
specific value ofM . It can be employed across various values
ofM values, as long as the triplet combination of (K , r,M/S)
remains constant. For example, both filters can be used in a
system withM = 128 and S = 8, as well as in a system with
M = 1024 and S = 64.

V. NUMERICAL RESULTS
In this section, numerical results are presented to illustrate
the performance of the proposed QAM-FBMC system. First,
the computational complexity of the system is analyzed for
distinct TX and RX structures, specifically, the direct FD and
PPN-based structures. Next, the filter responses and power
spectral density (PSD) of the proposed system are examined,
and a comparison is made with those of other QAM-FBMC
systems. Lastly, a comparative evaluation is conducted on the
performance of the proposed system with those of the CP-
OFDM,OQAM-FBMC, andQAM-FBMC systems, focusing
on the SIR, the SINR, and the bit-error rate (BER).

A. COMPUTATIONAL COMPLEXITY
In this subsection, we provide a detailed examination of the
computational complexity of the TX and RX structures of
the proposed QAM-FBMC system. The structures analyzed
include the direct FD structure and the proposed PPN-
based structure. The complexity is analyzed on a per FBMC
symbol basis, which means that the complexity covers the
generation of a single FBMC symbol at the TX and the
processing of a single FBMC symbol at the RX. We provide
the complexity in terms of big O notation, along with the
numbers of real additions and multiplications. We illustrate
the numbers of real additions and multiplications between the
systems with each of the structures of the proposed system
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TABLE 2. Computational complexity of Txs.

and the low-complexity system in [26]. For this analysis,
we assume that we have a perfect estimate of the channel
impulse response in advance, excluding the complexity of
the channel estimator, as it is beyond the scope of this paper.
In accordance with the split-radix FFT presented in [33],
the numbers of real additions and multiplications required
for an M -point FFT amount to (3M log2M − 3M + 4) and
(M log2M − 3M + 4), respectively. In this analysis, we use
KM and rKM for N and Ñ , respectively, to conveniently
compare the complexity.

1) COMPLEXITY OF TX
In the analysis of TX complexity, the number of nonzero FD
components in the TX prototype filter is denoted by NTX.
As an example, for the PHYDYAS filter with K = 4, this
value is equal to 7, since we count the components on both
sides of the filter, not just one side.

We first analyze the complexity in terms of the big O
notation. The TX with the direct FD structure consists of the
FD filter P f and the KM -point inverse fast Fourier transform
(IFFT). The complexity of the FD filter, derived from the
multiplication of NTX nonzero FD coefficients and M QAM
symbols, is O(NTXM ). The complexity of the KM -point
IFFT is O(KM logKM ). As a result, the total complexity
of the direct FD structure can be expressed as O(NTXM +

KM logKM ).
On the other hand, the TX with the PPN-based structure

consists of the M -point IFFT, a circular shift operation with
postfix insertion, and the summation of vectors resulting
from the Hadamard product. The complexity of the M -point
IFFT amounts toO(M logM ). The complexity of the circular
shift operation, the Hadamard product, and the summation is
O(KM ). Consequently, the total complexity of the PPN-based
structure is O(KM +M logM ). These total complexities are
summarized in TABLE 2 using the big O notation.

Next, we analyze the complexity in terms of the numbers
of real additions and multiplications. For the direct FD
structure, two main operations are performed serially. The
FD filter requires NTX(M − 1) complex additions and NTXM
complex multiplications, equivalent to 4NTXM − 2M real
additions and 4NTXM real multiplications. Following this, the
KM -point IFFT requires (3KM log2 KM − 3KM + 4) real
additions and (KM log2 KM−3KM+4) real multiplications.
Hence, the total numbers of real additions and multiplications
for the direct FD structure can be expressed as

ATX,direct = 4NTXM + 3KM log2 KM

− 3KM − 2M + 4, (73a)

MTX,direct = 4NTXM + KM log2 KM − 3KM + 4, (73b)

respectively.

FIGURE 5. Numbers of (a) real additions and (b) real multiplications of
different TXs.

For the PPN-based structure, three main operations are
performed serially. TheM -point IFFT requires (3M log2M−

3M + 4) real additions and (M log2M − 3M + 4) real multi-
plications. Following this, the circular shift operation requires
(K−1) real multiplications. Then, the Hadamard product and
the summation require (KM−M − S) complex additions and
KM complex multiplications, equivalent to (4KM−2M−2S)
real additions and 4KM real multiplications. Therefore, the
total numbers of real additions and multiplications for the
PPN-based structure can be expressed as

ATX,PPN = 3M log2M + 4KM − 5M − 2S + 4, (74a)

MTX,PPN = M log2M + 4KM − 3M + K + 3, (74b)

respectively.
FIGURE 5-(a) and 5-(b) illustrate comparisons of five

systems in terms of the number of real additions and the
number of real multiplications, respectively. Two systems
with the proposed filters, each with K = 3 and K = 4, are
implemented with the direct FD structure. Likewise, another
two systems with the proposed filters, each with K = 3 and
K = 4, are implemented with the PPN-based structure. The
system from [26] is implemented only with the direct FD
structure. The IFFT requires its size to be a power of two for
efficiency. When the size of the IFFT is not a power of two,
the size is adjusted upwards to the nearest power of two for
representation in the figure.

Interestingly, the complexity of the system with K = 3 is
higher than that of the system with K = 4 when using the
direct FD structure. The reason for this is that the prototype
filter with K = 3 has 11 taps, more than the 6 taps of the
prototype filter with K = 4. However, when using the PPN-
based structure, the complexity of the system with K = 3 is
slightly lower than that of the system with K = 4 since it is
not affected by the number of nonzero FD components in the
prototype filter.

The PPN-based structure substantially reduces the TX
computational complexity of both systems, reducing the
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TABLE 3. Computational complexity of RXs.

numbers of real additions and of real multiplications to about
one-third or even less than those of the direct FD structure.
This reduction is primarily attributed to the fact that the
direct FD structure has a KM -point IFFT, with a complexity
of O(KM logKM ), whereas the PPN-based structure has an
M -point IFFT, with a complexity of O(M logM ).

2) COMPLEXITY OF RX
In the analysis of RX complexity, the number of nonzero FD
components in the RX prototype filter is denoted by NRX.
Each RX in this analysis has an FD one-tap equalizer placed
before the FD filter. This structure divides the RX into three
parts: the FFT, the FD channel equalizer, and the FD filter.
The direct FD and PPN-based structures share the same FFT
and FD one-tap LMMSE equalizer, but they use different FD
filters.

As stated at the end of Section III, further complexity
reduction for the PPN structure is achievable by positioning
the equalizer after the RXfilter. However, this may negatively
impact the RX performance, despite its complexity benefits.
This concern is further evidenced by the BER comparison in
frequency selective channels, discussed in a later subsection.
Hence, the proposed system does not adopt this structure and
its complexity is not further discussed in this paper.

In terms of the big O notation, the analysis begins with
an examination of the components that are common to
both structures. The complexity of the rKM -point FFT
is O(rKM log rKM ). The complexity of the FD one-tap
equalizer, which includes acquiring Ĥ f [k] from the estimated
channel impulse vector, is also O(rKM log rKM ) [11], [26].

Now, we consider the FD filter, where the complexity
varies between the two structures: the direct FD structure
and the PPN-based structure. The direct FD structure has
a filtering complexity of O(NRXM ). Meanwhile, the PPN-
based structure, which includes the rKM -point IFFT at the
beginning, has a complexity ofO(rKM+rKM log rKM ). The
total complexities, which include the common components,
are summarized in TABLE 3 using the big O notation.
As a special case, when a full-tap RX prototype filter

with NRX = rKM is used, the complexity of the direct FD
structure becomes O(rKM2

+ rKM log rKM ). This reflects
a quadratic relationship with M , unlike the PPN-based
structure, which exhibits a log-linear complexity relationship
with M . Furthermore, it is notable that the LMMSE RX,
as described in [18], has a complexity ofO(K 3M3), indicating
a cubic relationship withM , due to the matrix inversion. This
complexity can impose a substantial computational burden,
especially for large values ofM .
The analysis of the numbers of real additions and mul-

tiplications begins with an examination of the components

FIGURE 6. Numbers of (a) real additions and (b) real multiplications of
different RXs including the common components.

common to both structures. The foremost rKM -point FFT
requires (3rKM log2 rKM − 3rKM + 4) real additions and
(rKM log2 rKM−3rKM+4) real multiplications. Assuming
that the channel impulse response is already provided, and
excluding the complexity of acquiring the channel impulse
response, the FD channel estimation requires an rKM -
point FFT with additional Lch real additions and 3Lch real
multiplications. The total complexity for channel estimation
amounts to (3rKM log2 rKM−3rKM+Lch+4) real additions
and (rKM log2 rKM−3rKM+3Lch+4) real multiplications.
The subsequent one-tap equalization requires rKM complex
multiplications, which are equivalent to 2rKM real additions
and 4rKM real multiplications.
Focusing on the filtering processes, we analyze the

numbers of real additions andmultiplications required in both
the direct FD structure and the PPN-based structure. The
former uses a more direct method, whereas the latter involves
multiple procedures.

In the direct FD structure, the filtering requires (NRX −

1)M complex additions and NRXM complex multiplications.
This is equivalent to the numbers of real additions and
multiplications expressed as

ARX,direct = 4NRXM − 2M , (75a)

MRX,direct = 4NRXM , (75b)

respectively. At first glance, the values might be perceived as
being low. However, when a full-tap RX prototype filter is
used, i.e., NRX = rKM , they become ARX,direct = 4rKM2

−

2M and MRX,direct = 4rKM2, making the RX with a full-tap
RX prototype filter less practical.

In the PPN-based structure, the filtering process involves
three steps: the rKM -point IFFT, the Hadamard product
combined with summation and circular shift, and the
M -point FFT. The rKM -point IFFT requires (3rKM log2
rKM − 3rKM + 4) real additions and (rKM log2 rKM −

3rKM + 4) real multiplications. The Hadamard product and
summation with circular shift require (rKM − M ) complex
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additions, rKM complex multiplications, and additional
(Ku + Kw − 1) real multiplications, which are equivalent
to (4rKM − 2M ) real additions and (4rKM + Ku + Kw −

1) real multiplications. Lastly, the M -point FFT requires
(3M log2M−3M+4) real additions and (M log2M−3M+4)
real multiplications. Thus, overall, the filtering process in the
PPN-based structure requires total numbers of real additions
and multiplications expressed as

ARX,PPN = 3rKM log2 rKM + 3M log2M

+ rKM − 5M + 8, (76a)

MRX,PPN = rKM log2 rKM +M log2M

+ rKM − 3M + Ku + Kw + 7, (76b)

respectively.
FIGURE 6-(a) and 6-(b) illustrate comparisons of five

systems, similar to those in the TX complexity comparison.
For illustration purposes, the complexity of the common
components of the RXs is included, and Ku+Kw = rK +1 is
used. The FFT and IFFT sizes are rounded up to the nearest
power of two if they are not already a power of two.

When using our proposed filters with K = 3 and
K = 4, the systems with the direct FD structure demonstrate
significantly higher computational complexity than those
with the PPN-based structure. This increase in complexity
primarily arises from the quadratic relationship of the full-tap
RX prototype filter with M . Consequently, using a full-tap
filter makes the systems implemented with the direct FD
structure impractical.

When implemented with the PPN-based structure, the
system with the proposed filter of K = 4 becomes viable,
exhibiting a complexity similar to the system implemented
with the direct FD structure in [26]. Specifically, the number
of real additions of the proposed system with K = 4 exceeds
that of the system in [26], whereas the number of real
multiplications is slightly lower. Interestingly, the system
with the proposed filter ofK = 3, when implementedwith the
PPN-based structure, shows roughly half the RX complexity
of the system in [26]. The primary reason for this reduction
lies in the significance of the rKM -point FFT and IFFT to the
complexity. The value of rKM of the system with K = 3 is
half of the value of the system with K = 4, thus halving the
size of FFT or IFFT.

B. TX FILTER RESPONSES
In this subsection, we examine both the impulse response and
PSD of the proposed systems, specifically incorporating the
proposed filters with K = 3 and K = 4.

1) IMPULSE RESPONSE
FIGURE 7 illustrates the impulse responses p0(t) of the
proposed filters, corresponding to distinctK values, where Ts
represents the FBMC symbol period. Each impulse response
shown in the figure spans a single pulse duration. Since the
length of one FBMC symbol is KM in the discrete time, the
filter withK = 3 is shorter in representation than the one with

FIGURE 7. Impulse responses of the TX filters of the proposed systems
with different values of K .

FIGURE 8. (a) Per-subcarrier PSDs and (b) overall PSDs of the OFDM and
QAM-FBMC systems when M = 1024 and Mnull = 424.

K = 4. While the prototype filter with K = 3 demonstrates
symmetry about its center due to its real symmetric FD taps,
the filter with K = 4 is asymmetrical, having complex
conjugate-symmetric FD taps. The shorter length of the filter
with K = 3, coupled with the low-complexity RX as
shown in the previous subsection, makes it more suitable for
applications with stricter latency requirements.

2) PSD
FIGURE 8-(a) and 8-(b) present the per-subcarrier and
overall PSDs of OFDM and QAM-FBMC systems, with
the subcarrier spacing FSC = 15 kHz, M = 1024, and
Mnull = 424. For the QAM-FBMC systems with a pair of
TX prototype filters in [12] and [14], average PSD values are
shown in FIGURE 8(a). For this and subsequent subsections,
the Case C filter from [16] and the Type G30 filter from [18]
are included in the numerical results. Regarding the fall-off

3750 VOLUME 12, 2024



T. Jang, J. H. Cho: PPN-Based Improved QAM-FBMC System

rate constraint, the proposed filters have been optimized using
parameters (K = 3,Rmax = 3) and (K = 4,Rmax = 1).
FIGURE 8-(a) shows that the systems with a pair of TX

prototype filters [11], [12], [14] have relatively high out-of-
band emission. For these systems, one of the pair of filters
has small side lobes, but the other has large side lobes. This
makes the average spectrums of the systems relatively wide
and increases the out-of-band emission. In particular, the
system in [14] has large side lobes, whose overall out-of-
band emission is worse than those of the OFDM system.
On the other hand, the systems with a single TX prototype
filter in [16] and [18] have a relatively narrow spectrum,
but their side lobes are larger than those of the proposed
systems. The system in [26] uses the PHYDYAS filter,
which has the narrowest spectrum and smallest side lobes
compared to the other systems. The proposed system with
K = 4 exhibits a spectrum closely resembling that of the
system employing the PHYDYASfilter. The proposed system
with K = 3 has a wider per-subcarrier spectrum than that of
the PHYDYAS filter, which is attributed to its larger number
of FD taps. However, its out-of-band emission is small thanks
to the rapid fall-off rate utilized in the filter optimization.
Among the compared FBMC and OFDM systems, the FBMC
system with the PHYDYAS filter and the proposed systems
demonstrate superior spectral confinement.

FIGURE 8-(b) shows similar results, where each of the
PSDs is effectively the sum of 600 per-subcarrier PSDs.
Although the fall-off rate constraint used to optimize the
proposed filter with K = 3, which is Rmax = 3, is stricter
than the rate used to optimize the filter with K = 4, which is
Rmax = 1, the filter with K = 4 has a higher K , which leads
to a more spectrally confined filter in the figure.

The primary reasons for the proposed systems having
low out-of-band emission are not only the use of the
fall-off rate constraint in filter optimization but also the
small number of FD taps in the TX prototype filter. This
small number of FD taps is achievable by employing a
mismatched RX filter, which is not a feasible approach
for conventional QAM-FBMC systems with matched filters.
Since the spectrum of a system is solely determined by the TX
prototype filter, the number of FD taps of the TX prototype
filter can be kept small and, instead, the number of the FD
taps of the RX prototype filter can be increased to improve
other performance metrics.

We can determine the required number of guard subcarriers
based on the number of subcarriers needed to bring the
PSD to a certain level, for instance, below −30 dB. Guard
subcarriers can be crucial for scenarios like asynchronous
multi-user communications. Specifically, the system with
the PHYDYAS filter [26] and the proposed system with
K = 4 each require two guard subcarriers, one on each
frequency side. On the other hand, the proposed system
with K = 3 requires four guard subcarriers, two for each
frequency side. The other QAM-FBMC systems presented
in FIGURE 8-(b) demand at least 8 guard subcarriers.
Such spectral characteristics emphasize the suitability of the

TABLE 4. SIR of FBMC systems.

proposed system with K = 4 for applications demanding
strict spectral requirements.

The proposed TX prototype filters have a main lobe wider
than the Nyquist minimum bandwidth, resulting in each
signal transmitted by each subcarrier exhibiting cyclostation-
arity [34]. Consequently, the proposed RX prototype filter
should have large peaks in the time domain and large side
lobes in the frequency domain to effectively exploit temporal
and spectral correlation for self-interference suppression.
This rationale justifies not only the extension of the RX
filter length but also the removal of the sparsity constraint in
the FD taps during RX prototype filter optimization, which
may reduce self-interference, as will be demonstrated in the
following subsections.

C. SIR AND EVM
In this subsection, the SIR and error-vector magnitude
(EVM) performance of QAM-FBMC systems is compared.
The EVM serves as a metric to measure system imperfec-
tions, such as filter flaws and nonlinear distortions [35].
In this paper, we define the approximate EVM, denoted by
EVMapprox, as the average EVM for each symbol based on
the noiseless AWGN channel MSE, denoted by MSENL. The
approximate EVM can be expressed as

EVMapprox =

√
MSENL =

1
√
SIR + 1

, (77)

similar to (62). The SIR for the proposed system is expressed
as (60).

TABLE 4 presents the SIR and approximate EVM values
of the QAM-FBMC systems discussed in the paper when
M = 1024. It can be shown that other systems with
completely different combinations of system parameters,
including the value ofM , also exhibit almost the same trend,
but they are not compared here in the interest of fairness.
TABLE 4 shows that the QAM-FBMC systems that utilize
the matched filter at the RX [11], [12], [16] generally exhibit
relatively low SIR values, with the exception of the system
in [14], which has a high SIR value of 65.2 dB. This value
is equivalent to the SIR value of the OQAM-FBMC system
that employs the PHYDYAS filter. Despite its high SIR value,
the system described in [14] is characterized by large out-
of-band emission that surpasses those commonly found in
OFDM systems as illustrated in Fig 8. If we compare the
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spectrum and SIR performance among the systems with a
matched RXfilter and unit TF symbol density [11], [12], [14],
[16], as shown in FIGURE 8-(a) and TABLE 4, a trade-off
between SIR and out-of-band emission performance becomes
evident. In general, systems with a higher SIR value have a
wider spectrum and higher out-of-band emission. This trade-
off is derived from the Balian-Low theorem, which states
that excellent orthogonality and TF localization cannot be
achieved simultaneously with the symbol density of unity.

On the other hand, TABLE 4 shows that the QAM-FBMC
system with the LMMSE RX [18] achieves a higher SIR than
QAM-FBMC systems that have amatchedRXfilter. By using
the mismatched filter, it relaxes the TF localization only at
the RX, which results in overall better SIR and out-of-band
emission performance than the systems with the matched
RX filter. Nonetheless, it has a higher complexity and its
SIR values still fall short compared to those of the proposed
systems. The system in [26] not only uses the mismatched
RX filter but also increases the TF-product and the RX
observation window, which further improves the SIR and out-
of-band emission performance. However, the number of FD
taps in the RX prototype filter is constrained to maintain low
complexity, which limits the performance improvement.

The proposed systems with the mismatched filter at the
RX achieve even higher SIR values compared to the system
presented in [26]. Unlike the system in [26], which does not
use the PPN-based structure, the proposed system utilizes
it. Hence, the limitation of the system in [26] is overcome
without a significant increase in complexity, as previously
demonstrated in the complexity analysis. Thus, the proposed
system with K = 4 achieves the highest SIR among all
the QAM-FBMC systems discussed in this paper, and the
proposed system with K = 3 also offers an excellent
SIR value while maintaining a complexity lower than that
of the proposed system with K = 4. Note that as the
overlapping factor increases, achieving a higher SIR becomes
easier because it becomes easier to achieve high spectral
confinement so that there is more room to increase the SIR.

As noted in their respective papers, systems with a unit TF
symbol density and a matched RX filter, but with different
combinations of system parameters [15], [17], [23], show
almost the same trend, having SIR values of less than 20 dB.
On the other hand, the systems in [25] have a relaxed TF
symbol density and amatched RXfilter. One of these systems
achieves a high SIR value of 46.8 dB with TF = 1.0625 and
K = 32, but no filter supporting high-order modulations is
found with a lower K value with this system design [25].
Recall that the EVM requirements by the standards are

about 8% to support 64-QAM, 3.5% to support 256-QAM,
2.5% to support 1024-QAM [36]. Most of the compared
QAM-FBMC systems do not satisfy the EVM requirements
for 256-QAM. It is noteworthy that the systems presented
in [25], according to their findings, support 256-QAM with
a relaxed TF symbol density. However, due to their high
K = 16 or 32, these systems are particularly suited for
use cases involving a smaller number of subcarriers, such

FIGURE 9. SINR in the AWGN channel when M = 1024 and Mnull = 424.

as multi-user uplink scenarios with M = 16. On the
other hand, both proposed systems achieve an approximate
EVM of less than 1%, which is sufficient to support
1024-QAM, provided that channel distortion or noise is
not significant. Hence, the proposed systems may be used
for future applications requiring high-order modulations.
Overall, by slightly increasing the TF-product and relaxing
the time and frequency localization only of the RX filter,
QAM-FBMC systems can attain both high SIR and low
out-of-band emission simultaneously, while maintaining low
complexity through the use of the proposed PPN-based
structure.

D. SINR
In this subsection, we compare the SINR of the proposed
systems with other systems. FIGURE 9 illustrates the SINR
performance in the AWGN channels. Analytically, the SINR
approaches the SIR as the SNR increases and saturates at the
SIR value. Since the CP-OFDM system does not have self-
interference, its SINR is equal to its SNR. The figure in this
analysis closely aligns with the SIR comparison presented in
TABLE 4.

In FIGURE 9, the proposed system with K = 3 demon-
strates excellent performance for SNR values less than 40 dB,
and the proposed system with K = 4 exhibits similar
performance for SNR values less than 70 dB. In particular,
the proposed system with K = 3 performs the best among
the compared QAM-FBMC systems except [14] in the low
SNR regime. In conditions of extremely high SNR, the
proposed system with K = 4 proves to be the superior
performer among all the QAM-FBMC systems. Interestingly,
the proposed system with K = 3 shows higher SINR values
than those of the proposed system with K = 4 in the
low SNR regime. This is because the proposed prototype
filter with K = 4 is an optimization result with a less
strict post-processing SNR constraint to achieve a higher
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FIGURE 10. BER in the EPA channel when M = 1024 and Mnull = 424 with (a) 16-QAM, (b) 64-QAM, (c) 256-QAM, and (d) 1024-QAM data symbols.

SIR value. Remarkably, our proposed system with K = 4
surpasses the performance of the full-tap RX prototype filter
system in [26] in the high SNR regime, an achievement made
possible by jointly optimizing the TX and RX prototype
filters. As mentioned in [26], the system with its full-tap
RX prototype filter is not considered practical for real-world
applications. In contrast, the systems with a full-tap RX
prototype filter proposed in this paper are feasible solutions
for practical use by using the proposed PPN-based structure.

E. BER
In this subsection, we compare the BER performance of the
proposed systems with other systems. For the BER analysis,
we assume a perfect channel impulse response estimate
at the RX. All QAM-FBMC systems employ FD one-tap
equalizers, except for the system using the LMMSE RX
in [18]. The OQAM-FBMC system and the QAM-FBMC
system in [14] place the FD one-tap equalizer after the RX
filter, whereas other QAM-FBMC systems place it before.
The TF-product of the CP-OFDM system is approximately
1.07 due to CP overhead.

FIGURE 10 illustrates the uncoded BER performance
in frequency-selective channels using the Extended Pedes-
trian A (EPA) model, as described in [36], with 7 taps
and a maximum delay spread of 0.410 µs. Mostly, the
QAM-FBMC systems with higher SINR performance in
FIGURE 9 show lower BER performance in FIGURE 10.
The exception is that the system in [14] exhibits poor
BER performance despite its very high SIR and SINR in
the AWGN channels. This is because it has very high
out-of-band emission and equalization after filtering is not
effective in frequency-selective channels, especially for the
system whose spectrum is not well-localized. In such a case,
non-equalized subcarriers may affect the filtering process
with severe interference. The proposed system with K =

3 exhibits nearly optimal BER performance in both types
of transmissions. The proposed system with K = 4 shows

similar performance but with a slightly higher BER because
of its less strict post-processing SNR constraint used in the
filter optimization, as pointed out in the previous subsection.

The QAM-FBMC systems with matched RX filters [11],
[12], [16] only show comparable BER for 4-QAM transmis-
sions in these channels. On the other hand, the LMMSE-RX
system in [18] and mismatched-RX system in [26] show
great BER performance up to 16-QAM transmissions and
64-QAM transmissions, respectively. Among the compared
QAM-FBMC systems, only the proposed systems properly
support 1024-QAM in the EPA channel as FIGURE 10-(d)
shows. This is implied by the comparison of the approximate
EVM in TABLE 4, where only the proposed systems have the
approximate EVM less than 2.5%.

FIGURE 11 illustrates the uncoded BER performance in
frequency-selective channels following the Typical Urban
(TU) model, as described in [37], incorporating 20 taps and
a maximum delay spread of 2.140 µs. FIGURE 11 shows a
more pronounced performance gap between the systems than
those in the EPA channels. The proposed system with K = 4
shows outstanding performance among the QAM-FBMC
systems, especially at a high SNR regime, whereas the system
withK = 3 also exhibits excellent BER performance for SNR
values ≤ 35 dB.
Both systems also exceed the OQAM-FBMC system

with the PHYDYAS filter performance for SNR values
≥ 25 dB. The OQAM-FBMC system shows worse BER
performance in this SNR range, which is different from
the results presented in FIGURE 10. This difference is
due to the greater frequency selectivity of the TU channels
compared to the EPA channels, making equalization after
filtering less effective. On the other hand, the proposed
system has an FD one-tap equalizer before the RX filter for
high performance in highly frequency-selective channels. For
64-QAM transmissions, the QAM-FBMC system employing
the LMMSE RX [18] can outperform the proposed system
with K = 3 that uses one-tap equalizers in highly
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FIGURE 11. BER in the TU channel when M = 1024 and Mnull = 424 with (a) 16-QAM, (b) 64-QAM, (c) 256-QAM, and (d) 1024-QAM data symbols.

frequency-selective channels. However, this comes at the
expense of the high complexity associated with the full-tap
LMMSE, and its BER performance is worse than that of
the proposed systems for higher-order transmissions than
64-QAM. The proposed systems with high SIR perfor-
mance support high-order modulations better than the other
QAM-FBMC systems, even up to 1024-QAM.

VI. CONCLUSION
In this paper, we have proposed QAM-FBMC systems
with the PPN-based structure and jointly optimized TX
and RX prototype filters. At the RX, they employ the FD
one-tap LMMSE equalizer followed by the fixed mismatched
filter. The proposed PPN-based structure accommodates
QAM-FBMC systems with not only the decreased TF symbol
density but also the extended observation window. The
proposed TX and RX prototype filters are jointly optimized
to maximize the approximate SINR under the fall-off rate
constraint.

While QAM-FBMC systems are known for high spectral
efficiency and low out-of-band emission, they encounter
challenges in achieving high spectral confinement and
low self-interference simultaneously, which stems from the
Balian-Low theorem. This paper overcomes these challenges
by relaxing the TF localization at the RX, specifically extend-
ing the observation window and removing the constraint on
the filter sparsity, in addition to relaxing TF symbol density
slightly. The resulting systems not only achieve significantly
reduced self-interference and high spectral confinement but
also maintain low complexity by using the proposed PPN-
based structure, as evidenced by our numerical evaluations.
An important advantage of the proposed systems is their
capability to support high-order modulations like 1024-QAM
with low complexity, achieved by avoiding a high-complexity
RX, such as full-tap LMMSE or IIC, and without increasing
the overlapping factor. This is particularly significant as
it facilitates higher data rates and more efficient spectrum

utilization without necessitating complex receiver designs,
which are often the bottleneck in traditional systems.

Nonetheless, the proposed systems have some limitations.
They exhibit marginally lower spectral efficiency compared
to other QAM-FBMC systems. Additionally, due to the
extended observation window, they experience higher latency
compared to conventional QAM-FBMC systems withK = 4,
and their performance in highly time-selective channels is
not guaranteed. Future research directions could include
addressing these limitations, developing channel estimation
methods, and applying MIMO techniques to further enhance
the proposed QAM-FBMC system.
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