
Received 21 December 2023, accepted 2 January 2024, date of publication 4 January 2024,
date of current version 19 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3349552

MASTF-net: An EEG Emotion Recognition
Network Based on Multi-Source Domain
Adaptive Method Based on Spatio-Temporal
Image and Frequency Domain Information
HONGXIANG XU 1, ZIYI PEI 2, QI HAN 1, MINGYANG HOU1, XIN QIAN 1,
TENGFEI WENG 3, YUAN TIAN1, ZICHENG QIU1, AND BAOBING ZHOU 4
1School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 400030, China
2School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
3School of Electrical Engineering, Chongqing University of Science and Technology, Chongqing 400030, China
4College of Information Engineering, Tarim University, Alar 843300, China

Corresponding author: Ziyi Pei (ziyi_pei@163.com)

This work was supported in part by the West Light Foundation of the Chinese Academy of Sciences; in part by the Research Foundation of
the Natural Foundation of Chongqing City under Grant cstc2021jcyj-msxmX0146 and Grant cstc2021jcyj-msxmX1212; in part by the
Scientific and Technological Research Program of the Chongqing Municipal Education Commission under Grant KJQN202301517, Grant
HZ2021015, Grant KJZD-K202100104, and Grant KJQN202301543; in part by the Chongqing Science and Technology Military-Civilian
Integration Innovation Project, in 2022; in part by the Bingtuan Science and Technology Program in China under Grant 2021AB026; in
part by the Shanxi Province Applied Basic Research Program, China, under Grant 202203021211116; and in part by the Oil and Gas
Production Safety and Risk Control Key Laboratory of Chongqing Open Fund under Grant cqsrc202110.

ABSTRACT In the field of neuroscience, the electroencephalogram (EEG) is a crucial indicator of emotion.
The EEG emotion recognition method based on domain adaptation (DA) has good objectivity and high time
resolution and is the preferred method to study the brain’s response to emotional stimuli. However, due to
the obvious instability of EEG emotion characteristics, it is difficult to predict the emotion corresponding
to EEG signals of cross-subjects by a model that combines all source domains into a single source. In order
to solve the problem of cross-subject emotion analysis, we propose an EEG emotion recognition net with
a cross-subject multi-source adaptive method (MASTF-net), where EEG features of different subjects are
regarded as different domains. Through analyzing the invariance of the target domain and the uniqueness
of the source domain, this method realizes the emotional analysis of different objects according to the
spatio-temporal images and frequency domain information. First, features of EEG image are extracted from
frequency and time dimensions. Secondly, combined with the serialized EEG frequency characteristics of
local brain regions, independent classification module are established for different domains to recognize
the emotion feature distribution of different subjects. In addition, a feature extraction method of differential
entropy(DE) data of EEG is proposed based on frequency band division, which can provide stable feature
input for our network structure. Finally, experiments are conducted on the SEED dataset. The experimental
results show that our method has better classification accuracy in the experiment on the problem of cross
multiple subjects. MASTF-net is superior to other relevant methods and models in multi-source domain.
On the issue of cross subject emotion analysis, the highest accuracy of our method can reach 88.19%.

INDEX TERMS Cross-subject, domain adaptation, electroencephalogram, emotional stimuli, spatio-
temporal image.
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I. INTRODUCTION
Emotion, as a form of physiological information, serves as a
crucial indicator of individuals’ current mental state during
everyday communication [1], [2]. Its significance is evident
in various contexts, such as mental state assessment [3],
emotion classification, and the development of user-friendly
interfaces.

From a health perspective, the frequent fluctuations in
emotions often contribute to the onset of mental illness.
In an exploration of this phenomenon, Jutta and Lan [4]
discovered a strong correlation between depression and the
implementation of emotion regulation strategies. Similarly,
Radford [5] investigated the recognition of nonverbal cues
and emotional signals in patients diagnosed with Alzheimer’s
disease. Furthermore, Weilong and Baoliang [6] directed
their research towards understanding psychological issues
through traditional means, such as the analysis of facial
expressions and language, which enables the refinement
and classification of emotional problems. However, these
methods often fail to yield satisfactory testing results, as they
can be influenced by the subjects’ personal circumstances.
Therefore, there is a need for a measurement method
that can effectively capture the genuine sentiments of the
subjects.

In recent years, non-invasive brain-computer interfaces,
such as electroencephalography (EEG), have gained
widespread usage in acquiring brain signals and analyzing
psychological disorders. These techniques are appealing
due to their reliability, accessibility, and high precision [7],
[8]. Researchers have focused on developing a method for
detecting mental health conditions based on EEG signals,
with the goal of identifying the onset of mental illness
and enabling early and effective treatment initiation. For
instance, Yildirim et al. [9] extracted features based on
spectral power and phase-locked values, and conducted
emotion recognition research using swarm intelligence (SI)
algorithm. Reference [10] utilized the spatial information
extracted from EEG signals to classify individuals with
depression. Similarly, Bingtao et al. [11] proposed a network
framework for diagnosing severe depression based on
EEG data. Additionally, Behshad and Mohammad [12]
investigated the nonlinear characteristics of EEG signals to
differentiate between patients with depression and healthy
individuals. These studies highlight the potential of EEG-
based approaches in diagnosing mental health disorders and
facilitating timely intervention.

The emotion recognition method based on EEG signals
can more accurately reflect the changes in the subject’s
emotions compared to methods based on facial and language
information. However, considering the individual differences
in EEG signals, it remains challenging to share a network
model trained on specific subjects with other subjects for
testing. Although this detection method utilizing EEG signals
from a single subject improves the efficiency of model
training, its application in cross-subject and cross-session
scenarios is difficult.

To address the issue of emotion analysis among multiple
subjects, domain adaptation(DA) has been widely employed
in this research work. DA improves the learning in the
unlabeled target domain through the transfer of knowledge
from the source domains, which can significantly reduce the
number of labeled samples [13].

In practical applications, we often encounter scenarios with
multiple source domains, such as in cross-subject emotion
analysis research, where EEG data from different subjects
are considered as multi-source domain data. In recent years,
many researchers have tended to merge multiple source
domain data into one domain. For example, Yiming et al. [14]
and He and Yiming [15] employed deep adaptive networks
(DANs) [16] for emotion recognition based on EEG signals,
using maximum mean difference (MMD) [17] as a distance
metric between source and target domains.

The approach of combining multiple source domain data
into one domain disrupts the unique characteristics of EEG
signals from different subjects, neglecting the differences
in EEG among different subjects, resulting in significant
biases in cross-subject applications. To address this issue,
we introduced a multi-branch structure approach [13],
establishing one-to-one DA branches for all target domains
and source domains to preserve the specific features of each
source domain data. Many similar methods appeared in [13],
[18], [19]. Pan and Zheng [18] proposed a MSFR-GCN
model for EEG-based emotion and cognition recognition
using graph convolutional networks (GCN) to obtain graph
representations of EEG signals. Wenpeng and Bing [19]
developed an end-to-end depth convolutional neural net-
work(CNN) for cross-subject transfer using attention-based
CNNs. However, these methods only considered the spatial
features of different electrode locations in EEG signals,
neglecting the temporal sequence characteristics of EEG
signals, leading to suboptimal performance of the model.

To address the issues of multi-source domain adaptation
and effectively utilize both temporal and spatial features
in EEG-based emotion recognition, we propose an EEG
emotion recognition network by use of multi-source domain
adaptive method based on spatio-temporal image and fre-
quency domain information(MASTF-net). In MASTF-net,
a dual-branch shared feature extraction network is used
to extract spatial and temporal features from EEG signals
respectively, and a one-to-one DA branch feature extractor
is established to capture domain-specific features. In this
way, we consider the differences in EEG signals among
different subjects, as well as the temporal and spatial
features.

To sum up, the main contributions of our work are as
follows:

• A method of extracting EEG DE feature based on
frequency band division is proposed. The DE features
are analyzed and extracted by time segment extraction,
and these features are used as the input ofMASTF-net to
retain the time characteristics of DE features. The input
of network with time information retained has better
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performance than single DE input with single DE feature
in the experiment. The network input that preserves time
information has better performance than a single DE
feature input.

• We propose a module(L-RNN) for extracting serial EEG
temporal features from local brain regions, which is used
to extract features of emotional state differences between
left and right brain regions and learn the differences
between brain regions under different emotions.

• A common feature extraction network with a dual
branch structure is proposed for extracting low-level
features from EEG data. In the network, spatial
branches extract EEG image features from frequency
and time dimensions, while temporal branches extract
serialized EEG temporal features from local brain
regions. By combining temporal, spatial, and frequency
information, multi-source EEG features are enhanced to
improve network performance.

II. RELATED WORK
A. EMOTIONAL ANALYSIS VIA DEEP LEARNING BASED ON
BRAIN-COMPUTER INTERFACE (BCI)
Most of the research on emotion recognition has focused
on analyzing the subject’s voice, image, and text data. For
instance, Rahman et al. developed a multimodal network that
integrates image and text data for emotion analysis, which
has demonstrated favorable outcomes in assessing emotions
[20]. However, the majority of existing emotion assessment
methods heavily rely on the completeness of subjects.
Consequently, when conducting psychological evaluations,
relying solely on image and text information for assessment
can have a significant adverse impact on the evaluation
results. EEG is a physiological signal that provides excellent
insights into the psychological activity of subjects. Unlike
text and image information, EEG signals are generally
less prone to deception. As a result, there has been a
growing focus on biomedical signal prediction research,
particularly in the context of utilizing EEG data. For instance,
the Multimodal Physiological Emotion Database (MPED)
corpus [21] presents a dataset consisting of physiological
records and establishes an initial benchmark for estimating
emotional states. Zhao et al. introduced a linear graph
convolution network (LGCN) based EEG signal detection
model, aiming to address the deficiency in capturing the
spatial relationships among different EEG channels [22].
Furthermore, researchers have discovered that tracking Elec-
trocardiogram (EOG) signals can enhance detection accuracy
in emotional analysis. By employing feature-level fusion and
decision-level fusion of EOG and EEG signals, the capability
of emotion recognition can be significantly enhanced [23].

In recent years, there has been a growing interest among
researchers in the field of artificial intelligence (AI) and,more
specifically, in algorithms based on machine learning (ML).
This increased interest can be attributed to the higher robust-
ness, improved accuracy, and technological diversification

offered by AI. However, most research was based on
expensive large-scale equipment to collect experimental data,
which has a huge obstacle to the research of biological
signals. Recently, BCI plays an important role in emotion
recognition, because BCI can use simple equipment to solve
the research difficulties caused by large equipment. BCI is
used to establish the correlation between the computer and
the subject’s brain physiological signals, this connection is
non-invasive, so it will not cause harm to the subject when
collecting data. In addition, researchers began to pay attention
to the application of deep learning in emotion analysis based
on BCI. Alexander and Yongtian [24] used deep learning
(DL) algorithm for EEG, especially emotional assessment
tasks. In addition, some models retrieved emotional states
from EEG signals based on DL algorithm [6], [25]. These
models adopted DL to analyze the conversion of EEG
signals to different forms. For example, EEG signals were
transformed into graphical representations in [26], and
vectors were separated between each hemisphere [6].

B. DOMAIN ADAPTATION VIA DEEP LEARNING
In EEG emotion analysis involving multiple subjects, many
researchers use one-to-one domain adaptation (DA) to
combine EEG signals from different subjects and a source
domain, which ignores the difference of marginal distribution
in different EEG domains. To solve this problem, Chen
et al. proposed MS-MDA [13], which regards each data as
a separate domain, thus avoiding the destruction of the edge
distribution of multiple EEG source domains, and the domain
invariant feature is also considered.

In order to solve the problem of EEG emotion classification
of different subjects, MASTF-net is proposed for estimating
emotions from EEG. The net is composed of a common
feature extraction module with two branches and a domain
feature extraction module with multilayer perceptron (MLP).
In addition, EEG data comes from three domains of the
frequency, time and space.

III. MATERIALS
A. DATASET
In this article, we use SEED and SEED-IV, In SEED, there are
three emotion labels where 0 represents sadness, 1 represents
neutral emotion, and 2 represents positive emotion. 15 people
participated in the test, including 7 men and 8 women. EEG
signals are recorded during watching 15 different movie clips
by ESI NeuroScan system at a sampling rate of 1000Hz.
In SEED-IV, there are four emotion labels where 0 represents
happy, 1 represents sad, 2 represents neutral emotion and
3 represents fear. In these two datasets [19]. Each subject
has gone through three session experiments, and the number
of session is represented by ns ∈ {1, 2, 3}. And np ∈

{1, 2, 3, . . . , 15} indicates a number of subject. In order to
clearly express the meaning of symbols in the paper, symbols
are listed in Table 1.
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FIGURE 1. Select continuous EEG data for a specific time period from SEED, and obtain continuous EEG
topographic map for three different tags (sad, neutral, happy). (a) The EEG topographic maps of the subject
are shown when the emotional change is active. (b) The EEG topographic maps of the subject are shown
when the emotional change is not active. A frame of EEG topographic map is obtained for the time interval is
0.1 seconds from SEED.

TABLE 1. Meaning of each symbol.

B. SIGNAL PREPROCESSING
EEG is one of the physiological signals that can truly
reflect people’s inner activities. However, in the process of
EEG data collection, acquisition equipments and acquisition
environment often lead to the interference of eye movement,
electromyography (EMG) or other high-frequency noise.
Therefore, the collected EEG data can only be used after
being processed in a professional way. In the SEED dataset,
the raw EEG signal is down-sampled at 200Hz, and then the
noise interference is reduced by using 1Hz to 75Hz band-
pass filtering. Next, the signal features are extracted by DE,

because DE features have the best performance in feature
selection, so DE features are choose as the input of MASTF-
net. SEED dataset provides DE features with five bands
which are delta (1-4 Hz), theta (4-8Hz), alpha (8-14Hz), beta
(14-31Hz) and gamma (31-50Hz). The extraction method of
DE feature is as follows [26]

h(x) = −

∫
∞

−∞

1
√
2πσ 2

e−
(x−µ)2

2σ2 log(
1

√
2πσ 2

e−
(x−µ)2

2σ2 )dx

=
1
2
log(2πeσ 2) (1)

where the input x is subject to the Gaussian distribution
N (µ, σ 2),µ and σ represent variance and standard deviation,
respectively and e is the Euler constant. According to [26],
raw EEG data are inputted in the form of vector and the
DE feature h(x) can be obtained by transforming the input
EEG raw data through equation 1. The dimension of a DE
feature map is 310 (62 channels × 5 frequency bands) where
62 channels means that EEG signals are collected according
to 62 channel ESI NeuroScan system, and the five frequency
bands are represented by different letters δ, θ, α, β and γ

respectively.

C. FEATURE SELECTION ANALYSIS
In order to obtain the regular of the strength of EEG signals
with time, the data of three different emotions are analyzed,
such as sad, neutral, and happy. Due to the different length
of movie clips in SEED, we select the first 60 seconds and
the last 60 seconds of each movie clip to judge which time
period of emotional activity is the most obvious. Here, 100
EEG data are randomly selected, each of which consist of
four frames and the interval of each frame is 0.1 second.
Then, the EEG data are averaged and mapped into the
EEG topographic map. The color in the EEG topographic
map represents the intensity of the EEG signal, where the
darker the color, the more obvious the emotional activity
of the EEG as shown in Fig. 1. Fig. 1(a) shows the EEG
topographicmap that is averaged after 100 random samples in
the first 60 seconds, and Fig. 1(b) shows the EEG topographic
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FIGURE 2. Extract the first 120 values of each continuous DE feature in
SEED. The 120 values are divided into samples of length Lt . Then, EEG
data samples are drawn through the Lt second window (green dotted line
window).

map that is averaged after 100 random samples in the last
60 seconds. From the comparison between Fig. 1(a) and (b),
it can be seen that the period of emotional activity always
appears in the early stage of the emotional test. As time goes
on, the emotional activity becomes weaker and weaker.

Because different movie clips have different lengths of
time, the dimensions of DE features are different. If the data
sample is not filtered, the sample quantity of different labels
will vary too much, which affects the final classification
results. In order to maintain the balance of data samples, the
number of samples for different labels should be consistent.
The duration of each targeted experiment is not uniform, and
from a psychological point of view, significant emotional
changes often occur in the first part of a period of time.
Therefore, in order to balance the number of samples and
get better classification results, the first 120 DE features are
obtained in each targeted experiment in the paper, which
as shown in Fig. 2. The total number of training data for
each session is 1 × 15 × nt × ⌊120/Lt⌋, where 1 represents
a session and 15 represents the total number of subjects,
nt represents total number of trials for each session of one
person and Lt represents the length of each sample, which as
shown in Fig. 2. Because there are three sessions in total, the
total number of samples is 3 × 15 × nt × ⌊120/Lt⌋, where
3 represents the total number of sessions. The range of Lt is
from 4 to 8, which guarantees that the total number of samples
at least 10000 for ensuring sufficient number of samples.

IV. METHODS
A new architecture is proposed, which combines multi-
source domain learning and spatio-temporal EEG image
representation, as shown in Fig. 3. This model mainly
includes three modules, which are two modules(TFEM and
SFEM) with different common feature extraction and a
module(DACM) with independent adaptive domain feature
classification. TFEM evaluates the relationship of EEG data
from the left and right hemisphere according to the brain
electrode positions in different local areas and extracts the
temporal features of EEG signals based on the contribution
of each element at each spatial level. SFEM learns the
spatial information contained in EEG data through a spatial
extraction network, and extract the time frame features of
EEG images by a gated recurrent neural network(GRU) [27].

In DACM, an independent discriminant branch is established
for each different source domain data to learn the features of
multiple specific domains. Next, we will describe the details
of each module.

A. INPUT DATA OF MASTF-NET
When training the network, we use labeled training data
and unlabeled test data as the input of the network,
and the input data is represented by a matrix S =

{rns1 , rns2 , . . . , rnsnp , . . . , r
ns
15}, as shown in Fig. 3. rns1 , rns2 , . . . ,

and rns14 are the labeled source domain data, which is used to
train the model. rns15 is the target domain data without label,
which is used for model training andmodel accuracy test. The
total number of samples is 3× 15× nt × (120/Lt ), and each
matrix rnsnp represents a training data containing nc electrode
positions in the nb frequency band with length of Lt . The
dimension of matrix rnsnp is represented as Rnc×nb×Lt , where
nc is the total number of electrodes for collecting EEG, and
nb is total number of frequency bands.

B. TEMPORAL FEATURE EXTRACTION MODULE (TFEM)
From Fig. 1, the level of brain activity is observed in different
regions, where the action of EEG is high in the frontal
lobe region, temporal lobe, and the occipital lobe, but the
movement is relatively weak in the parietal lobe. It can be
seen from the Fig. 1 that the most active regions of the
brain are the left prefrontal lobe, right prefrontal lobe, left
temporal lobe, right temporal lobe, left occipital lobe, and
right occipital lobe, which show that EEG signals in these
regions are more discriminative. In selecting EEG signal data,
the relevant knowledge of EEG signal is considered. The
frontal and temporal brain regions, especially the prefrontal
regions, are mainly used to regulate emotions and memory
functions. The occipital lobe region is mainly responsible for
visual function, so the electrode signals in the occipital lobe
brain region are also essential for visual emotion analysis.
The parietal lobe brain region is mainly responsible for tactile
and motor functions and plays a relatively weak role in
emotional analysis. The results shown in Fig. 1 are consistent
with physiological signals.

In order to explore the feature transformation of the
frontal lobe, temporal lobe, and occipital lobe in the left
and right hemispheres when emotions change, we propose
TFEM based on LSTM [27] and RNN(L-RNN) to obtain
the relationship between electrodes, physiological regions,
and cerebral hemispheres. TFEM is an improvement on the
hierarchical RNN(H-RNN) [28]

According to the different responses of EEG signals
to emotional activities, we divide electrode positions of
active region into eight regions. The electrode position
can be divided according to the international stan-
dard 10-20 of EEG electrode position [29]. Therefore,
eight-part DE features are selected in the paper, such
as A1(FP1,AF3,F1,F3,F5,F7), A2(FP2,AF4,F2,F4,F6,F8),
A3(FT7,T7,TP7,P7,PO7), A4(FT8,T8,TP8,P8,PO8), A5(P5,
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FIGURE 3. The structure of MASTF-net. This model mainly includes three modules, which are two modules(TFEM and SFEM) with different
common feature extraction and multiple modules(DACMnp ) with independent adaptive domain feature classification. S contains a
sample rns

np of each subject. TFEM evaluates the relationship of EEG data from the left and right hemispheres according to the brain
electrode positions in different regions and extracts the temporal features of EEG signals based on the contribution of each region at
each spatial level. SFEM learns the spatial information contained in EEG data through a spatial extraction network, and extracts the time
frame features of EEG images by a gated recurrent neural network(GRU). DACM establishes separate domain feature extraction
branches(DSFEnp ) and classifiers(DSCnp ) for different domains according to the common features extracted by TFEM and SFEM.
FS represents feature selection, which is detailed in Section IV-B1. ETIM is described in Section IV-C1.

P3, P1,PO3, PO5), A6(P6, P4,P2,PO4, PO6), A7(O1,CB1)
and A8(O2,CB2), where the eight-part DE features corre-
spond to parts of a brain with obvious EEG activity. The eight
regions are shown in Fig. 4.

1) FEATURE SELECTING (FS) OF EEG TOPOGRAPHIC MAP
REGIONS
As shown in Fig. 3, the dimension of rnsnp is nc × nb × Lt .
The features of rnsnp are extracted by FS in eight regions. The
process of FS is as follows. We divide rnsnp according to Lt ,
where rnsnp = [a1, a2, . . . , ai, . . . , aLt ], i ∈ {1, 2, . . . ,Lt } and
ai ∈ Rnc×nb .
As shown in Figure 4, 36 electrodes are selected from

nc electrodes, and the 36 electrodes are divided into eight
regions, where the eight regions are A1, A2, . . . ,Aj,. . .A8. a

Aj
i

represents DE features of Aj region at i. The dimension of a
Aj
i

is nAj×nb, where nAj represents the total number of electrodes
in the Aj region.
In order to obtain the difference between the left and right

brain EEG features and retain the time information of the
EEG signal, we merge the EEG features of the same area at
Lt into the same matrix RAj = [a

Aj
1 , a

Aj
2 , a

Aj
3 . . . , a

Aj
Lt ]. which

represents as Rnsnp = {(RAj ,RAj+1)}, j = {1, 3, 5, 7} and Rnsnp is
the result of FS.

2) L-RNN AND TFEM STRUCTURE CONFIGURATIONS
The features about time, space and frequency information can
be extracted from EEG signals. At the same time, in order
to consider the relationship between different cerebral
hemispheres based on the same time period, an L-RNN
module consisting of multiple parallel RNN and LSTM [30]

FIGURE 4. In order to explore the feature transformation of frontal lobe,
temporal lobe and occipital lobe in left and right hemispheres when
emotions change, eight regions with frequent EEG activity during
emotional changes are divided.

was established, where each layer of L-RNN is used to extract
information from different regions, including electrodes,
physiological region information, and hemisphere-based
relationships. The structure of L-RNN is shown in Fig. 5.
Two parallel RNNs with the same structure are used to

initially extract the time information of DE features, and the
information based on time is processed through the RNN
hidden layer. The traditional RNN unit has the problem
of gradient disappearance, which causes certain damage
for processing of DE features of EEG. If the DE features
are processed through simple RNN, the needs of EEG
analysis may not be met. Therefore, after extracting feature
information through RNN, RNN is no longer used to process
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FIGURE 5. The structure of L-RNN. Each L-RNN input is a symmetrical EEG
feature. t represents the input time sequence, Aj represents the location

of the EEG region, and a
Aj
i represents the EEG feature in the Aj region of

the corresponding time series t . ⊖ represents the subtraction of the

elements at the corresponding position of vectors b
Aj
i and b

Aj+1
i . The

final output is the features matrix with dimension Lt × 16.

EEG information of different regions but the proposed LSTM
unit is used to further extract EEG feature of the local
hemisphere. LSTM not only improves the memory ability of
time information on the basis of RNN, but also improves the
ability to solve the problem of gradient disappearance.

Each input of L-RNN module is a symmetrical EEG
feature {RAj ,RAj+1}, as shown in Fig. 5. Lt represents the input
time sequence, Aj represents the location of the hemispheres
region, and a

Aj
i represents the DE feature in the Aj region of

the corresponding time series Lt . The final output result is a
vector of length 16. We input a

Aj
i , a

Aj+1
i into the parallel RNN

according to the time sequence Lt to get b
Aj
i and b

Aj+1
i , which

is represented as

b
Aj
i = RNN (a

Aj
i ), i ∈ [1,Lt ], j ∈ {1, 2, . . . , 8} (2)

After the features of each region are obtained, LSTM
is used to obtain the feature information between the
left and right brain in time series in order to obtain the
activity difference between the left and right brain, which is
represented as

x
Aj,j+1
i = Relu(LSTM (b

Aj
i ⊖ b

Aj+1
i )), i ∈ [1,Lt ], (3)

where ⊖ represents that the corresponding positions of
matrices b

Aj
i and b

Aj+1
i are subtracted. x

Aj,j+1
i is the feature

extracted from LSTM and Relu activation function is used
after ⊖, and the final output result x

Aj,j+1
i of L-RNN is gotten.

The final output is a matrix with dimension Lt × 16.
Each L-RNN module can extract the EEG feature of two

symmetrical hemispheres regions Aj and Aj+1. In order to
obtain the DE feature information of all important regions
from A1 to A8, multiple parallel L-RNNs are spliced together
to form a TFEM module, which as shown in Fig. 6. The
input of each TFEMmodule is the DE features of eight areas.
The paired EEG features are input into four L-RNN modules

FIGURE 6. The structure of TFEM. The EEG features of eight areas are
input into the L-RNN module in pairs. The output from the L-RNN module
is flattened and spliced after FC layer, and finally, a vector with a length of
64 is obtained after Norm.

FIGURE 7. EEG data of five frequency bands are mapped to the
corresponding positions of the EEG map to form a five-channel EEG map.

with the same structure, and the results obtained by L-RNN
are flattened and spliced [31] after fully connected layer(FC
layer) [32]. A vector with a length of 64 is obtained after
Norm [32].

C. SPATIAL FEATURE EXTRACTION MODULE (SFEM)
TFEM module plays an important role in extracting features
of EEG signal, but TFEM only collects EEG features of
local important brain regions and does not pay attention
to the overall changes of global brain regions. Therefore,
in order to supplement the TFEM module, we propose a
feature extraction method for global EEG features(SFEM).
The SFEM module contains two sub-modules, which are a
module of converting EEG signals into images(ETIM) and a
spatial convolution module(SCM), which are shown in Fig. 7
and Fig. 8. In ETIM, DE features are mapped into the EEG
topographic map and SCM is used to obtain the global EEG
spatial feature information. SFEM module aims to learn the
feature representation of global EEG information.

1) EEG TOPOGRAPHIC MAP FEATURE MAPPING
The DE featuers is transformed into an image representation
of the EEG signal feature, and the spatial information is
considered from the image-based EEG feature map [33].
The EEG mapping conversion method we use is as follows.
Firstly, the specific position of the 3D brain electrode (the
Cartesian coordinates of the scalp position ) is obtained
[34], and the three-dimensional electrode coordinates are
mapped to the two-dimensional space according to the
isometric projection. Secondly, DE features is assigned to the
corresponding electrode position, and then the EEG feature
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image is constructed by cubic spline interpolation [35].
Finally, the dimension of EEG topographic map is nb×h×w,
where h is height, w is width, nb is the channel of the EEG
topographic map, which represents five different frequency
bands. The height h and width w can be taken as required.
In this paper, we set the size of EEG image to 32 × 32.
Therefore, the size of each sample image is expressed as
5 × 32 × 32. The specific conversion process is as follows
[36]:

elev = atan 2
(
z,
√
x2 + y2

)
=



arctan

(
z√

x2 + y2

)

arctan

(
z√

x2 + y2

)
+ π

arctan

(
z√

x2 + y2

)
− π

π

2
−

π

2
(4)

Equation (4) calculates the elevation angle elev ∈
(
−

π
2 , π

2

)
,

formed by the z axis and xy plane from the three-dimensional
space, where x, y and z represent the three-dimensional
coordinates of the input electrode.

az = atan 2 (x, y) =



arctan
(
x
y

)
arctan

(
x
y

)
+ π

arctan
(
x
y

)
− π

π

2
−

π

2
(5)

Equation (5) is the counterclockwise angle in the xy plane
measured from the positive direction of the x axis, and the
angle value is within the range of (−π, π).

x̂ = (
π

2
− elev) cos(az) (6)

ŷ = (
π

2
− elev) sin(az) (7)

Equation (6) and Equation (7) respectively calculate electrode
coordinates x̂ and ŷ mapped from 3D to 2D.

Through the above EEG to image method(ETIM), we gen-
erate five characteristic maps corresponding to five frequency
subbands of 62 electrode positions, as shown in Fig. 7.
Before retraining the model, the EEG features of 15 subjects
are converted into images. We transform matrix S into
matrix Q, where S = {rns1 , rns2 , . . . , rns15} and Q =

{qns1 , qns2 , . . . , qnsnp , . . . , q
ns
15} through the ETIM. For sample

qnsnp , the dimension of qnsnp is nc × 32 × 32 × Lt . q
ns
np is

rewritten as [p1, p2, . . . , pi . . . pLt ], where the dimension of
pi is nc × 32 × 32, nc = 5.

FIGURE 8. The structure of SCM. SCM is used to extract the global spatial
feature of EEG, and the dimension of final output feature is 128 × 8 × 8.

2) SPATIAL FEATURE EXTRACTION STRUCTURE BASED ON
SCM AND GRU
In order to obtain the global EEG spatial feature, SCM and
GRU are used to extract global EEG feature based on time
frames. In SCM shown in Fig. 8, Resnet18 [37] are used as the
basic network. The network first learns the spatial spectrum
features in EEG images based on the 2D convolution layer
and then uses GRU to learn the time series features. The
reason for using GRU is that image data is difficult to process
compared with signal data. In order to improve the operation
speed, the faster GRU is selected to replace LSTM [38].
SFEM is used to make up for the incomplete global feature
extraction of TFEM. If LSTM is used, the training efficiency
will be reduced. Therefore, a more efficient GRU is used as a
substitute for LSTM.

As shown in Fig. 9, this structure enables the GRU unit
to discard useless outdated information and update its own
state according to the newly obtained input. The input of each
period of time t is expressed as xt . The state of the reset gate
and the update gate are controlled according to the input state
at time t − 1 and the input at time t , where the control door
is represented as

rt = σ (Wr · [ht−1, xt ]) (8)

where rt indicates the door control of control reset, Wr is
the weight matrix of reset gate, ht−1 represents the state
information of previous GRU unit, σ represents the logistic
sigmoid function. This function can be used to convert data
to a value in the range of 0-1. Update door representation as

zt = σ (Wz · [ht−1, xt ]) (9)

where zt represents the door control for updating, Wz
represents theweightmatrix of the update door. The closer the
gate control signal is to 1, the more data will be memorized;
The closer you get to 0, the more you forget. When the
rt is obtained, it can pass the current candidate state h̃t , h̃t
depends on the state information ht−1 at the previous time. h̃t
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FIGURE 9. The traditional structural unit of GRU extracts the time
information in EEG DE features.

TABLE 2. Parameter configuration used in SCM.

is expressed as

h̃t = tanh
(
Wh̃ · [rt ∗ ht−1, xt ]

)
(10)

where Wh̃ represents the weight matrix of candidate states.
Finally, zt , ht−1,h̃t get the current state ht .

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (11)

In order to obtain the spatial information of the electrode
position in EEG images, SCM is built to learn spatial features
from multiple frequency dimensions as shown in Fig. 8.
Table 2 shows the specific parameter configurations for the
spatial convolution module.

In order to extract the global EEG featureswithout ignoring
the time features Lt , SCM modules are used to extract
the spatial position information of EEG in different time
sequences and GRU is used extract the time features. Each
pi is calculated by the SCM module with weight sharing,
which is shown in Fig. 10. The input dimension of GRU is
Lt × 128× 8× 8, which consists of Lt parallel SCM outputs.
Each GRU unit obtains a feature vector with a length of 256.
The output of all GRU units is spliced and flattened to obtain
a feature vector with a length of 64 through FC layer, and
then the final result is obtained by Norm. The whole process
is shown in Fig. 10. The configuration of GRU and FC layer
is shown in Table 3.

D. DOMAIN ADAPTIVE CLASSIFICATION MODULE (DACM)
Domain adaptation (DA) [39] is a special case of Transfer
Learning. The idea is to map data features from different

FIGURE 10. The structure of SFEM. SFEM module contains Lt
sub-modules, which are SCM. SCM is used to obtain the global EEG
spatial feature, and weight sharing among Lt SCM modules. SFEM
module is to learn the feature representation of global EEG information.

TABLE 3. Configuration of GRU and FC layer.

domains (such as two different datasets) to the same feature
space, so that target domain can be enhanced by the data
from other domains. Due to the problem of multi-source
domain adaptation in cross-topic EEG emotion analysis,
we introduced domain specific feature extractor (DSFE) and
domain specific classifier (DSC) from [13] to solve cross-
subject emotion classification problem. Through TFEM and
SFEM, two feature vectors with 64 dimensions can be
obtained, and the two vectors are spliced which is the input
of DACM. The structure of DACM is shown in Fig. 11.
DACM contains two sub-modules, which are DSFEnp and
DSCnp consisted of three FC layers. DSFEnp has three FC
layers whose input dimension is 128 and output dimension is
32. DSCnp also has three FC layers whose input dimension
is 32 and output dimension is 3. DSFEnp and DSCnp are
represented as follows

ynsnp = 8np

(
xnsnp

)
(12)

Y nsnp = φnp

(
ynsnp

)
(13)

where8np represents the DSFEnp , x
ns
np is a vector with a length

of 128, ynsnp is a vector with a length of 32, φnp represents the
DSCnp and Y

ns
np is the output of φnp , consisting of a vector of

length 3.
In order to obtain the individual feature of each source

domain, 14 DACMnp (np=1,2,. . . ,14) are constructed, 14
DSFEnp are to extract the corresponding 14 source domain
features. At the same time, in order to map the source domain
and corresponding target domain to the same space, the target
domain xns15 as input to train 14 DSFEnp , as shown in Figure 3.
14 DSCnp are used to provide classification results for the
14 source domain.

E. LOSS FUNCTION DESIGN AND OPTIMIZATION
In order to estimate the distance between the source domain
and the target domain, Lmmd [40] is used to align the
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FIGURE 11. The structure of DACM. DACM module contains two
sub-modules, which are DSFEnp and DSCnp consisted of three FC layers.
The input dimension of DSFEnp is 128, and the output dimension is 32.
The input dimension of DSCnp is 32, and the output dimension is 3.

specific source domain to the target domain gradually without
changing the spatial distribution of the target domain. Lmmd
are represented as follows

Lmmd
(
xnsnp , x

ns
15

)
=

∑14
np=1

∥∥8np
(
xnsnp
)
− 8np

(
xns15
)∥∥

14
(14)

where the source domain feature xnsnp and target domain
feature xns15 are extracted by 8np .

The classification results of the specified domain are
obtained through the sotftmax classifier. The final result
are composed of 14 outputs of DSCnp . In order to make
the prediction convergence of each classifier result, cross-
entropy loss Lcls is introducedwe to solve the prediction result
loss, which is shown as follows

Lcls = −

M∑
c=1

Ŷ nsnp log
(
Y nsnp

)
(15)

where, M represents the total number of sample labels, Ŷ nsnp
represents the sample label value.

Finally, if the target domain is not controlled and the
prediction is simply averaged to the final result, the variance
will be high. In order to make the gap between 14 target
domains features in DSFEnp not too large, a method Ldisc
[13] is introduced to calculate the sum of feature differences
of 14 independent target domains to control the feature
distribution of the target domains. The equation of Ldisc is
as follows

Ldisc =
1
14

14∑
p=1,p!=np

∣∣8p
(
xns15
)
− 8np

(
xns15
)∣∣ (16)

The final loss is as follows

L = ϵLcls + µLmmd + ηLdisc (17)

where ϵ, µ and η are three hyperparameters for the three
losses, minimizing Lmmd can get domain-invariant features
for each pair of the source and target domains, minimizing
Lcls will bring more accurate classifiers for predicting the
source domain data and minimizing Ldisc will get more
convergent multiple classifiers [13].

Algorithm 1 Training Framework Based on the Proposed
Method
Input: EEG features of 15 subjects S = {rns1 , rns2 , . . . , rns15}
and labels {Ŷ ns1 , Ŷ ns2 , . . . , Ŷ ns14}
Output: forecast results {Y ns1 ,Y ns2 , . . . ,Y ns14}
1: Train:
2: for j in range(1,15) do
3: Rnsj =FS(r

ns
j ), qnsj =ETIM(rnsj ),

4: xnsj =Contact(TFEM(Rnsj ),SFEM(qnsj ))
5: if j! = 15 then
6: ynsj =DSFEj(x

ns
j ),

7: yns15=DSFEj(x
ns
15)

8: Y nsj =DSCj(y
ns
j )

9: Lcls(Y
ns
j , Ŷ nsj )

10: end if
11: if j = 15 then
12: for k in range(1,14) do
13: Lmmd (y

ns
k , yns15), Ldisc(x

ns
15)

14: end for
15: end if
16: end for
17: Test:
18: Rns15=FS(r

ns
15), q

ns
15=ETIM(rns15),

19: xns15=Contact(TFEM(Rns15),SFEM(qns15))
20: for z in range(1,14) do
21: ynsz =DSFEz(x

ns
15),

22: Y nsz =DSCz(y
ns
z )

23: return Y nsz
24: end for
25: save model

V. EXPERIMENTS
In order to evaluateMASTF-net, differentmethods for valida-
tion are used on the SEED and SEED-IV. Model evaluation is
mainly carried out through multi-source learning in the cross-
subject situation. Using this evaluation method, one subject
is used as the target domain data, and the other subjects are
used as the source domain data. During training, the model is
trained through all source domain data, and the target domain
data is evaluated. In this way, all subjects are evaluated
repeatedly and the corresponding mean value and standard
deviation are calculated. At the same time, in the ablation
experiment, the results are compared using DE features and
PSD features as inputs, which is shown in Fig. 12.

A. IMPLEMENTATION DETAILS
In the experiment process, because of the use of dual branch
network, Lt must be consistent for SFEM and TFEM.

When converting EEG features into images through ETIM,
the dimension of the image is set to 32 × 32 . In the
training phase, the cross entropy loss function is mainly used.
ϵ is set to 1, µ is set to 0.3 and η is set to 0.03 during
training. The Adam optimizer is used with a learning rate
lr of 0.01. outputSFEM and outputTFEM represent the feature
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TABLE 4. The hyperparameter values in the experiment in this paper.

output dimensions of the SFEM module and TFEM module,
respectively. During the experiment, we find that a significant
amount of time and memory consumption is required for
converting DE features into image data during data reading.
Therefore, in order to improve experimental efficiency, the
DE features of all subjects are preprocessed into images
in advance and images are saved in numpy format. Then,
the image file is directly read to reduce time. The specific
parameters are shown in Table 4.

A training model is built based on the Python library,
and EEG features is stored in the numpy format before
training, which is executed on the 8 GB Nvidia GeForce
RTX 3060 GPU. The main algorithm flow is shown in
Algorithm 1. S represents the DE features of 15 subjects. The
first fourteen subjects are labeled source domain data, and
the fifteenth subject is unlabeled target domain data used for
testing. Firstly, feature selection and image transformation are
applied to rnsnp for obtaining Rnsnp and qnsnp . Then, R

ns
np and qnsnp

are separately input into two branches(TFEM and SFEM) to
extract common features. Contact indicates the concatenation
of the common features extracted from the TFEM and SFEM
branches along the second dimension, resulting in xnsnp . When
the input is labeled test data, the model is trained using
both the source domain data and the target domain data
to calculate the classification loss (Lcls) for each domain
branch. However, when the input is unlabeled test data, the
feature difference loss (Ldisc) between the target domain of all
branches are used, as well as the domain loss (Lmmd ) between
the source domain and the target domain are calculated.
During testing, the common features of the test data are first
obtained following the training process. Then, the results
are sequentially predicted by passing through the domain
adaptation branches, returning all the prediction results of the
domain adaptation branches. Finally, the average of the final
predictions is obtained.

B. EXPERIMENTAL RESULTS AND COMPARISON
A lot of emotion classification experiments are performed on
the SEED and SEED-IV [6], and MASTF-net is compared
with other models.

As shown in Table 5, we evaluate the performance of each
participant based on SEED and SEED-IV. Each participant’s

three sessions are divided into Session I, Session II and
Session III.

The model in the paper is compared with other models
which are DDC [41], DAN [13], DCORAL [42], MS-MDA
[13], IAG [43], GMSS [44], MSFR-GCN [18]. By comparing
MASTF-net with other models, it can be seen that MASTF-
net is superior to other methods in both the experimental
results for each session and average results, which is shown
in Table 5.
In our study, experiments are conducted by using four

different methods: DDC, DAN, DCORAL, and MS-MDA,
for various conversations. The results for IAG, GMSS, and
MSFR-GCN are directly cited from the literature. Notably,
due to the use of a large sliding window for feature extraction
in SEED-IV, there was a severe lack of training samples in
the experiments. Therefore, we re-extract the DE features of
five frequency bands from SEED-IV using a sliding window
of length 1.

From the results in Table 5, it can be seen that MASTF-net
achieved the best performance on both the SEED and SEED-
IV datasets, surpassing MS-MDA and MSF-GCN by 1.33%
and 1.41% respectively on the SEED dataset. Simultaneously,
on the SEED-IV dataset, our method outperformed MS-
MDA, indicating that MASTF-net combining global spatial
information and temporal feature information has a signif-
icant impact on emotion classification results. Compared
to other models, MASTF-net’s performance on SEED-IV
is similar to GMSS, IG, and MSFR-GCN, but MASTF-
net exhibits relatively smaller bias during training, which
shows that, compared to others, MASTF-net demonstrates
competitive performance and improved stability, with lower
standard deviation and stronger generalization ability.

Different hyperparameters are tested to evaluate the
MASTF-net andMASTF-net is compared with other models.

Multiple comparative experiments are conducted with
different sample length Lt . The experimental results indicate
that the larger the Lt , the better the TFEM module can learn
time-based features from DE features, which is shown in
Table 6. TFEM and SFEM cannot learn the key knowledge
to be used from a short time series. In addition, it can be seen
from Table 6 that as the batch size increases, the performance
of MASTF-net decreases. When the Lt value is 4 and the
batch size value is 128, model results have a significant
decrease. When the Lt value is 8 and the batch size is
adjusted to 32, the MASTF-net can achieve a highest average
accuracy of 88.23%. The results also show that our method
can still obtain better experimental results when the number
of iterations is small, which indicates that our method can
improve the classification accuracy of emotion recognition
for multiple subjects in different scenarios.

As shown in Table 7, MASTF-net and other models are
trained 1500, 2500, and 3500 times, respectively. It can
be observed that with the increase of time, the accuracy
of all models has also improved. From Table 7, it can
be seen that MASTF-net can achieve the highest testing
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TABLE 5. Comparison of different models on SEED and SEED-IV based on different sessions.

TABLE 6. Evaluation of MASTF-net with different batch size and Sample
length Lt on SEED.

TABLE 7. Comparison of different models on SEED and SEED-IV based on
different epochs.

accuracy. This also indicates that the MASTF-net has a more
significant performance improvement in emotion recognition
by use of EEG. During the experiment, we saved the results
of each experiment. We used bar charts and confusion
matrices to record the performance results of all participants
in all sessions, as shown in Fig. 13. According to the
experimental results, MASTF-net can effectively predict
positive and negative emotions, but the predictive effect of
neutral emotions not as good as that of positive and negative
emotions, especially in the second session. It may be that the
neutral mood change is relatively weak relative to the other
two moods, thus reducing the average accuracy.

VI. DISCUSSION
In this section, we investigate the proposed algorithm
MASTF-net. We conduct ablation experiments on MASTF-
net, including ablation experiments on TFEM and SFEM
without using domain loss function, as well as ablation
experiments on different frequency band data. Additionally,
we analyze the performance of MASTF-net when using DE
features and PSD features as inputs separately.

A. ABLATION STUDY
In order to better understand whether each module can play a
key role, the results of the ablation experiment are shown in
Table 8.
The TFEM module only learn the DE features of eight

key regions, but some electrode positions are ignored by
the TFEM module. In order to prove that the SFEM
module compensates for the shortcomings of TFEM in the
global space, in the ablation experiment, TFEM replaces
the feature extraction module with a dual branch structure
and is compared with the MASTF-net. The experimental
results indicate that the SFEM module improves the overall
experimental effect.

In order to prove that the domain loss function and
difference loss are effective, in the ablation experiment,
we removed these two loss functions and only used the cross-
entropy loss to predict the results. The experimental results
show that if only one prediction loss is used and the domain
loss and difference loss are abandoned, the accuracy of the
final prediction results will decline. The experimental results
are shown in Table 8.
According to the results in Table 8, the testing accuracy

decreases significantly without Lmmd and Ldisc, indicating
the importance of processing each source domain with
DACM modules during the training process. In addition,
if TFEM module is only used as a common feature extractor,
classification accuracy will reduce, which proves that the
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TABLE 8. Ablation experiment for Loss function and common feature extraction on SEED.

FIGURE 12. In order to evaluate the impact of PSD features and DE features, repeated experiments are conducted on
PSD features in the same experimental environment. In addition, if the TFEM module is only used as a common feature
extractor, the classification accuracy will be reduced compared to the dual branch structure common feature extractor,
which proves that the SFEM module compensates for the shortcomings of global spatial features in the TFEM module.

TABLE 9. The proportion of frequency bands for TFEM and SFEM on SEED
and SEED-IV.

SFEM module compensates for the lack of global spatial
features in the TFEM module.

In order to investigate the extraction of low-level common
feature information by MASTF-net, we conducted multiple
experiments on the data of the five frequency bands, as shown
in Table 9. According to Table 9, in seed and seed-IV, δ has
the least impact on the experiment, while β has a significant
impact on the prediction results of both datasets. In SEED-
IV, fear, negative and neutral emotions account for about one
quarter of the data, and according to studies [18], and the
β and γ bands are associated with positive emotions, while
the α band is associated with neutral emotions. Therefore,
if high frequency bands are overly emphasized, the overall
effect will not be good. Our findings are consistent with the
physiological research results of MSFR-GCN [18].

B. INPUT FEATURE COMPARISON
The SEED provides not only DE features but also PSD
features. In order to improve the effectiveness of cross-
subject emotion classification and evaluate the impact of PSD

features and DE features, repeated experiments are conducted
on PSD features in the same experimental environment, and
the results are shown in Fig. 12. We randomly select the
DE and PSD feature data of all subjects in one session
of three sessions. The abscissa in Fig. 12 represents the
subject’s number np, and the ordinate represents accuracy.
MASTF-net_DE and MASTF-net_PSD represent experi-
mental results using DE and PSD features as MASTF-net
inputs, respectively. TFEM_DE and TFEM_PSD represent
using DE and PSD features as network inputs. However,
unlike MASTF-net_DE and MASTF-net_PSD, in order
to reflect ablation experiments, in the common feature
extractor, we only use the TFEM module instead of the
dual branch feature extraction module to demonstrate the
high generalization of the TFEM module. The experimental
results show that DE outperforms PSD in SEED under
the same model and experimental environment. Therefore,
we conclude that for SEED, DE is more conducive to the
adaptation of EEG emotion recognition across subjects than
PSD. From the experimental results can see that our method
has shown good results in the field of adaptive EEG emotion
analysis.

Furthermore, MASTF-net fails to achieve satisfactory
results in cross-subject sentiment classification when using
PSD features as input, as shown in Figure 12. Further
optimization is needed to improve the generalization ability
of MASTF-net, enabling it to adapt to DE features as network
input and achieve satisfactory results when using PSD
features as input. Finally, althoughMASTF-net demonstrates
favorable analytical results compared to the comparative
methods, its model complexity leads to longer training
time. In future work, we will adjust the model structure of
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FIGURE 13. For the 45 cross-subject emotion classification results of each subject in each conversation as the target domain, the confusion matrix
represents the number of true and false predictions of each type, and the histogram represents the accuracy of each type of emotion prediction.
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FIGURE 13. (Continued.) For the 45 cross-subject emotion classification results of each subject in each conversation as the target domain, the confusion
matrix represents the number of true and false predictions of each type, and the histogram represents the accuracy of each type of emotion prediction.

MASTF-net based on the weighted proportion of different
frequency bands in emotion prediction to enhance its
efficiency.

VII. CONCLUSION AND FUTURE WORK
In the paper, MASTF-net is compared with other models
which are DDC [41], DAN [13], DCORAL [42], MS-MDA
[13], and it is clear that MASTF-net has significant improve-
ment in the emotional classification of cross-subjects. A dual
branch network are used to build a shared network to extract
the common time, space, and frequency information of EEG
signals. On one hand, L-RNN module is used to obtain local
area features of EEG in high-frequency active areas. On the
other hand, 3D EEG data is mapped to a 2D EEG topographic
map to extract EEG spatial global features.

In addition, in experiments, it can be seen that length of
Lt have a significant impact on the cross-subject emotion
classification results of the experiment. As can be seen
from Table 6, when Lt is set to 8, the best experimental
results are obtained, which shows that EEG signals have a
relatively long time correlation. We also find that MASTF-
net can achieve higher accuracy when choose a smaller batch
number. In addition, when selecting the loss function, three
aspects are considered. First, inter-domain loss is used to

calculate the difference between the source domain and the
corresponding target domain. Second, domain invariant loss
is used to improve the stability of the target domain after
feature extraction. Third, prediction loss is used to predict the
classification results.

Finally, the MASTF-net uses a relatively complex network
structure. Compared with other simple architecture models,
the MASTF-net has good performance in cross-subject
emotion classification, but has a problem of longer training
time. It can see that the training time increases linearly with
the number of source domains, that is, the larger the number
of source domains, the larger the model, and the longer
the training time. In the next step, our goal is to improve
the training efficiency without reducing the model accuracy.
The main idea is to add a discriminator in the branches for
domain features to discard unnecessary branches for reducing
training time.
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