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ABSTRACT The conventional clustering methods assume a binary classification and establish a complete
inclusive or exclusive type relation of an object with a cluster. In contrast, a three-way paradigm handles
situations where an object may or may not belong to a cluster, i.e., uncertain. The objects belonging to
the uncertainty region may lead to inclusion or exclusion after further processing and information. One
of the use cases of the three-way paradigm is the overlapping region between different clusters. Effective
computation of overlapping objects is crucial to the application’s overall success. In this paper, we employ
a three-way clustering approach inspired by image blurring and sharpening operations that consider the
objects in the inside or outside regions of a cluster to be non-overlapping. The objects belonging to the
partial region of more than one cluster are considered overlapping. The experiment conducted on Birds,
Scenes, and 20 newsgroups datasets indicates that the proposed approach improves the F1 measure and
hamming loss up to 18.6% and 4.9%, respectively. Furthermore, the system’s robustness for overlapping
regions is observed using typical clustering measures. The experimental results suggested that the proposed
approach may improve the computation of overlapping regions effectively.

INDEX TERMS Clustering, three-way clustering, image processing, sharpening, blurring, overlapping.

I. INTRODUCTION
In many real-life applications, the clusters tend to have
fuzzy boundaries and therefore have an overlapping region.
A key challenge in such situations is to effectively identify
objects belonging to the non-overlapping and overlapping
regions [1], [2], [3]. The objects in the non-overlapping
regions are clustered into a single cluster, while the objects
belonging to the overlapping regions are clustered into
multiple clusters, thereby depicting an overlapping area. The
overlapping regions have many potential applications and
may be considered an important research area. Xu proposed
a method to detect the overlapped strawberries with the
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help of a histogram of oriented gradients and support vector
machine [4]. Similarly, the retrieval of the overlapping
cloud top heights, segmentation of overlapping nuclei, and
detection of overlapped gravitational wave signals and genes
are some of the most rated applications of suitable detection
of overlapping regions [5], [6], [7], [8].

Many researchers tried to find overlapping regions or
objects using traditional machine learning algorithms or their
variants, such as OverlappingK-Means (OKM) andWeighted
OKM (WOKM), Multi-Cluster Overlapping K-means Exten-
sion (MCOKE), Overlapping Partitioning Cluster (OPC) and
SVM-cone [9], [10], [11], [12]. Moreover, many existing
approaches for overlapping clustering are based on methods
derived from conventional hard clustering approaches and
soft clustering strategies [13], [14], [15], [16], [17]. The
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first category of these approaches includes the extensions
of commonly used hard clustering algorithms such as k-
means clustering, k-centroids clustering, and k-medoids
clustering [9], [13], [18]. They incorporate rough sets or fuzzy
set theories to formulate overlapping clustering algorithms
such as fuzzy k-means, rough k-means, and rough-fuzzy k-
means [15], [16], [19]. The essential idea is to make a single
cluster assignment in case of non-overlapping or multiple
cluster assignments in case of overlapping for an object by
considering various association thresholds [9]. The key issue
in these approaches is to find suitable thresholds [20]. There
is another category for overlapping clustering, which uses
graph theory. These approaches include star, estar, suffix tree-
based, connected graph-based iterative scan, and overlapping
clustering based on relevance (OClustR) [21], [22], [23], [24].
These approaches generally suffer from high overlapping,
hinder useful information, and have a high computation that
makes them unable to cope with real-life problems [24], [25].
Three-way clustering has recently been used as an

effective and alternative approach for handling overlapping
clusters [2], [26], [27]. The three regions of three-way
clustering provide an easy interpretation for defining objects
in the non-overlapping and overlapping regions. The objects
in the inside regions are disjoint and mutually exclusive and
therefore used to define the non-overlapping region. On the
other hand, the objects in the partial regions may belong
to multiple clusters and are therefore used to define the
overlapping region. Yu et al. presented a density-based three-
way decision approach using decision-theoretic rough sets
for detecting overlapping regions [28]. Yu et al. formulize a
three-way approach using interval sets to detect and shape
the overlapping communities in complex networks [2]. Yu et
al. also work on dynamic datasets and proposed a three-way
approach that populates and increments a tree structure to
detect overlapping regions [27]. In these approaches, the
primary concern was formulating a three-way approach and
exploring it in the different application areas. Furthermore,
fixed and restricted thresholds are used to construct the
three regions. Next, we have to automate the process of
finding thresholds. Afridi et al. introduced variance variance-
oriented three-way approach by incorporating game theoretic
rough sets (GTRS) and genetic algorithms to automate the
determination of suitable thresholds [26]. These methods still
need refinements and improvements.

This paper introduces a three-way approach motivated by
the blurring and sharpening spatial filtering operations in
image processing and explores its application in identifying
and detecting overlapping regions. In contrast to the previ-
ously proposed approaches, it does not need thresholds for
constructing the three regions of a cluster. This approach
converts the hard clusters into their respective images. Next,
each cluster in its respective formatted image is realized
as a typical object. These blurring and sharpening spatial
filtering operations determine the core and support sets used
to construct the three regions associated with a cluster. The
data points in a single cluster’s inside or partial region is

considered non-overlapping. On the other hand, the data
points shared by multiple partial regions are identified as
overlapping objects, and these regions are called overlapping
regions. The contributions of this study can be precisely
defined below:

• Introducing a three-way approach to identify and detect
overlapping regions.

• The proposed approach does not need thresholds for
detecting the three regions and the overlapping regions.

The performance of the proposed approach on Scenes and
Birds datasets in comparison to some of the previous
approaches, including 3WC-ORGTRS , 3WC-OROR, (1, 0)
model and (0.5, 0.5) model shows improvement in the typical
evaluations and multi-label measures. More precisely, the
proposed approach improved the F1 score and hamming loss
up to by 21.6% and 7.2%, respectively.

The remaining article is structured from sections II to VI.
Section II discusses the related literature. Sections III and IV
introduce the proposed working methodology. Section V
elaborates on the performance of the proposed method.
Section VI concludes the research findings.

II. BACKGROUND
This section discusses the related background of this study.
It includes 3WC and blurring and sharpening operations.

A. THREE-WAY CLUSTERING
Yao pioneered three-way clustering by extending the concept
of three-way decisions [29], [30]. Let U be a universal
set containing finite objects xi, for i = {1, 2, 3, . . ., n}.
A clustering algorithm results in a set of crisp partitions
or clusters C = { c1, c2, . . ., cn}. The main idea behind
three-way clustering (3WC) is to represent a cluster ck using
core and support sets i.e., ck = { Core(ck ), Support(ck )}
such that Core(ck ) ⊆ Support(ck ) and Core(ck ), Support(ck )
⊂ U . The core set is the compact, condensed, and concise
representation of a cluster containing objects strongly related
to the cluster. In contrast, the support set is a cluster’s
expanded, diffused, and discursive representation, containing
core objects and some additional objects weakly related to the
cluster that relax the cluster representation. These two sets
define the three regions associated with the cluster ck ,

Inside(ck ) = Core(ck ), (1)

Partial(ck ) = Support(ck ) − Core(ck ), (2)

Outside(ck ) = U − Support(ck ). (3)

The inside region includes the instances with a strong
relationship to the cluster; therefore, they definitely belong to
that cluster. The outside region contains objects not belonging
to the cluster. The partial region contains uncertain objects
that require further investigation to decide their relationship
with the cluster. In literature, [20] and [31], some other
notions are also used to represent a cluster, such as core
Co(ck ) and fringe Fr(ck ). These sets are equivalent to the core
set and support set in the sense of representation of a cluster
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and exist in the following relation,

Co(ck ) = Core(ck ), (4)

Fr(ck ) = Support(ck ) − Core(ck ). (5)

The three regions, i.e., Inside, Outside, and Partial, are
defined using an evaluation function and a threshold pair. The
evaluation function and threshold pair determine the object’s
strength and placement, respectively. For a pair of thresholds
(α, β) based on the value of the evaluation function e(ck , xi),
the three regions are defined as,

Inside(ck ) = {xi ∈ U |e(ck , xi) ≥ α}, (6)

Partial(ck ) = {xi ∈ U |β < e(ck , xi) < α}, (7)

Outside(ck ) = {xi ∈ U |e(ck , xi) ≤ β}. (8)

An object will belong to the inside region if it evaluates
the evaluation function above α, mentioning its strong
relationship with cluster ck . An object will belong to the
partial region if it evaluates the evaluation function between
α and β, mentioning an uncertain relationship with the
cluster ck . Finally, an object will belong to outside if its
evaluation function value evaluates less than β, mentioning
no relationship with the cluster ck . The determination of
thresholds is the key to determining cluster boundaries for
the inclusion and exclusion of an object xi and clustering
accuracy.

It is important tomention some notable works similar to the
idea of 3WC with a different way to approach the solution
using rough clustering, shadowed set clustering, fuzzy set
clustering or interval set clustering [15], [32], [33], [34], [35].

1) ORTHOPAIRS BASED CLUSTERING APPROACHES
An orthopair ‘O ∈ U’ is a pair of two sets of positive (P)
elements and negative (N) elements such that O = (P∪N),
P∩N = ∅ and B = U − (P∪N) [36], [37]. Here, boundary
(B) represents a set of objects that are not entirely positive or
negative. In the three-way clustering perspective, the positive,
negative, and boundary sets correspond to inside, outside, and
partial regions, respectively. Three-way clustering utilizes
the idea of orthopairs to represent a cluster. In literature,
there are similar approaches to three-way clustering based
on orthopairs, but they also have some differences. These
approaches include, rough clustering [38], [39], [40], [41],
[42], [43], [44], [45], [46], shadowed set [32], [47], [48],
[49], [50], [51], [52] clustering, interval-set clustering and
orthopartition clustering. These approaches are discussed
below in comparison to 3WC.

2) 3WC AND ROUGH CLUSTERING
A rough set (R) was introduced using equivalence relations
that may be defined based on a pair of lower and upper
approximations as [R, R] till Palwak properties being
satisfied [53], [54], [55]. Lingras and West introduced rough
clustering based on the interval representation of rough
sets [15]. In the case of rough clustering, an object, and a

cluster satisfy the following basic conditions of rough set
theory,

• ∃!Corei ∋ xi, it means that there exists exactly one lower
approximation or equivalently a core to which an object
can belong.

• xi ∈ Corei ⇒ xi ∈ Supporti, It means that the belonging
of an object to the lower approximation implies its
belonging to the upper approximation of the same
cluster.

• if xi /∈ Corei then xi ∈

n⋃
i=2

Partiali, such that n = 2, 3,

4, · · · , n, It means that the object not belonging to any
cluster implies its presence in the upper approximation
of at least two clusters.

Furthermore, the rough clustering may allow the lower
approximation to be empty if objects belong to more than one
upper approximation, i.e.,

• ∃Core = ∅ ⇐⇒ xi ∈
n⋃
i=2

Partiali where n = 2, 3, 4, · · · ,

n.
In contrast, 3WC does not allow a core region to be empty.

Moreover, there is no constraint on an object to belong with
the boundary region or equivalently partial region of more
than one cluster. Some of the notable works in the direction
of rough set clustering are put forth in [38], [39], [40], [41],
[42], [43], [44], [45], and [46].

3) 3WC AND SHADOW-SET CLUSTERING
Pedrycz introduced shadowed-set as a three-way approxi-
mation of fuzzy sets [49], [56]. The shadowed set uses a
threshold pair (α, β) for a three-way approximation of a
fuzzy set. The objects are approximated in these three regions,
namely, core, shadow, and uncertain or excluded, as follows:

Core(Si) = {x∃i x ∈ Core(Si)}, (9)

Shadow(Si) = {x∃i, x ∈ Shadow(Si) ∧ ∀i x /∈ Core(Si)},

(10)

Uncertain(Si) = {x∀i x /∈ Shadow(Si) ∧ x∀i x /∈ Core(Si)}.

(11)

The above Equation (9)-(11) differentiate 3WC with
shadowed-set clustering. The shadowed set clustering allows
the association of an object to more than one core
region. Further, it allows empty core and empty shadowed
region [49], [50]. In the shadowed set, it is possible that
some of the objects became unclustered and declared as
outliers [49].

4) 3WC AND ORTHOPARTITIONS CLUSTERING
An orthopartitionO is the collection of orthopairsOi with the
following basic properties [33],

• ∀ Core ∈ Oi ⊂ O, Corei∩ Corej = ∅ , where i ̸= j.
•

⋃
i (Corei ∪ Partiali) = U .

• ∀ x ∈U , ∃ i, j s.t. x ∈ Partiali → x ∈ Partialj, where i̸=j.
The orthopartition framework has some differences with
3WC. The orthopairs are disjoint in orthopartitions, while
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uncertain elements must belong to more than one partial
region of two different orthopairs. In addition, orthopartitions
allow a core region to be empty. Furthermore, it may
also allow an empty partial region and even a complete
orthopair [33], [36].

5) 3WC AND INTERVAL-SET CLUSTERING
Interval set clustering represents a cluster in the form of
an interval set. It was basically an improvement to rough
k-means clustering by proposing a two-level lower and
upper approximation to unify the respective lower and upper
approximation of a rough cluster under consideration [15],
[57]. The following properties are obeyed by interval set
clustering

• ∀i Corei ̸= ∅

•

⋃
i Supporti = U

• ∀i ̸= j, Corei ∩ Corej = Corei ∩ Partialj = Corej ∩

Partiali = ∅

The above equations show that the core region is not allowed
to be empty, implying that the support or partial region will
also not be empty. The second property suggests that each
of the objects will be clustered. Finally, the core regions are
mutually exclusive [15], [34], [57].

B. BLURRING AND SHARPENING OPERATIONS
Sharpening is a procedure used in the spatial domain to
enhance the visual quality of an image by manipulating its
edges. The enhancement is first reduced to separate the edges
by their amplification and sum them back into the original
image [58]. Mathematically, sharpening is defined as,

f
Sharpen

(x, y) = f (x, y) + k × f
mask

(x, y) (12)

where f (x, y), fSharpen(x, y) and fmask (x, y) represent the pixel
values of the original image, sharpened image, and unsharp
mask, respectively. Here, k is the scaling factor; its value may
be 1,≥ 1, or< 1 and determine the nature of sharpening, high
boost filtering, and sharpening de-emphasizer, respectively.
The sharpened image is obtained by deducting a blurred
version of the processed image from the original image,
which is given as,

f
mask

(x, y) = f (x, y) − flp(x, y) (13)

where flp is a low pass filtered image obtained using the most
basic average filter and defined as,

flp(x, y) =
1
mn

∑
(s,t)∈Sxy

g(s, t) (14)

where Sxy is an m × n processing window centered at pixel
with coordinates (x, y). The Sxy surrounds the neighborhood,
i.e., immediate neighbors of pixel (x, y). The blurring
operation changes the intensity value of the pixel (x, y) to the
average value of its neighborhood or immediate neighbors Sxy
For a solid mathematical understanding of insight working

mechanism of sharpening, we visually represent an input

image in Figure 1(b), and the resultant images after blurring
and sharpening can be seen in Figures 1(a) and 1(c),
respectively. Each cell or box approximates a pixel in the
above images. The boxes are colored white, gray, or shaded,
representing their intensities. The white color represents an
intensity value of 1, and the gray color corresponds to 0, while
the shaded boxes portray an intensity value between 0 and 1.
Consider that the object of interest is represented by the white
boxes positioned in the center of Figure 1(a). A low-pass filter
attenuates higher frequencies and passes low frequencies,
while a high-pass filter does not affect the higher frequencies.
The average filter is a low-pass filter used to smoothen or blur
the image. It only computes the average of the processing
pixels and its immediate eight neighbors. The averaging
result is replaced with the value of the processing pixel. The
blurring operation expands the boundaries by contracting the
object inside. The sharpening is carried out by high-pass
filtering. It emphasizes finer details in the image while not
affecting higher frequencies. It works exactly opposite to low-
pass filters. The idea is to blur the original image using an
average filter, subtract it from the original image to get the
sharpening mask, and add it to the original image to sharpen
it. The sharpening contracts the boundaries by expanding the
object within boundaries or edges. Inspired by the idea of
image blurring and image sharpening, a three-way clustering
(3WC) approach is discussed in the coming section.

III. A THREE-WAY CLUSTERING APPROACH BASED ON
IMAGE BLURRING AND SHARPENING (C3BS)
The C3BS has three consecutive steps:

• Converting hard clusters into their respective images
• Applying blurring sharpening operations on each cluster
• Extracting the evolved three-way soft clusters

This section elucidates each step in reasonable detail.

A. CONVERTING HARD CLUSTERS INTO THEIR
RESPECTIVE IMAGES
The first step in the process is to represent the dataset in the
form of a grid. The C3BS works on normalized attributes
and division of the unit square (in case of two attributes)
or unit hypercube (in case of more than two attributes)
into an equally distributed grid [59]. The grid is realized
as a pixelated image where each grid cell is equivalent to
a pixel in an image. Each grid cell or pixel has the same
size, containing objects or empty, representing their intensity.
Further, we count the number of objects in each cell to
determine their grayscale intensity.

This approach uses the Euclidean distance metric to
measure the influence of each attribute. Therefore, first,
we normalize the attributes A in the range [0,1] to balance
the effect of each attribute during distance analysis [60].
It scales the whole problem space to a unit hypercube. There
are O(n. A) operations required to complete this step. Further,
we divide the unit square (in case of two attributes) or unit
hypercube (in case of more than two attributes) into p number
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FIGURE 1. The blurring and sharpening operations.

of equidistant parts such that p ∈ N. Hence, the total number
of grid cells became pA where p represents the number of grid
cells or pixels in one dimension, and A denotes the number
of attributes in the data space. Each grid cell can be located
through A-tuple (j0, j1, . . ., jA−1) where jk ∈ {0, 1, . . ., p
−1}. Furthermore, we can map this multidimensional grid to
a single value index i.e., I = {0, 1, 2, . . ., pA}. Algorithm 1
demonstrates the grid-based or image representation of data
space.

The number of objects in each cell is a key determinant
of its relevant intensity. In order to determine the intensity
of each cell or pixel, the number of objects in each cell is
counted, and the gridded data is clustered using a clustering
algorithm or labeled data to obtain the initial partitions.
The intensity level used is grayscale between 0 to 255. The
number of objects n(o) in each cell is divided by themaximum
number max(o) of objects contained in a participating cell to
scale the values between 0 and 1. The intensity of each cell
in a 2D grid is defined as,

I (x, y) =
n(o)

max(o)
× P(oi|Ci) (15)

In the above equation, I (x, y) shows the intensity of the
corresponding cell, P(oi|Ci) determines the probability of xi
given Ci, where xi belongs to the grid cell under processing.
In the case of n-dimensions, the intensity of a pixel is given
by,

I (x1, x2, . . . , xn) =
n(o)

max(o)
× P(oi|Ci) (16)

where x1, x2, . . . , xn and I (x1, x2, . . . , xn) represents the
n-attributes and intensity of the cell corresponding to these
dimensions, respectively.

B. BLURRING AND SHARPENING OPERATIONS
The pixelated image obtained in the previous step is feasible
for blurring and sharpening operations. In order to blur the

Algorithm 1 I-Map Algorithm
Input A universal set U , p > 1
Output A pixelated image I , Number of objects in each

cell n[i], Mapping of data into image I
1: function I-Map(U )
2: for each oi ∈ U do
3: Normalize A attributes between 0 and 1
4: end for
5: for each a in A do
6: Divide A unit intervals ∈ [0,1] in p parts (or

equivalently)
7: unit hypercube [0, 1]A into pA cells (gridcell) to

obtain I
8: end for
9: for each i in pA do

10: n[i] = Count number of objects
11: end for
12: for each oi in U do
13: Map co-ordinates of xi to gridcell ∈ I
14: Check for duplicate entry
15: if oi ∈ more than one cell then
16: mark it with an identifier
17: end if
18: Get Mapping
19: end for
20: return I , n[p], Mapping
21: end function

image, the intensity of each pixel is updated using the average
filter. Let Neigq(celli) be the set of q immediate neighboring
pixels of a particular pixel celli. The blurring operation is
formally defined as,

eblur (cellck , celli) =
1
mn

∑
cellj∈Neigq(celli)

I (cellck ) (17)
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FIGURE 2. Two-dimensional image representation of two-dimensional data [61].

The above equation causes a reduction in the intensity
of processing pixel cellck with respect to its immediate
neighboring pixels celli to an average value. Thus, the
blurring operation results in cluster contraction by expanding
boundaries.

The blurring operation will only produce a value of 1 if
all the neighboring pixels have a value of 1. This property of
blurring operation can be given as,

eblur (cellck , celli) =

{
1 ∀(cellj)∈Neigq(celli) I (cellck ) = 1
< 1 otherwise

(18)

The above condition will only be satisfied by the pixels
strongly associated with the cluster under consideration.
Hence, the objects belonging to the processing pixel are
strongly related to the cluster ck .

The sharpening operation updates the intensity of a pixel
cellck concerning the immediate neighboring pixels celli.
A sharpened image is derived from the addition of the original
image to the substitutional result of the original image with
the blurred image. Mathematically, it is given as,

esharp(cellck , celli)

= I (cellck ) + [I (cellck ) − eblur (cellck , celli)] (19)

The above equation enhances the intensity of the processing
pixel. Thus, the sharpening operation results in an inside
cluster expansion while contracting boundaries.

The sharpening operation results in a value of 1 for a pixel
in each of the following cases.

• Case 1: If the blurring operation for the pixel evaluates
to the value equals 1, i.e., eblur (cellck , celli) = 1.

• Case 2: If the pixel has the intensity value of 1. The
sharpening operation will be evaluated to a value greater
than 1, which will be truncated to 1.

• Case 3: In some scenarios where the intensity of the
pixel is greater than the computed mean intensity of its
q immediate neighboring pixels.

The operations of blurring and sharpening are equivalent
to the core set and support set, respectively. The core set
contains elements in strong relation to the cluster, while
the support set includes elements with relation ranges from
strong to weak. The cells are finally mapped to objects for a
visual demonstration of the clustered data of the given dataset.

1) THREE-WAY CLUSTERS EXTRACTION
We noted in the above section that the blurring operation
incorporates a strict condition indicating a strong bonding
between an object and its associated cluster. Since the core
set has similar features, therefore we can find a tie-in between
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both of them and define the core set as,

Core(ck ) = {oi ∈ U | oi ∈ O(x1,...,xn)∧

eblur (cellck , celli) = 1} (20)

The above equation aims to produce the core set. It empha-
sized that the core set contains objects or pixels where the
blurring operation is evaluated to a value of one. According
to Equation 17, it can only be accomplished when all the q
immediate neighboring cells intensify with a value equal to
one. This strict condition will be obeyed by a few members
who are strongly associated with the cluster, resulting in a
shrinkage of the hard cluster.

Next, we observe a sharpening operation incorporating
a relatively relaxed condition indicating a weak bonding
between an object and the associated cluster. Since support
set has similar characteristics, therefore a tie-in can be found
among both of them and define support set as,

Support(ck ) = {oi ∈ U | oi ∈ O(x1,...,xn)∧

esharp(cellck , celli) = 1} (21)

The above equation aims to produce the support set. It means
that the support set contains those objects or cells where the
sharpening operation results in a value of one. The definition
of sharpening in Equation 19 indicates that a cell or objects
will be included in the support region when at least one
corresponding cell has an intensity of 1. This results in a
relaxation of the given hard cluster.

There exists a relationship between the Core(ck ) and
Support(ck ) i.e., Core(ck ) ⊆ Support(ck ) based on their
definitions in Equations (20)-(21). This relationship indicates
that a cell in the core set must be present inside the support set.
Furthermore, a cell with an intensity value of one for all its
immediate neighboring cells will be included in the core set,
while at least one of its immediate neighboring cells with an
intensity value of one resides in the support set. Three regions
of a three-way cluster based on the twain sets Core(ck ) and
Support(ck ) are defined as,

Inside(ck ) = Core(ck )

= {oi ∈ U | oi ∈ O(x1,...,xn) ∧ eblur (cellck , celli) = 1} (22)

Outside(ck ) = U − Support(ck )

= {oi ∈ U | oi ∈ O(x1,...,xn) ∧ esharp(cellck , celli) ̸= 1} (23)

Partial(ck ) = Support(ck ) − Core(ck )

= {oi ∈ U | oi ∈ O(x1,...,xn) ∧ esharp(cellck , celli) = 1∧

eblur (cellck , celli) ̸= 1} (24)

The above Equations (20)-(21) are used to obtain three
regions of a cluster. The inside region has a compact
and consolidated representation containing cells or objects
strongly bonded to the cluster. The partial region has a relaxed
representation of the same cluster containing cells or objects
weakly related to the cluster. The outside region contains
those objects or cells that have no relationship with the
cluster.

Algorithm 2 C3BS for Overlapping Clusters
Input A universal set U = {o1, o2, o3, . . ., on}, An initial
partition C = {c1, c2, . . . , cK }.
Output The set OR and NOR depicting overlapping and
non-overlapping regions.
1: for each ck ∈ C do
2: Obtain Imageck corresponding to cluster ck
3: Apply cluster blur and cluster sharp operations on
Imageck

4: Core(ck ) = {oi ∈ U |oi ∈ O(x1,...,xn)∧

eblur (cellck , celli) = 1}
5: Support(ck ) = {oi ∈ U |oi ∈ O(x1,x2,...,xn)∧

esharp(cellck , celli) = 1}
6: Inside(ck ) = {oi ∈ U |oi ∈ O(x1,...,xn)

∧eblur (cellck , celli) = 1}
7: Outside(ck ) = {oi ∈ U |oi ∈ O(x1,...,xn)∧

esharp(cellck , celli) ̸= 1}
8: Partial(ck ) = {oi ∈ U |oi ∈ O(x1,...,xn)∧

esharp(cellck , celli)∧ eblur (cellck , celli)
9: end for
10: C ′

=

{(
Inside(c1), Partial(c1), Outside(c1)

)
, . . .,(

Inside(cK ),Partial(cK ),Outside(cK )
)}

11: OR=U -
[ k⋃
i=1

Inside(ck ) ∪ {oi ∈ U | ∄k,joi ∈ Partial(ck )∧

oi ∈ Partial(cj)}
]

12: NOR = U - OR
13: for each oi ∈ OR do
14: Decide oi in all multiples clusters for which oi ∈

Inside(ck )
15: end for
16: for each oi ∈ NOR do
17: Decide oi in a cluster for which oi ∈ Inside(ck ) ∨

oi ∈ Partial(ck )
18: end for

IV. A C3BS BASED ALGORITHM FOR OVERLAPPING
REGIONS
This section presents a use case for the C3BS, i.e.,
overlapping regions. The algorithm 2 is the modified version
of C3BS to handle the overlapping clusters. This algorithm
has two inputs: a universal set U and its initial partition. The
algorithm’s output is the sets of OR and NOR representing
the sets containing the overlapping and non-overlapping
objects. The algorithm begins by executing an algorithm
corresponding to C3BS, which creates three-way clusters
corresponding to each initial cluster given in the set C .
In line 2, the algorithm defines the set of overlapping objects
given by the set OR based on the results of three-way
clustering. In particular, all the objects that are not inside any
cluster and do not belong to the partial region of a single
cluster are considered to be overlapping objects. The second
set defined in line 2 reflects only those objects in a single
cluster’s partial region. Line 3 defines the non-overlapping
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objects given by the set NOR. In lines 4 to 6, the overlapping
objects are assigned to multiple clusters. More specifically,
an object in the overlapping region is assigned to all those
clusters for which it belongs to its respective partial regions.
Finally, in lines 7 to 9, the non-overlapping objects are
assigned to a single cluster. Each object, in this case,
is assigned to a single cluster for which it belongs to its
respective inside or partial region.

V. PERFORMANCE OF C3BS FOR OVERLAPPING REGIONS
In this section, we analyze the performance of C3BS for
overlapping clusters. Multi-labeled datasets may be used
to depict overlapping clusters by realizing a one-to-one
correspondence between clusters and classes. In particular,
all the multi-labeled instances may be treated as overlapping
objects. We use multi-labeled datasets of scenes and birds.
The scenes dataset consists of 2407 instances, 294 features,
and six clusters. A total of 177 instances havemulti-labels and
are, therefore, in the overlapping region, while the remaining
2230 instances lie in the non-overlapping region. The bird’s
dataset consists of 645 instances, 277 features, and 19 clus-
ters. There are 162 instances withmulti-labels which suggests
these instances overlap, while the remaining 189 instances
lie in the non-overlapping region. We considered two types
of benchmarks for evaluating performance. The first type
of benchmark provides a general insight into the quality
of the clusters. The measures of DB index, silhouette, and
classification accuracy are used for this purpose. The second
type of benchmark provides insight into the performance of
correctly predicting the overlapping objects. The hamming
loss and F1 measures defined for multi-label problems are
used for this purpose [62]. Let TLi and PLi represent the true
label and predicted labels for an object oi, respectively. The
F1 measure for a dataset with N objects is given as,

F1 =
1
N

N∑
i=1

2 × |TLi ∩ PLi|
|TLi| + |PLi|

(25)

Hamming loss is the fraction of wrongly labeled objects used
in multi-class classification scenarios and given as,

Hamming loss =
1
KN

|TLi ∩ PLci | + |TLci ∩ PLi| (26)

In the above equation, K represents the number of classes or
clusters in the dataset whilePLci and TL

c
i are the complements

sets of PLi and TLi, respectively. Hamming loss is used to
detect both prediction errors and classification errors.

Table 1 reports the experimental results for the considered
datasets. It may be noted that overlapping clustering studies
generally considered datasets that are artificially created
and are not available publicly. Moreover, each study uses
different datasets to verify their respective approaches. For
these reasons, we provide comparisons with our previous
work on overlapping clustering in the first place [26]. The
comparative algorithms are based on threshold settings that
are fixed or automatically determined using game-theoretic
rough sets. The (0.5, 0.5) and (1, 0) models correspond
to three-way clusters obtained with thresholds of (α, β) =

(0.5, 0.5) and (1, 0), respectively, using equations (6)-(8).
The 3WC-ORGA results are bounded by strict conditions
where (0.5, 0.5) is more generally experiencing poor
Hamming loss and Silhouette score for the Scenes dataset.
The 3WC-ORGA has a compromising DB index for the
Scenes and Silhouette for Birds datasets. It determines its
strength of better interpretation of the consistency of the
objects within the cluster. On the other hand, 3WC-ORGTRS
uses game-theoretic rough sets to automatically determine
thresholds. The multi-label measures are very compromising
for the 3WC-ORGTRS model. The (1, 0) model has the
same F1 score as 3WC-ORGTRS ; however, it has a high
Hamming loss comparatively. Moreover, the SVM-cone and
MCOKE methods evaluate good accuracies. The typical
measurement metrics for OKM and OPC are very close. The
WOKM performs poorly due to its weighted nature. The
proposed model significantly improves the results for both
datasets. More specifically, it tackles overlapping clustering
in a well-organized way and reduces miss-hits. The typical
evaluation and multi-label measure are improved for both
Scenes and Birds datasets. The F1 measure indicates the
overall performance, which is improved by 18.6% for the
Scene dataset and 13% for the Birds dataset. Similarly,
miss-hits are determined by Hamming loss, and it has been
improved by 2.1% for the Scene dataset, where 2.4% for the
Birds dataset.

A. ANALYZING OVERLAPPING REGIONS
In this section, we take a closer look at the performance of
the C algorithm in the area of overlapping regions. More
precisely, we observe the robustness of C in computing
the overlapping regions. For such analysis, we use three
metrics i.e., PrecisionOL , RecallOL and AccuracyOL [26].
Mathematically, these metrics can be defined as (27)–(29),
shown at the bottom of the page.

PrecisionOL =
Correctly identified objects from overlapping region

Total Objects
(27)

RecallOL =
Overlapping objects correctly assigned to overlapping region

Total Objects
(28)

AccuracyOL =
Correctly identified overlapping and non overlapping objects

Total Objects
(29)
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TABLE 1. Typical and multi-label evaluation measures.

TABLE 2. Quality attributes of overlapping regions.

TABLE 3. Overlapping measurement for 25% classes with overlapping objects.

Table 2 reports the quality-based performance of C3BS in
correctly identifying the overlapping regions by considering
typical classification measures. The measure of precision in
the table shows how many predicted overlapping objects are
truly overlapping objects. On the other hand, recall shows
what proportion of the actual overlapping objects are cor-
rectly classified as overlapping objects. Finally, the measure
of accuracy depicts the percentage of correct assignments
of objects to the overlapping and non-overlapping regions.
The next set of experiments is conducted on text data from
20 newsgroups. This data set contained news from 20 groups

broadly categorized as political, religious, sports, sales,
electronics, and graphics-related news. The experiments are
performed in two phases. The first phase of experiments is
reported in Table 3 - Table 6, and the results for the second
phase are tabulated as Table 7 and Table 8. The first phase is
to evaluate the performance of the proposed approach in case
of an increase in the overlapping classes. Table 3 reports the
results when only 25% of the classes, i.e., five, participated
in the experiments.

Table 4 shows the results when the classes became 50%,
i.e., ten participated. The performance of participant methods

6554 VOLUME 12, 2024



A. Shah et al.: Three-Way Clustering Mechanism to Handle Overlapping Regions

TABLE 4. Overlapping measurement for 50% classes with overlapping objects.

TABLE 5. Overlapping measurement for 75% classes with overlapping objects.

TABLE 6. Overlapping measurement for 100% classes with overlapping objects.

TABLE 7. First iteration (low-level overlapping probability).

improved with an increase in the number of classes. The
precision for C3BS drops by 5.3%, and recall has an increase
of 5%, resulting in a drop of F1 score by 3%. Overall the
positive difference of C3BS drops in the F1 score from 7.5%
to 4.9%, but still high in comparison.

Further, the classes increased from 50% to 75%, i.e.,
15 participants. The performance became improved for all
the methods. Overall, the precision value for C3BS drops
by 0.8% while recall increases by the same percentage,
resulting in a maintained 88.3% F1 score. In comparison,

the C3BS is still dominant, improving hamming loss from
0.102 to 0.098. The final addition of 5 classes made the whole
dataset completely included. These experiments are tabulated
as Table 6. The C3BS has a drop in precision by 0.8% with
an increase in the recall by 0.9% and hamming loss from
0.098 to 0.095. These experiments show that the performance
ofmost of the overlappingmethods improveswith an increase
in overlapping classes. The C3BS performed well in this set
of experiments by improving Hamming loss, i.e., decreasing
miss hits.
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TABLE 8. Second iteration (high level overlapping probability).

The next phase is to evaluate the performance of the
proposed approach in case of an increase in the overlap-
ping objects or overlapping regions. The experiments are
performed initially on the 20 newsgroups dataset, and the
results have been tabulated as the first iteration of the process
in Table ’tableiteration1. In the next iteration, we include
words that can increase overlapping objects or regions.
For instance, words related to hockey are included in the
electronics news, making it more favorable for both hockey
and electronics classes. Similarly, a list of words has been
added to increase the chances of overlapping and overlapping
regions. The results are reported in Table 8. The recall for
C3BS increased by 3.3% while the precision, F1 score, and
Hamming loss dropped by 10.3%, 3.8%, and 0.8%. Similarly,
the participants have a drop in F1 score and hamming
loss. In comparison, with rival methods, the Hamming
loss improved from 1% to 2.4%. These experiments show
that the performance drop may be due to an increased
overlapping region. The C3BS performed well in this set of
experiments by maintaining its supremacy over the state-of-
the-art methods.

VI. TIME COMPLEXITY
There are two algorithms, 1 and 2. Algorithm 1 can be
summarized in four parts, i.e., normalization (Lines 2-4), grid
generation (Lines 5-8), counting objects in cells (Lines 9-11),
and mapping coordinates to cells (Lines 12-19).

Normalization involves iterating through each object in the
universal set U and normalizing its attributes. Let there be N
objects in U, and each object has A attributes, then the time
complexity for normalization is O(N × A). Grid generation
is possible by dividing each attribute into p parts. If there
are A attributes and each is divided into p parts, the total
number of grid cells will be pA. So, the time complexity for
grid generation is O(pA). Next, to count objects in each grid
cell, the algorithm counts the number of objects in that cell.
Since there are pA cells andN objects, the time complexity for
counting is O(N × pA). Finally, mapping coordinates to cells
takes place. The algorithm maps each object’s coordinates to
the corresponding grid cell in the pixelated image. It involves
determining the cell for each of theA attributes, and therefore,
the time complexity for mapping is O(N × A). The overall
time complexity TI−Map is the sum of these steps:

TI−Map = O(N × A) + O(pA) + O(N × pA) + O(N × A)

Since we are concerned with asymptotic behavior, it can
be simplified to:

TI−Map = O(N × pA) + O(pA) (30)

We consider the dominant term O(N × pA) to express this
in big O notation. Therefore, the time complexity of the
I-Map algorithm is O(N × pA). Regarding omega notation,
since O(N × pA) is also a lower bound, we can say the time
complexity is also �(N × pA).
Algorithm2 can also be summarized in four parts, i.e., the

first part is the iteration over clusters (Lines 1-9), cluster
operations (Lines 2-7), and Core, Support, Inside, Outside,
Partial regions creation (Lines 4-8), The algorithm iterates
over each cluster in the initial partition phase; for each
cluster, the algorithm computes sets Core(ck ), Support(ck ),
Inside(ck ), Outside(ck ), and Partial(ck ). The computation
involves iterating over objects in U and checking conditions
based on the blur and sharp operations. If there are N objects
in U and the image size is M , the time complexity for these
sets isO(N ×M ) for each cluster, resulting inO(K ×N ×M )
overall.

The next part is the Construction of C ′ (Line 10). The
algorithm constructs a new setC ′ by combining each cluster’s
Inside, Partial, and Outside sets. If there are K clusters, the
time complexity for this step is O(K × N × M ). In the next
step, the Construction of OR and NOR occurred in (Lines
11-12). The algorithm constructs overlapping (OR) and non-
overlapping (NOR) sets based on the constructedC ′. The time
complexity for this step isO(K×N ). Finally, the iteration over
OR and NOR occurs in (Lines 13-18). The algorithm in this
step iterates over objects in OR and NOR, making decisions
based on cluster membership. Let there are L objects in OR
and M objects in NOR; the time complexity for this step is
O(L +M ).
The overall time complexity is the sum of these steps:

TC3BS = O(K × N ×M ) + O(K × N ×M ) + O(K × N )

+ O(L +M )

Since we are concerned with asymptotic behavior, we can
simplify this to:

TC3BS = 2 × O(K × N ×M ) + O(K × N )

+ O(L +M ) (31)

We consider the dominant term O(K × N × M ) to express
this in big O notation. Therefore, the time complexity of the
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C3BS algorithm isO(K×N×M ). Regarding omega notation,
since O(K × N × M ) is also a lower bound, we can say the
time complexity is also �(K × N ×M ).
Now, to determine the total time complexity of the process

involving Algorithm 1 (I-Map) and Algorithm 2 (C3BS),
we need to consider the time complexity of each algorithm
separately and then combine them. Therefore, the total time
complexity TTotal of the whole process, considering the
worst-case scenario and taking the dominant term, is given
by:

TTotal = TI−Map + TC3BS
TTotal = O(N × pA) + O(K × N ×M )

TTotal = O(K × N ×M ) (32)

Since we are considering the worst-case scenario, we take
the dominant term O(K × N ×M ). Therefore, the total time
complexity of the combined process is O(K × N × M ).
Regarding omega notation, the time complexity is also�(K×

N ×M ).

VII. CONCLUSION
In real life, in many applications, such as wireless sensor
networks and topic modeling, an instance can belong to
more than one cluster. Three-way clustering is capable
of organizing a cluster into three regions which can be
used to identify the objects belonging to multiple clusters.
We explored the role of blurring and sharpening in identifying
the overlapping objects among the clusters and proposed a
blur-sharp-based algorithm. The algorithm first obtains the
three regions associated with each cluster. It next finds the
objects that belong to the partial regions of more than one
cluster. Compared with previous state-of-the-art methods,
the experiments were conducted on two widely used multi-
label datasets, Scenes and Birds, showing that the proposed
approach effectively solves overlapping clustering. Further-
more, the performance of C3BS is evaluated on a textual
dataset, namely, 20 newsgroups. More precisely, C3BS
improves the results on Scenes, Birds, and 20 newsgroups
datasets by up to 18.6%, 13%, 4.9%, respectively, for F1
score and 2.1%, 2.4% and 0.4%, respectively for Hamming
loss. In our future work, we will refine the 3WC paradigm to
handle more complex scenarios. Furthermore, methods will
be investigated to optimize the computational efficiency of
3WC, especially for larger datasets.
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