IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 12 December 2023, accepted 28 December 2023, date of publication 4 January 2024,
date of current version 11 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3349691

==l RESEARCH ARTICLE

FedOps: A Platform of Federated Learning
Operations With Heterogeneity Management

JIHWAN MOON", SEMO YANG *, AND KANGYOON LEE ", (Member, IEEE)

Department of Computer Engineering, Gachon University, Seongnam-si 13120, South Korea
Corresponding author: KangYoon Lee (keylee @ gachon.ac.kr)
This work was supported in part by the Commercialization’s Promotion Agency for Research and Development Outcome (COMPA) Grant

funded by the Korean Government (MSIT) under Grant 2022-Future Research Service Development Support-1-SB4-1, and in part by the
National Research Foundation of Korea (NRF) funded by MSIT under Grant NRF-2022R1F1A1069069.

ABSTRACT Federated learning (FL) is a decentralized machine learning (ML) method that enables model
training while preserving privacy. FL is gaining attention because it avoids data transfer to the server,
facilitating the decentralized learning of the traditional ML model. Despite its potential, FL. project is
significantly more challenging to develop than centralized ML methods owing to decentralized local data.
We propose FedOps, federated learning operations for constructing systematic FL. project by enhancing
machine learning operations (MLOps) to be effectively applied to FL while preserving its core process.
To address complexity of FL implementation, we developed FedOps platform, which involves FedOps-
based projects to manage the whole lifecycle in FL context. We also investigated methods to identify
performance degradation factors in FL and suggest an approach for improvement. FedOps Platform provides
an analysis tool for client heterogeneity, called chunk-bench. This tool enables researchers and engineers to
gain insights into systems heterogeneity by using only small chunk of the clients’ data to execute test in the
shortest time possible while tracking the systems heterogeneity across the clients. By addressing systems
heterogeneity, FedOps Platform achieved 13%—-43% improvement in communication cost-to-accuracy and
20%—-68% improvement in time-to-accuracy. We believe that FedOps Platform offers an optimal solution for
end-to-end development of FL projects, with significantly improving both computational and communication
efficiencies.

INDEX TERMS Cloud-native application, federated learning, FedOps, MLOps, privacy, non-IID data,
systems heterogeneity.

I. INTRODUCTION to centralized ML. Specifically, FL performance varies

Federated learning (FL) is a decentralized machine learning
(ML) method that enables model training while preserving
privacy. Recent data-driven services collect private user
information, including sensitive biometric data, leading to
concerns regarding privacy protection. Therefore, the demand
for FL, as a privacy-preserving method, rises significantly and
it is not limited to certain application fields.

Despite the potential of FL, organizations without
FL-specialized researcher struggle to implement FL service
owing to its complexity and inferior performance compared

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Gupta

significantly based on the device condition or local
data distribution. The difficulty level of model updates,
optimization, and verification is significantly higher than
that of general ML methods, owing to its inability to share
client data to the server [1]. To address these issues, a holistic
guideline is necessary for developing FL projects.

Given that the data and model are not centralized in FL,
the complexity of implementing FL project is exacerbated
by inevitable challenges like heterogeneous clients, model
updates aggregation, and personalization. To address these
challenges, systematic operations like machine learning
operations (MLOps) are necessary for the entire FL lifecycle
management. MLOps is a methodology that defines how to

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 4301

https://orcid.org/0009-0005-3605-200X
https://orcid.org/0009-0002-8615-028X
https://orcid.org/0000-0003-3078-6166
https://orcid.org/0000-0001-5067-858X

IEEE Access

J. Moon et al.: FedOps: A Platform of Federated Learning Operations With Heterogeneity Management

FL Methods Aggregation Algorithms Supported Edge Devices fgta_nd_algns Simlxla_n‘gn_ .
T e = GESSsSETT 1 ===
[Cross-device FL] [FedAvg] [Raspberry Pi] [In-cluster Simulation]
Cross-silo FL [FedProx] [Nvidia Jetson Nano] [Ray Parallel Process]

BT T T T
Vertical FL
_____________ | o e e e e e e R
FedOps Engine
FL Server FL Client
[FL Core] [Server Manager] [FL Core] [Client Manager]
[Log Processor] [Visualizer] [Log Processor] [Visualizer]
FedOps Cluster
Network Web Server
Back
[Load Balancer] [Traffic Forwarding] [firoiend Servey] [ackend Server]
C1/CD
P
[£] [Qatway] [Git Sync] [Kubernetes Pod Operator]

FIGURE 1. Overview on FedOps Platform implementation.

track and manage the full lifecycle of ML from data collection
to model training, testing, and monitoring. However, unlike
traditional ML workflow, there are several restrictions to
direct adaptation of MLOps in FL lifecycle. There are some
difficulties which have not seen in centralized ML, such
as hyperparameter optimization, feature engineering, model
selection, and debugging, thereby making direct application
of MLOps difficult [2]. Our goal is to build an MLOps-like
platform which is generalized to be applicable across a wide
range of application fields. We expect our work to reduce
the barriers to entry for FL projects for organizations and
researchers.

We propose FedOps, federated learning operations for
constructing systematic FL project by enhancing MLOps to
be effectively applied to FL while preserving its core process.
By designing the architecture of FedOps, we aim to address
the following research questions:

(i) What components, functions, and interactions from
MLOps are required for FedOps to support systematic
implementation of FL?

(i) How can we identify the factors that cause degraded
performance during the FL process, and which techniques can
be used to improve the degraded learning performance?

In this study, we used Kubernetes and several con-
tainerized cloud-native applications to develop a system
architecture that collaboratively functions and makes the
platform extensible. For researchers and engineers who may
not be specialized in FL, we designed FedOps Platform,
which is abstracted for ease of use to ensure that FL
service can be seamlessly applied to on-premise server or

4302

cloud environments. FedOps Platform was developed to
facilitate FedOps-based projects, enabling automation and
monitoring of the entire FL process—f{rom integration to
test, deployment, and beyond—while providing an optimized
development and production environment. Fig. 1 shows that
FedOps Platform provides cloud-native FedOps modules
with FL core engine and several FL methods. These include
network load balancer, web interface, and FL. model aggrega-
tion algorithms that support various simulation methods for
real edge devices.

Additionally, we show a chunk-bench method to mitigate
unpredictable factors (e.g., systems heterogeneity) of FL
clients, thereby improving the performance of FL process.
The chunk-bench method immediately analyzes the het-
erogeneity of the clients during the initial communication
round of local model training. We demonstrated the exper-
iment of setting an adaptive threshold in client selection
by using the insights gained by chunk-bench. We expect
FedOps Platform to support streamlined operational devel-
opment and research strategies in FL. To check code of
FedOps Platform and to reproduce experiments, please see
https://github.com/kumass2020/FedOps-Chunk-Benchmark.

The main contributions of this study are as follows:

« We propose FedOps methodology; It includes system
architecture designed to consider the entire process of
the FL lifecycle. The module and pipeline composition
that comprise the system and its roles are introduced.

o We present FedOps Platform, which is designed to easily
deploy FL services using cloud-native applications and
manage the entire FL lifecycle.

VOLUME 12, 2024

J. Moon et al.: FedOps: A Platform of Federated Learning Operations With Heterogeneity Management

IEEE Access

o As a core tool of the FedOps Platform, we propose
chunk-bench—which provides a heterogeneity analysis
strategy for analyzing hardware performance and com-
munication cost. According to the insights gained from
chunk-bench, we present an experiment that improves
the time-to-accuracy and communication costs.

Il. BACKGROUND AND RELATED WORKS

This section describes background information on FL and
client heterogeneity, which is one of the major challenges
in FL. Additionally, we introduce related studies on FL
frameworks and MLOps, which motivated the development
of FedOps Platform.

A. FEDERATED LEARNING

In centralized ML, all data converges to a single host,
accumulating problems related to privacy, efficiency, and
scalability [3]. FL offers a novel paradigm that resolves the
disadvantages by training ML models using decentralized
local model training and model aggregation.

Typically, FL aims to the generalization of global model
and the personalization of local model [4]. Generalized
global model has the capacity to handle unseen data from
heterogeneous clients. Personalization enables local model to
optimize for client-specific features.

To collaboratively merge numerous local model updates
into the global model, an aggregation strategy is necessary
for global model optimization. The most popular aggregation
algorithm is FedAvg. This algorithm uses the average of local
model updates from clients in the server [5]. FedAvg aims to
minimize minf (w)= Zgzl prFr (w). Here, w is the model
parameter, gnd N is the client number. When the data is
partitioned, py is the data ratio ”7" for client k for the total
data number n = Zk ny [6]. We used FedAvg as a baseline
method for our experiment to demonstrate how to mitigate
FL performance degradation factors.

During the communication process of model updates,
secure aggregation can be applied to maintain the integrity
of the model. It is implemented by adding secure pro-
tocols or cryptographic techniques that apply encryption
to model updates [7]. FedOps Platform provides a secure
connection by adding Google remote procedure call (gRPC),
which is a secure protocol based on transport layer
security (TLS).

B. CLIENT HETEROGENEITY

Client heterogeneity denotes the disparities stemming from
distinct client environments in FL. It is unpredictable
and uncontrollable, thus posing a significant challenge in
FL. Client heterogeneity is generally classified into data
heterogeneity and systems heterogeneity [1].

Data heterogeneity is referred to as statistical heterogene-
ity, which means the imbalance in local data deriving from the
non-independent identically distributed (non-IID) data that
the clients have. Non-IID data could appear owing to the data

VOLUME 12, 2024

characteristics such as feature distribution, label distribution,
and data quantity skewness [1]. To improve the global model
performance while mitigating data heterogeneity, attempts
such as vertical FL [8] were made through changes in data
concatenation. For the personalization (also known as local
fine-tuning) of the local model, there have been attempts to
apply model agnostic meta-learning (MAML) [9].

Systems heterogeneity refers to the varying capabilities
for task processing due to the factors such as hardware
performance, network connectivity, storage, and other client-
specific conditions [6]. To mitigate systems heterogeneity,
the client state should be periodically updated, and policies
such as cut-off should be established to handle the cases such
as failing to learn multiple times or having excessively slow
model training speed. Additionally, policies that compress
model size or reduce the number of communications (e.g.,
fewer communication rounds and numerous local epochs)
can be adjusted to reduce communication cost [10]. Existing
FL frameworks have difficulties at finding performance
degradation factors and directly regularize them [11], [12],
[13]. Addressing systems heterogeneity issue is one of the
main purposes of this study. We will continue the relevant
discussion in Sections III and IV.

C. FEDERATED LEARNING FRAMEWORKS

FedOps Platform has been influenced by active studies on
FL frameworks. These studies improved accessibility to FL.
research but have some limitations on handling scalability,
communication, cloud-native support and the whole lifecycle
management. Table 1 shows an overview of comparison with
key properties of those FL frameworks.

FedML [11], an open-source FL framework supports
creating projects of cross-device FL and cross-silo FL
methods through an easily accessible Web UI. However,
FedML does not support cloud-native applications which
make the FL project extensible and scalable. Also, FedML
could not complete simulation over 100 clients in a single
cluster.

FATE [12] was developed as an open-source framework
for supporting the FL ecosystem, and it provides sub-services
such as FATEFlow which supports the FL end-to-end pipeline
and kubeFATE which uses Kubernetes and cloud-native
applications. However, FATE does not provide Web UI and
Python library that is independently executable.

Further, LEAF [13] provides statistical system metrics
and datasets for FL benchmark environment. FedBalancer
[14] selects FL clients based on metadata created from
results of local model optimization to enhance the FL
performance. And other frameworks like Flower [15],
FLSim [16], TensorFlow federated (TFF) [17], FLUTE [18],
and Clara [19] were implemented through interfacing the
existing ML libraries such as PyTorch and TensorFlow. These
frameworks abstract the general ML code level to provide
a testbed for researchers, offering simulation environments
for numerous client instances. Although these frameworks
showed comparable works in specific tasks, they did not

4303

IEEE Access

J. Moon et al.: FedOps: A Platform of Federated Learning Operations With Heterogeneity Management

TABLE 1. Comparison of federated learning frameworks.

TFF LEAF FATE FedScale FedML FedOps
Simulation v \% v v v \%
Scalability - - - o - \Y%
Heterogeneous systems (6] - \Y% \% \% v
Heterogeneous data (6] - v v v v
Communication overhead - - (6] (¢} - \%
Cloud-native platform - - (0] - - \%
FL lifecycle management - - - - - \%

from .server import ar
from ops.server import
import]
if == main
= './config.yaml
) = V .read_config(ath)
= ['data']['name']
s = el()
, = ()
= app.FLServer(]y 5 " 5 1)

.start()

FIGURE 2. An example code snippet of executing FedOps server.

consider constructing the whole FL lifecycle using their
frameworks.

We propose FedOps Platform to construct and manage a
whole FL lifecycle upon an easy-to-use Web UI and Python
library. Fig. 2 shows how simply FedOps server can be
executed using Python library interface. In FedOps simula-
tion setting, example dataset is automatically partitioned and
distributed to clients by data loader, which is less complex
than most FL frameworks.

D. MLOPS

MLOps is a methodology for managing ML lifecycle from
requirements to model tuning, culminating in data processing
via a refined workflow or pipeline. Implementing MLOps
requires considering the degree of automation for each
model-serving and process pipeline [20]. Additionally, it is
also referred to as the methodology for effectively developing
the ML service for business requirements [21]. Generally,
MLOps is implemented within a microservice architecture,
where containerized applications serve as the individual
components of the system, and automated pipelines are used
to manage the workflow [22].

Since FL is a more complex form of centralized ML,
the workflow management performed in MLOps would not
function optimally in FL. There were some approaches to
adapt MLOps to FL, but they are partially implemented

4304

O: planned or partially implemented

and not scalable in the FL lifecycle. Therefore, we had to
reorganize the following MLOps components to suit FedOps:
(i) continuous integration (CI), continuous deployment (CD),
continuous testing (CT), (ii) data extraction, analysis and
(iii) model serving, testing, validating, deploying [23].

Ill. FEDOPS

We present the FedOps architecture that manages the entire
FL lifecycle with best practices, as well as presenting some
considerations for performing FedOps.

A. FL SYSTEM RESTRAINTS

In FL, factors that have not been considered in ML
are presented such as the heterogeneous environments
and communication. Therefore, the following factors must
be additionally considered in FedOps: (i) communication
efficiency, (ii) systems heterogeneity, (iii) data heterogeneity
(non-IID data), (iv) privacy preservation, and (v) aggregation
and optimization strategy [8], [24]. The complexity of
these challenges that FL has faced has become the primary
motivation for constructing FedOps Platform.

Fig. 3 shows the overall system architecture and composi-
tional factors of FedOps. The architecture is composed of the
server and client lifecycles and subcomponents that constitute
each lifecycle. We reorganized existing MLOps components
with added FL components for handling FL process. The key
components for the FL process are highlighted in the Fig. 3.

B. CLIENT LIFECYCLE
Typically, MLOps does not consider the client-side model
training; however, given that the model training of FL
primarily takes place at the client-level, managing the
model lifecycle of clients becomes essential. As indicated in
Sections C-1 to C-4 of Fig. 3, client lifecycle in FedOps is
divided into four sections.

The function and composition of submodules are as below:

1) DEPLOYMENT

Build and update of the client instance should be imple-
mented with the code that is specific to the target device,
considering the processor architecture which is referred to as
the instruction set such as AMD64, ARM64, and ARMV7.
For example, in mobile devices such as smartphones, using

VOLUME 12, 2024

J. Moon et al.: FedOps: A Platform of Federated Learning Operations With Heterogeneity Management

IEEE Access

Development Environment

Section S-2. CI/CD

Section S-1. Deployment

Updating
Client/Server Code

Deploying
FL Server Runtime

]

P TP T S

Source
Repository

Cluster
Creation
| Configuration I

Server Instance

Section S-3. Client Handling Section S-5. Monitoring

Client Connection
Management

Visualization

Client Heterogeneity

Log Log
Processing Collection

Analysis Retrieval

Section S-4. Model Handling

Client Selection

S ——— >
PeneEEm Model Model Model e @
Model Serving ggregaro Optimization Evaluation Versioning N
to Client ... Repository
Model (w) ""'n.“._ModeI Updates (Aw)
Section C-1. Deployment Client Instance
Section C-2. Data Handling
Installation E e T
o 1 Model Model H i M del
Execution Verification odel ode P eterogeneity ode
\ / [Initialization Training peonaizaton Analysis Transmission
| e e o o o

Data
Preprocessing

Section C-3. Model Handling

}

)

Data
Extraction

Visualization

Log Log
Processing Collection

Section C-4. Monitoring

FIGURE 3. Overview on FL lifecycles in FedOps. It is largely distinguished into the server and client lifecycle, and sections according to the
function constitute each server. The key functions for the FL process were highlighted.

ML libraries like PyTorch or TensorFlow in Python runtime
is restricted. So they should be distributed by porting as an
exclusive runtime environment [7]. Despite having the same
instruction sets, multiple types of distributions are required
considering the system constraints such as the presence of
the graphics processing units (GPU) acceleration or memory
capacity. In FedOps Platform, we have constructed various
containerized environments for heterogeneous systems. This
approach allows researchers to focus on their FL tasks
without concerns about system constraints.

2) DATA HANDLING

In the data handling pipeline, operations such as data extrac-
tion, preprocessing, and validation are performed. In FL,
considering that data is not transferred to the server, this
pipeline is presented only in the client lifecycle. In MLOps,
the data processing pipeline can be reorganized based on the
decision of data scientist. But in FedOps, modifying the data

VOLUME 12, 2024

processing logic of the client after the distribution of the
application is difficult, therefore, updating the client should
proceed with carefully tested code. Additionally, it should
be automated to allow data preprocessing and validation
considering the task to be undertaken in advance.

3) MODEL HANDLING

In the model handling pipeline, a client device trains local
model and serves it according to each step, proceeding as
follows:

(i) Model initialization: global model of the initial state
is transferred via communication with the server. Here,
pretrained model is ideal to initialize since it allows fast
optimization for the local model.

(i) Model training: local model trains using local data
from the client device. Here, convergence speed by training
is affected by device performance, and it also can differ based
on the extent of personalization and fine-tuning.

4305

IEEE Access

J. Moon et al.: FedOps: A Platform of Federated Learning Operations With Heterogeneity Management

Local Model Train Performance | client_no: acc by round

Local Model Train Performance | client_no: loss by round

Local Model Training Time | execution_time by round

Local Model Test Performance (Accuracy)

Local Model Test | Accuracy Avg. Local Model Test | Loss Ava.

0.992

Accuracy

0.12

Loss MNIST

Data Distribution Operation Time by Client

1 (&
11.18% 10.28%

10.1%

Operation time

&
9.96%

|
|
09.93% il

49.92% 99.93%

FL Task

Dataset

MNIST

FIGURE 4. Real-time monitoring dashboard of client generated owing to the log processing pipeline. Local model and data were visualized on the

webpage.

(iii) Personalization: this process is an operation for
personalizing the global model suitable for the client. It can
be especially useful in training paradigms like transfer
learning and multi-task learning. And personalization can be
achieved using ML techniques like meta-learning and adding
a personalization layer [25].

(iv) Heterogeneity analysis: an independent test is pro-
ceeded to measure the network bandwidth and systems
heterogeneity of the client devices. The analysis results
will be used to address performance degradation factors of
FL. We performed the benchmark test for the client using
proposed chunk-bench method. Details on this method are
shown in Section IV.

(v) Model transmission: this process is transferring the
weight parameter updates that are the results of local model
optimization to the server for global model aggregation.

In FedOps Platform, Apache Airflow [26] was used to
constitute the model serving pipeline. Using this workflow
management tool, each task in the pipeline is represented as
a node of directed acyclic graph (DAG) to enable sequential
execution, thereby indicating success or failure as a result.

4) MONITORING

In the FL environment, tracking the client log into the server
corresponds to an invasion of privacy, therefore, monitoring
the client is considered to be restricted. However, if it
is an application that can provide statistical insights and
benefits to the user and not the server, there still remain
reasons to implement client-side monitoring. For example,
for a healthcare application that collects vital sign data by
communicating with the sensor, an alert that visualizes the
current user’s health state can be shown to the user when in
emergency.

4306

In the FedOps Platform, client monitoring is strictly distin-
guished from the server and passed through an independent
data processing pipeline. In Fig. 4, client data processing was
facilitated by using the ELK stack [27], which comprises
Logstash, FElasticsearch, and Kibana. Detailed information
on the data processing pipeline is provided in Section III-C
below.

C. SERVER LIFECYCLE
As shown in Sections S-1 to S-5 of Fig. 3, server manages
the client state, updates the global model from local model
weights of the clients, and performs the core function of
monitoring as a primary part in FL. FedOps Platform can be
easily distributed either to on-premise or cloud environment,
and is enabled to efficiently allocate computing resources
through clustering of available servers.

The function and composition of submodules are as below:

1) DEPLOYMENT
The deployment process in the server begins by composing
the cluster from server nodes in which FL service resources
can be allocated. The cluster is generally composed of
Kubernetes which supports the container environment, multi-
GPU, load balancer, and service mesh configurations. They
are effective in distributing the load of the cluster owing to
the efficient system resource allocation and multiuser access.
As a real case, we used MicroK8s [28] as one of the
Kubernetes distros from the FedOps Platform, Ingress-
NGINX [29], MetalLB [30] as the load balancer and
Istiod [31] as the service mesh. FedOps Platform that
includes such cloud-native applications can be deployed
either in on-premise environments or the cloud using package
managers like Helm chart [32] and Juju [33].

VOLUME 12, 2024

J. Moon et al.: FedOps: A Platform of Federated Learning Operations With Heterogeneity Management

IEEE Access

2) CI/CD

Client and server code can be updated as development
proceeds, and the runtime based on the code update can be
deployed for regular service. Before the deployment, updates
based on the insight from monitoring previous FL lifecycle
should be reflected.

In application deployment, we implemented real-time
synchronization with the application via remote connection
of Git repository and automation using a GitOps CI/CD tool
such as ArgoCD [34].

3) CLIENT HANDLING

In FL, connection of the server with the current clients
must be maintained before and ongoing training, the state of
current clients should be detected by server, and the server
state should be broadcasted to the clients. The key processes
are as follows:

(i) Client connection management: server manages con-
nected clients and keeps connection until the whole FL
cycle ends. This operation could proceed with interfacing
client-side application. Server identifies the availability of
model training by updating the client states such as the
network status (e.g., unmetered Wi-Fi connection), battery
life, and idleness [24]. Even during ongoing model training,
it is imperative to handle exceptional cases, for example,
by attempting reconnection in the event of a client’s lost con-
nection. We used gRPC to communicate with the client and
FastAPI to communicate within the internal cluster. A client
manager that broadcasts the client state was constructed with
functions such as health check or transmitting signal that
starts local model training.

(i1) Client heterogeneity analysis retrieval: FedOps Plat-
form uses client metadata, which is obtained by heterogeneity
analysis through benchmark test from the clients. This meta-
data can be used to improve the user experience by updating
client evaluation. We analyzed systems heterogeneity of
clients using the chunk-bench. Details on chunk-bench can
be found in Section IV.

(iii) Client selection: clients that participate in model
training are selected based on a certain threshold. As a
result of client selection, convergence speed of selected local
models can be accelerated and communication cost can be
reduced. When this operation finishes, the server requests
model training to the clients, and the clients start local model
training.

(iv) Model serving to client: global model within the server
is broadcasted to the clients. Here, the global model in the
server is loaded from a model repository using persistent
storage.

4) MODEL HANDLING

In the global model handling pipeline, selecting an aggre-
gation strategy is the core process, which is about how to
calculate collected local model weights. The other processes
of the model handling pipeline are identical to those in
general MLOps.

VOLUME 12, 2024

Aggregation is an aggregating and computing operation
from the result of local model training. The aggregation
algorithm affects the global model performance, and this
implies effect on local model performance again after one
lifecycle.

We used Flower [5] as the core engine for handling FL.
model and transferring model updates. And PyTorch was
used to evaluate the global model and to train the local model.

5) MONITORING

In FL, since data is not centralized, monitoring clients
from the server is limited compared to typical ML services.
However, without invading privacy, client metrics and
metadata can be effective monitoring resources that provide
insights to the server from the clients. In addition, monitoring
FL-specific circumstances can elicit immediate performance
feedback by visualizing communication cost, comparison of
various aggregation algorithms in FedOps.

To implement the monitoring module, we collaboratively
used several applications that could constitute a log pro-
cessing pipeline in the cluster. To collect and transmit
logs, Logstash was used in log parsing, Elasticsearch
was used in log storing and indexing, and Kibana was
used for visualization [27]. Consequently, local and global
model data can be monitored in real-time, as shown in
Fig. 5. Additionally, weights and biases [35] was used
for hyperparameter tuning and monitoring the progress of
model training. Fig. 7 shows that Weavescope [36] was used
for real-time network dependencies visualization between
Kubernetes resources and other external components.

D. HETEROGENEITY ANALYSIS

Addressing heterogeneous clients that could harm the model
performance and impede FL model training process is
one of the key challenges that should be covered in
FedOps. We propose chunk-bench tool and demonstrate a
client selection method with systems heterogeneity analysis
strategy.

1) HETEROGENEITY BENCHMARK

Chunk-bench analyzes the communication cost and systems
heterogeneity of the client in the FedOps Platform, and it
provides insights to improve performance in the next FL
cycle. Chunk-bench uses only a small chunk of the data so
that the clients can terminate the test in the shortest time
possible. The benchmark tracks and records the systems
performance of all clients. Subsequently, it visualizes the
communication cost and the time-to-accuracy of each client
to provide insights to FL server.

For the experiment, we set the data ratio for the chunk-
bench to 50% of batch data as we use lightweight data for
training. If a bigger model or data is used, the chunk-bench
can be performed with a smaller amount of data. When
we reduced the amount of data by 50%, the average local
model training time of the initial communication round for

4307

IEEE Access

J. Moon et al.: FedOps: A Platform of Federated Learning Operations With Heterogeneity Management

test_accuracy round
Vi —

train_loss val_loss

test_loss val_fl_score

f1_score val_accuracy

train_time train_accuracy

Data Size Distribution
el

label

data_size

FIGURE 5. Real-time Monitoring dashboard of FedOps Platform generated by the log processing pipeline. Local and global model data were

visualized on the webpage.

50 clients decreased by 54.4%. Details on the settings of
chunk-bench for model training and FL clients are presented
in Section IV-A.

Fig. 6 demonstrates chunk-bench to quantify and identify
the system heterogeneity among FL clients. The client
numbers were assigned sequentially according to the order in
which clients submitted their model training outcomes to the
server following the commencement of the communication
round. We synchronized the system clock to a network
time protocol (NTP) server identical to the client and
server at the start of the measurement, ensuring time
reliability. Here, it is important to note that there could
be varying patterns in the network latency of the client
during real-world device communication, as we conducted
communication between clients deployed within the internal
cluster.

The elapsed time of clients in a communication round
comprises the communication time and training time as
shown in the chart. The communication time is mainly
determined by the communication speed of the clients and
the bandwidth of the server network. And the training
time is mainly determined by ML performance of the local
devices.

Fig. 6 also shows the communication time of a few
clients can be 300 times longer than the time of other
clients. The corresponding clients were slowly aggregated
owing to the communication time despite having already
completed the local training round. The cause of these clients
is assumed to be many clients communicating with a server
simultaneously, resulting in server-side network overhead.
The server-side network overhead is significantly higher in
the communication time before training than after training.
This discrepancy is due to less communication being sent per

4308

unit time to the server after training, as the completion time
varies among FL clients due to differences in their model
training performance.

Based on the communication results, we calculated aver-
age overhead time. The average overhead time, an indicator
of the server’s ability to handle concurrent FL clients,
is determined by averaging the values for which the
communication time surpasses 0.1 seconds as per the chunk-
bench outcome. The average overhead time after three
experimental measurements was 2.13 + 0.20 (s), and the
average number of clients that experienced the overhead was
20.33 £ 0.5. This indicates that out of 50 clients, 20 clients
on average experienced a communication delay of 2 seconds
on average. Here, the communication delay mainly occurs
owing to the server-side network overhead in the experiments,
but it could vary based on the network connection state
of the client. To reduce this server-side network overhead,
FedOps Platform has an option that limits the number of
simultaneous communications per unit of time through client
scheduling [24].

Although we focus on systems heterogeneity in this
section, FedOps Platform provides information to address
data heterogeneity by analyzing the loss of clients. Fig. 8
illustrates the log-scaled loss of clients across communication
rounds, offering FL researchers loss metric for client
evaluation and selection. Client loss information applied
to proximal terms can help addressing data heterogeneity.
By evaluating the loss information, one can dynamically
adjust the strength of proximal terms. This allows the system
to delicately balance between catering to individual client
needs (due to data heterogeneity) and maintaining overall
model coherence. Hence, using loss as a guide, proximal
regularization can be effectively wielded to address inherent

VOLUME 12, 2024

J. Moon et al.: FedOps: A Platform of Federated Learning Operations With Heterogeneity Management

IEEE Access

Communication Time (Before Training)

4.0 4

3.5

3.0 1
2.5
2.0 1
1.54
1.01
0.5 4
0.0 y y
10 20 30

Training Time

40 50

Time (seconds)
o

204

15 1

10

0 10 20 30 40 50

Communication Time (After Training)

0.08 1

0.06

0.04 4

0.02

0.00 -
0 10 20 30 40 50

Total Elapsed Time

201

)

04

Client Number
FIGURE 6. Performance time distribution for each client in the first FL communication round during chunk-bench. This figure is
distinguished into four sub-charts and presented into the communication time before training and after training, training time, and the
total time spent. The client number was arranged in ascending order of the fastest client response time.

fedops-c fedops-clier

FIGURE 7. Server-side network topology which visualizes connections
with clients.

data heterogeneity across clients in a federated setting.
Here, loss implies the potential for further local model
optimization [14].

2) CLIENT SELECTION

We identified an imbalance in local models training owing
to systems heterogeneity. This imbalance implies that a few
clients with slow model training speed can consume the
system resources of most other clients, which is a vicious
cycle that could continue with each communication round.
To address this inefficiency, we performed client selection
using systems heterogeneity. To present an example of client
selection, we propose a metric as a client adaptive threshold
(CAT) that is adaptively determined based on the chunk-bench
result. Clients that exceed the threshold will be excluded from
model training in the subsequent communication rounds. The

VOLUME 12, 2024

equation for CAT is as follows:

if nisodd, median(T,) = T[m]

2
. . 1
if niseven, median(T,) = R (T[%] + T[%—H])

For a given set T, of univariate values representing chunk-
bench execution times Ty, Ty, T3, ..., T, for clients derived
from n clients, the median is defined as shown above.

MAD = median(|T; — median(T,)|)

We used median absolute deviation (MAD) to determine
client drop policy for each section by presenting robust
deviation for the clients with abnormally slow chunk-bench
execution [37]. The MAD obtains the median value again
from the deviation that subtracted the median of T, from the
client execution time.

CAT = median(T;) 4+ k - MAD

CAT can be obtained using the MAD value and adjusting
the MAD coefficient k, which is a hyperparameter to
moderate the threshold. As the k value increases, the CAT
value increases as well, such that the clients with lower values
are excluded. For the policy that is reluctant to drop clients,
k can be adjusted upward to increase the threshold.

IV. EVALUATION

We aim to evaluate FedOps Platform if the platform can
mitigate performance degradation in FL by analyzing systems
heterogeneity of clients. The primary objective of this
experiment is to improve the performance of FL process by
enhancing time-to-accuracy and reducing the communication
cost.

4309

IEEE Access

J. Moon et al.: FedOps: A Platform of Federated Learning Operations With Heterogeneity Management

Loss Map

Client Number

Round 1

Round 2

1 | 1 1 1
Round3 Round4 Round5 Round6 Round?7
Round

10!

Loss (Log scale)

-10°

1 1 [
Round 8 Round 9 Round 10

FIGURE 8. Log-scaled loss map of clients. Darker area indicates that client has higher loss in the result of communication round.

A. METHODOLOGY

1) CLIENT SIMULATION

To analyze systems heterogeneity and create a client accord-
ing to performance distribution, a simulation of FL clients
was conducted in containerized environments. We used
resource allocation of Kubernetes to differentiate the clients
based on their performance through differentiating the
number of central processing unit (CPU) cores of FL clients.
We identified in advance through normal multithreading that
the performance improved as the number of CPU cores
increased [38]. Here, the performance for each CPU core of
each server used in the experiment varies.

In the test process, we encountered an issue with PyTorch
within the container environment, which excessively slowed
down the model training. We determined that this slowdown
was likely due to problems related to CPU scheduling.
This problem was resolved by limiting the number of
CPU cores to double the target CPU cores by calling
torch.set_num_threads (int: cores) function.

To simulate the realistic FL clients, we utilized Smartphone
Processor’s Scores data [39]. This data is extracted from
the ML benchmark results of the mobile benchmarking
tool, Geekbench, which scores the mobile processor ML
performance of 188 smartphones released until 2022. The
result values of each device were averaged, and only the
devices that performed a minimum of five tests were listed.
Fig. 9 illustrates a ten-fold difference in performance between
the highest and lowest scoring mobile CPUs. This shows that
training time on local devices can vary dramatically, implying
that most devices will remain idle in most of the time during
the communication rounds.

To simulate real-world systems heterogeneity with respect
to mobile ML performance data, we transformed original
CPU scores into equivalent CPU-core resource allocations.
We achieved this by generating a probability distribution from
the original data across 100 discrete bins. This histogram

4310

10009 *
s
E‘
800
g L 18
8 600 A S
n %
D L]
o & N
O 400+ ’o: w.*‘.' e .‘ .
°® ° L)
R L 2. TR
. %o o .
200 1 Cle TP N
°'--l--:‘v‘§,-
‘.
0

0 25 50 75 100 125 150 175
Device Number
FIGURE 9. Mobile CPU score data distribution of ML benchmark test.

representation ensured that the performance characteristics
of the CPUs were adequately captured in our simulation.
We then adjusted the scale according to the number of CPU
cores in the cluster and sampled the number of CPU cores
for 50 clients based on the probability distribution of the
histogram. We set the target CPU cores at 1,400 millicores
(equivalent to 1.4 cores) to scale the original data. The scaling
process resulted in an average CPU cores at 1,400 millicores,
with a standard deviation at 821.59 millicores. Upon
conducting five sets of sampling for 50 clients using the
discrete distribution, the average CPU resource of 50 clients
was 1,401 =+ 53.27 millicores, and the standard deviation was
837 £ 99.41 millicores. Note that processing performance of
FL task is not directly proportional to the number of CPU
cores.

2) EXPERIMENTAL SETUP
In experimental setup, client and server runtime were
implemented in the containerized environment to create

VOLUME 12, 2024

J. Moon et al.: FedOps: A Platform of Federated Learning Operations With Heterogeneity Management

IEEE Access

TABLE 2. Hardware specifications for experiments.

Server CcPU RAM Operating Software‘
System Dependencies
Intel Core
19-9900KF 64GB Ubuntu Kubernetes
Server-a @ 3.60GHz DDR4- 20.04 V122
(8 cores, 2666 LTS ’
16 threads)
2x Intel Xeon
Silver 4214R
64GB Ubuntu
Server-f @ 2.40GHz DDRA- 20.04 Kubernetes
(24 cores, 3200 LTS v1.22
48 threads
in total)
Intel Core
19-10980XE 64GB Ubuntu Kubernetes
Server-y @ 3.00GHz DDRA4- 20.04 V122
(18 cores, 2133 LTS '
36 threads)

scalable form which is adaptable to the cloud. The container
deployment was performed as a Job which is a resource
type of Kubernetes. Job automatically performs arrangement
for a certain task and returns either a success or failure
as the execution result of the deployed Pod. Pod, as the
Kubernetes resource type, simulates clients by running the
containers with pre-defined performance limits. We used
resource allocation policy on Pod to identically fix the
requests and limits of the CPU core and set the hard
limit for maintaining performance to reduce variability
in experimental environments. Table 2 shows a cluster
configuration, constituting three servers, with CPU resources
in Kubernetes allocated dynamically.

We used Python version 3.9, PyTorch version 1.13, and
Flower version 1.3 to implement the experiment. Flower is an
open-source FL framework that offers various FL algorithm
baselines [14]. With a real device overhead of less than
100ms per communication round and the ability to scale to
15M clients, Flower has the ideal specifications to implement
FedOps Platform. To manage the connection between FL
participants, on the top of Flower, we added components such
as client manager and server manager, with the functions for
analyzing the client heterogeneity and executing the client
drop policy.

3) DATASET AND MODEL
We used CIFAR-10 [40] dataset was used for the experiments.
CIFAR-10 is a dataset for image classification purposes,
and it has 50,000 train and 10,000 test image data points
that are classified into 10 classes of objects. We also used
MNIST dataset [41], which consists 60,000 train and 10,000
test image data points that are classified into 10 classes of
handwritten digit numbers. To train different local data for
50 clients, we partitioned the data into 50 subsets.

For image classification, we experimented with a basic
convolutional neural network (CNN) model, FedAvg [5] and
FedProx [6] as the aggregation algorithm. For the baseline

VOLUME 12, 2024

CNN model, we set the local mini-batch size to 64, local
epochs to 5, the learning rate to 0.001, and the momentum
to 0.9. We used stochastic gradient descent (SGD) as an
optimizer. And we used a basic logistic regression model
which is shown in FedProx paper to classify MNIST dataset.
We also followed the hyperparameters setting along the
original FedProx paper.

B. RESULTS

1) EVALUATION METRICS

In the discussion in Section III-D, we proposed chunk-
bench, which is systems heterogeneity analysis tool and
CAT as a sample client selection criteria. To verify chunk-
bench and CAT, we measured time-to-accuracy perfor-
mance, model accuracy, and additional communication cost
metrics. We proceeded with three experiments for each
performance simulation, and the average and standard
deviation of experimental results will be listed as evaluation
metrics.

2) EVALUATION RESULTS

Table 3 and Table 4 show the comparison results of baseline
FedAvg [5] and proposed CAT methods. Loss and accuracy
are the metrics of measurement results at 500 communication
rounds where the global model converges. Elapsed time is
the time required to train 500 communication rounds, and
the time-to-accuracy compares the relative time required to
achieve a corresponding accuracy at 500 communication
round.

The experiment showed that the CAT improved model
training time without sacrificing accuracy and loss in k =5
and k = 7. As elapsed time decreased, the rate of clients
dropping was most significant at 87.7% faster than the
baseline FedAvg when k = 3, and 37.8% faster when k =5
in CIFAR-10 dataset. For the time-to-accuracy, 17-41%
time reduction from the baseline. This improvement in the
model training time exceeded the rate of data loss, which
was the rate of dropped clients due to client selection.
Detailed information on dropped clients is summarized in
Table 5.

Table 5 shows the measured communication indices from
the server process in the experiment using CIFAR-10 dataset.
It details the transmitted and received network traffic from
the server to the client up to 500 communication rounds.
The communication cost-to-accuracy refers to the total
communication that the server transmitted and received to
achieve the accuracy of 80%. The dropped client proportion
expresses the rate of clients that were dropped due to CAT as
the FL participation cut-off.

The transmitted traffic from the FedOps Platform to the
server was reduced by 5-20% compared to the baseline
FedAvg. The received traffic was reduced by up to 15%.
Additionally, the communication cost for achieving a certain
accuracy was reduced by 11-30%, which was greater
than the dropped client’s proportion. This result shows
that FedOps Platform can improve the communication

4311

IEEE Access

J. Moon et al.: FedOps: A Platform of Federated Learning Operations With Heterogeneity Management

TABLE 3. Evaluation results on CIFAR-10 datasets.

Dataset CIFAR-10

Metrics Loss Accuracy Elapsed Time (min.) Time-to-Accuracy

FedAvg 3.86 £0.08 .832+.003 153.£14.5 131. £ 11.8 (x1.68)
FedAvg + CAT (k=13) 5.97£.105 .806 £.016 81.5+3.86 77.8 £12.8 (x1.00)
FedAvg + CAT (k=15) 3.55+£0.24 .844 £.010 111.£5.58 83.4+9.64 (x1.07)
FedAvg + CAT (k=17) 3.50£0.10 .842 £.002 141.£23.2 109. £ 18.8 (x1.40)

FedProx 1.35+.025 790 £.009 305.+£.424 387.+£3.97 (x1.84)
FedProx + CAT (k=3) 2.19 +.005 736 £.002 154.£13.6 210. £ 18.2 (x1.00)
FedProx + CAT (k=15) 1.62 £.100 776 £.037 181.£17.4 232.£12.8 (x1.11)
FedProx + CAT (k=17) 1.44 +.035 783 £.027 192.+4.52 245.+13.6 (x1.17)

TABLE 4. Evaluation results on MNIST datasets.

Dataset MNIST

Metrics Loss Accuracy Elapsed Time (min.) Time-to-Accuracy

FedAvg .092 £.015 .658 £.075 306. £5.65 470. £65.8 (x1.94)
FedAvg + CAT (k=3) .096 +.019 .665 £.051 159.+44.2 242.£84.5 (x1.00)
FedAvg + CAT (k=5) .078 £.015 737 £.025 195.+£78.7 266. £113.(x1.10)
FedAvg + CAT (k=17) .106 £.035 616 £.153 259.+£9.11 438.£99.8 (x1.80)

FedProx .049 +.046 .848 £.020 560. + 173. 658.£197.(X2.63)
FedProx + CAT (k=13) .050 £.003 .836 £.013 209.+20.2 250. £ 25.3 (x1.00)
FedProx + CAT (k=15) .049 +.004 .838 £.011 230.£73.0 274.186.3 (x1.10)
FedProx + CAT (k=17) .042 +.040 .872 £.008 296.+36.9 340.+£40.5 (x1.36)

TABLE 5. Measured communication cost and relevant indices of experiments.

Methods

FedAvg

FedAvg + CAT (k=13)

FedAvg + CAT (k=5)

FedAvg + CAT (k=7)

Transmitted Traffic (GB)

Received Traffic (GB)

Communication Cost
to Accuracy (GB)

Dropped Clients Proportion

11.7 £0.01 (x1.00)
5.66£0.55 (x1.00)
14.3 £ 1.38 (x1.00)

N/A

9.37 +0.80 (x0.80)
4.81+0.41 (x0.85)
10.0 £ 1.15 (x0.70)

0.19 +0.05 (x1.00)

10.5 +0.45 (x0.90)
5.37+0.23 (x0.95)
11.7 +1.30 (x0.82)

0.10 +0.04 (x0.53)

11.1+£0.15 (x0.95)
5.69+0.08 (x1.01)
12.7 £0.31 (x0.89)

0.05 £0.01 (x0.26)

cost-to-accuracy through CAT to support communication-
efficient FL.

Fig. 10 and Fig. 11 show the evaluation metrics graph
of each method according to the communication rounds
during the CIFAR-10 data training process. Based on the
communication rounds, the CAT methods resulted in faster
convergence speed. What is notable from this graph is, for
k = 5and k = 7, which dropped relatively fewer clients, both
time-to-accuracy and communication cost-to-accuracy were
reduced without any accuracy degradation in the results.

However, Fig. 11 shows that for k¥ = 3 that dropped the
most clients among experiment methods, loss function did not
converge after sufficient communication rounds. This implies
that CAT and time-to-accuracy are in a trade-off relationship
in system heterogenous setting, which means when the rate of
client drop increases over a certain level, significant accuracy
degradation occurs.

4312

C. DISCUSSION

The experiments presented an example of client selection
improved time-to-accuracy and communication cost with
minimal accuracy loss. FL service will not waste client
device resources, so user experience of the service can
be enhanced. This shows chunk-bench offers insights into
client heterogeneity, and engineers can fully utilize the
customizable client selection feature to implement their own
methods.

However, it should be considered that the setting in the
experiment has the potential risk of creating a biased model
due to connectivity conditions of the user. For example,
relatively more clients might be selected from buildings,
cities, or nations with high network bandwidth.

Note that as we focused on systems heterogeneity, data het-
erogeneity was not covered in the experiment. In actual client
selection scenario, this should be considered. As we focused

VOLUME 12, 2024

J. Moon et al.: FedOps: A Platform of Federated Learning Operations With Heterogeneity Management

IEEE Access

0.92

0.90 A1

—e— Baseline FedAvg

—#— FedAvg + CAT(k=3)
—A&— FedAvg + CAT(k=5)
—4— FedAvg + CAT(k=7)

T

0 200 400 600 800 1000
Communication Rounds

FIGURE 10. Accuracy resulting from performance evaluation and CAT
value adjustment.

12
10
T T - ~A
8 900 920 il
)
0
O 61
—
4 .
—@— Baseline FedAvg
o] - FedAvg + CAT(k=3)
—A— FedAvg + CAT(k=5)
—@- FedAvg + CAT(k=7)
0 T

0 200 400 600 800 1000
Communication Rounds

FIGURE 11. Loss resulting from performance evaluation and CAT value
adjustment.

on showing the functionality of FedOps Platform, we did
not use advanced aggregation strategy and personalization
algorithm. But chunk-bench can be used with other non-IID
data handling methods or client selection policy, therefore,
a greater improvement in performance is expected on FedOps
Platform in the future.

V. CONCLUSION
In this study, we demonstrated the system architecture
and best practices of FedOps and presented the imple-
mentation for FedOps Platform. FedOps Platform supports
various aggregation algorithms, edge devices, and simula-
tion environments. FedOps Platform enables researchers to
enhance their methods and promote engineers to develop
communication-aware FL applications as real-world ser-
vices. We expect FedOps Platform to significantly simplify
construction and management end-to-end FL projects.
Although FedOps Platform supports various FL methods
and runtime environments, it has yet uncovered areas in FL
research. We have not introduced advanced personalization
and optimization techniques to our platform. As future work,

VOLUME 12, 2024

there can be applied various client selection algorithms,
blockchain FL with a totally decentralized network and
integration with decentralized large language models.

Finally, we showed chunk-bench method, facilitating the
analysis of heterogeneous clients through containerized client
simulation. We analyzed the communication cost to demon-
strate the feasibility of reducing the communication cost-
to-accuracy between clients and server. FedOps Platform
offers an optimal solution for the end-to-end development
of FL projects, with improving both computational and
communication efficiencies.

REFERENCES

[1] P. Kairouz et al., “Advances and open problems in federated learning,”
Found. Trends Mach. Learn., vol. 14, nos. 1-2, pp. 1-210, 2019.

[2] A.Yang,Z.Ma, C.Zhang, Y. Han, Z. Hu, W. Zhang, X. Huang, and Y. Wu,
“Review on application progress of federated learning model and security
hazard protection,” Digit. Commun. Netw., vol. 9, no. 1, pp. 146-158,
Feb. 2023.

[3] M. A.P. Chamikara, P. Bertok, I. Khalil, D. Liu, and S. Camtepe, “‘Privacy
preserving distributed machine learning with federated learning,” Comput.
Commun., vol. 171, pp. 112-125, Apr. 2021.

[4] A.Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated
learning,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1-17, 2022.

[S] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” Artif. Intell. Statist., 2017.

[6] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith
“Federated optimization in heterogeneous networks,” Proc. Mach. Learn.
Syst., vol. 2, pp. 429-450, 2018.

[7]1 K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. Mcmahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2017.

[8] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, ‘“‘Federated

learning with non-IID data,” 2018, arXiv:1806.00582.

Y. Jiang, J. Kone¢ny, K. Rush, and S. Kannan, “Improving federated

learning personalization via model agnostic meta learning,” 2019,

arXiv:1909.12488.

[10] J. Hamer, M. Mohri, and A. T. Suresh, “FedBoost: A communication-
efficient algorithm for federated learning,” in Proc. Int. Conf. Mach.
Learn., 2020.

[11] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang,
P. Vepakomma, A. Singh, H. Qiu, X. Zhu, J. Wang, L. Shen, P. Zhao,
Y. Kang, Y. Liu, R. Raskar, Q. Yang, M. Annavaram, and S. Avestimehr,
“FedML: A research library and benchmark for federated machine
learning,” 2020, arXiv:2007.13518.

[12] Y. Liu, T. Fan, T. Chen, Q. Xu, and Q. Yang, “FATE: An industrial grade
platform for collaborative learning with data protection,” J. Mach. Learn.
Res., vol. 22, no. 1, pp. 1-6, 2021.

[13] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Kone¢ny, H. B. McMahan,
V. Smith, and A. Talwalkar, “LEAF: A benchmark for federated settings,”
2018, arXiv:1812.01097.

[14] J. Shin, Y. Li, Y. Liu, and S.-J. Lee, “FedBalancer: Data and pace control
for efficient federated learning on heterogeneous clients,” in Proc. 20th
Annu. Int. Conf. Mobile Syst., Appl. Services, Jun. 2022.

[15] D.J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao,
L. Sani, K. H. Li, T. Parcollet, P. P. B. de Gusmao, and N. D. Lane,
“Flower: A friendly federated learning research framework,” 2020,
arXiv:2007.14390.

[16] L.Li,J. Wang, and C. Xu, “FLSim: An extensible and reusable simulation
framework for federated learning,” in Proc. Int. Conf. Simulation Tools
Techn. Cham, Switzerland: Springer, 2020, pp. 350-369.

[17]1 A. Ingerman and K. Ostrowski. (2019). Introducing TensorFlow Fed-
erated. Accessed: Mar. 26, 2023. [Online]. Available: https://blog.
tensorflow.org/2019/03/introducing-tensorflow-federated.html

[18] M. H. Garcia, A. Manoel, D. M. Diaz, F. Mireshghallah, R. Sim, and
D. Dimitriadis, “FLUTE: A scalable, extensible framework for high-
performance federated learning simulations,” 2022, arXiv:2203.13789.

9

—

4313

IEEE Access

J. Moon et al.: FedOps: A Platform of Federated Learning Operations With Heterogeneity Management

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]
[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

4314

Y. Wen, W. Li, H. Roth, and P. Dogra. Federated Learning Powered
by NVIDIA Clara. Accessed: Aug. 23, 2023. [Online]. Available:
https://developer.nvidia.com/blog/federated-learning-clara/

Google Cloud. (Mar. 24, 2023). MLOps: Continuous Delivery and
Automation Pipelines in Machine Learning. Accessed: Mar. 26, 2023.
[Online]. Available: https://cloud.google.com/architecture/mlops-
continuous-delivery-and-automation-pipelines-in-machine-learning
Microsoft. ~ (Sep. 23, 2022). Machine Learning Operations.
Accessed: Mar. 26, 2023. [Online]. Available: https://learn.microsoft.com/
en-us/azure/cloud-adoption-framework/ready/azure-best-practices/ai-
machine-learning-mlops

Iguazio. Data Science and Machine-Learning Operations (MLOps).
Accessed: Mar. 26, 2023. [Online]. Available: https://www.iguazio.
com/docs/latest-release/ds-and-mlops/

S. Yang, J. Moon, J. Kim, K. Lee, and K. Lee, “FLScalize: Feder-
ated learning lifecycle management platform,” IEEE Access, vol. 11,
pp. 4721247222, 2023.

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov,
C. Kiddon, J. Kone¢ny, S. Mazzocchi, B. McMahan, T. Van Overveldt,
D. Petrou, D. Ramage, and J. Roselander, “Towards federated learning
at scale: System design,” in Proc. Mach. Learn. Syst., vol. 1, 2019,
pp. 374-388.

V. Kulkarni, M. Kulkarni, and A. Pant, “Survey of personalization
techniques for federated learning,” in Proc. 4th World Conf. Smart Trends
Syst., Secur. Sustainability (WorldS), Jul. 2020.

The Apache Software Foundation. Apache Airflow.
Accessed: Aug. 23, 2023. [Online]. Available: https://airflow.apache.org/
Elastic N.V. Elastic Stack: Elasticsearch, Kibana, Beats, and Logstash.
Accessed: Mar. 26, 2023. [Online]. Available: https://www.elastic.co/kr/
elastic-stack/

Canonical Ltd. MicroK8s—Zero-Ops Kubernetes for Developers, Edge
and IoT. Accessed: Mar. 26, 2023. [Online]. Available: https://microk8s.io/
NGINX. NGINX Ingress Controller. Accessed: Mar. 26, 2023. [Online].
Available: https://docs.nginx.com/nginx-ingress-controller/

MetalLB. MetalLB, Bare Metal Load-Balancer for Kubernetes.
Accessed: Mar. 26, 2023. [Online]. Available: https://metallb.universe.tf/
Istio. Istio. Accessed: Mar. 26, 2023. [Online]. Available: https://istio.io/
Helm. Helm. Accessed: Mar. 26, 2023. [Online]. Available:
https://helm.sh/

Canonical Ltd. Juju—The Simplest Way to Deploy and Maintain Appli-
cations in the Cloud. Accessed: Mar. 26, 2023. [Online]. Available:
https://juju.is/

Argo CD. Argo CD—Declarative GitOps CD for Kubernetes.
Accessed: Mar. 26, 2023. [Online]. Available: https://argo-
cd.readthedocs.io/en/stable/

Weights & Biases. Weights & Biases—Developer tools for ML.
Accessed: Mar. 26, 2023. [Online]. Available: https://wandb.ai/site
Weaveworks Inc. Weave Scope: Automatically Detect and Process
Containers and Hosts. Accessed: Mar. 26, 2023. [Online]. Available:
https://www.weave.works/oss/scope/

C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata, “Detecting outliers:
Do not use standard deviation around the mean, use absolute deviation
around the median,” J. Exp. Social Psychol., vol. 49, no. 4, pp. 764-766,
Jul. 2013.

PyTorch. CPU Threading and TorchScript Inference.
Accessed: Mar. 26, 2023. [Online]. Available: https://pytorch.org/docs/
stable/notes/cpu_threading_torchscript_inference.html

A. Zhou. (Mar. 2022). Smartphone Processors Ranking & Scores, V1.0.
Accessed: Mar. 26, 2023. [Online]. Available: https://www.kaggle.com/
datasets/alanjo/smartphone-processors-ranking

[40] A. Krizhevsky et al. The CIFAR-10 Dataset. Accessed: Aug. 23, 2023.
[Online]. Available: https://www.cs.toronto.edu/~kriz/cifar.html

[41] Y. Lecun, C. Cortes, and C. J. Burges, “MNIST handwritten digit
database,” ATT Labs., Tech. Rep., 2010, vol. 2. [Online]. Available:
http://yann.lecun.com/exdb/mnist

JIHWAN MOON is currently pursuing the B.S.
degree in computer engineering with the Depart-
ment of Computer Engineering, College of IT
Convergence, Gachon University, Seongnam-si,
Republic of Korea.

Since 2020, he has been a Researcher with
the Cognitive Computing Laboratory, Gachon
Institute of Artificial Intelligence. His current
research interests include federated learning, rein-
forcement learning, generative model, automation,
multi-modal analysis, and MLOps.

SEMO YANG received the B.S. degree in com-
puter engineering, in 2022. He is currently pursu-
ing the M.S. degree in IT convergence engineering
with the College of IT Convergence, Gachon
University, Seongnam-si, Republic of Korea.

From 2022 to 2023, he was a Researcher with
the Cognitive Computing Laboratory, Gachon
Institute of Artificial Intelligence. His research
interests include artificial intelligence, deep learn-
ing, federated learning, machine learning, and
MLOps.

KANGYOON LEE (Member, IEEE) received the
B.S. degree in electronics engineering and the
M.S. degree in computer science from Yonsei
University, Seoul, South Korea, in 1986 and 1996,
respectively, and the Ph.D. degree in IT policy
management from Soongsil University, Seoul,
in 2010.

From 2008 to 2014, he was the Director of
the IBM Korea Laboratory for the Ubiquitous
Computing and Software Solutions Lab, and he

was promoted to the Leader of the IBM Watson Business Unit, South Korea,
in 2014. Since 2016, he has been a Professor with the Computer Engineering
Department, College of IT Convergence, Gachon University, Seongnam-
si, Republic of Korea. He has been serving as the Director of the Gachon
Institute of Artificial Intelligence, since 2016. His research interests include
cognitive computing, healthcare advising, the IoT platforms, and industry

transformation.

VOLUME 12, 2024

