
Received 17 December 2023, accepted 2 January 2024, date of publication 4 January 2024, date of current version 22 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3349946

Adaptive Sliding Mode Control of an
Electro-Hydraulic Actuator
With a Kalman Extended
State Observer
LIMING LAO AND PENGZHAN CHEN
Institute of Robotics and Intelligent Systems, Taizhou University, Taizhou, Zhejiang 318000, China

Corresponding author: Pengzhan Chen (cyxcpz@163.com)

This work was supported in part by the Scientific Research Project of the Education Department of Zhejiang Province under Grant
Y202045664, in part by the Taizhou Science and Technology Plan Project under Grant 2002gy09, and in part by the Taizhou University
Research Project under Grant 2019PY041.

ABSTRACT Electro-hydraulic actuators (EHAs) are key linear drive components in various industrial
applications. This paper addresses the challenge of achieving precise displacement tracking control for
EHAs with only noisy displacement measurements. We propose a novel control approach, which consists
of a Kalman extended state observer (KESO) with an adaptive sliding mode controller (ASMC). First,
compared to the conventional high-gain design for the extended state observer (ESO), the Kalman filtering
technique is utilized to tune the ESO feedback gain, effectively mitigating observation failures caused
by measurement noise. Second, to ensure stability and minimize tracking errors in sliding mode control,
a switching-gain adaptation is designed based on the desired switching gain via the derivative of the sliding
variable. To validate the effectiveness of the proposed approach, simulation experiments are conducted in
the Amesim simulation software. The results conclusively demonstrate that the proposed KESO-ASMC
achieves significantly improved trajectory tracking performance, even in the presence of measurement noise
and unknown disturbances.

INDEX TERMS Adaptive switching gain, disturbance estimation, electro-hydraulic actuator, Kalman
extended state observer, measurement noise, sliding mode control.

I. INTRODUCTION
The electro-hydraulic actuator (EHA) plays a crucial role
as the primary driving mechanism in various heavy-duty
applications, converting electrical energy into mechanical
motion through the use of hydraulic fluid. These applications
include industrial injection molding machines [1], shield
tunneling machines [2], and aerospace rocket thrusters [3].
One fundamental control application of EHAs is the precise
regulation of linear displacement in mechanical systems.
However, EHAs are nonlinear systems with changing param-
eters and complex dynamics, including pressure fluctuations,
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internal leakage, friction, and external loads dependent on
operating conditions [4]. These characteristics pose chal-
lenges for achieving precise control over EHA displacement.

To address the parameter nonlinearities of EHAs, one
approach is to employ a real-time parameter estimation
method based on parameter projection [5], [6], [7]. Alter-
natively, nominal parameter values can be assigned, treating
parameter variations as disturbances [4], [8], [9], [10].
Nonlinearities in the model can also be considered as
disturbances to the nominal system. To counteract these
disturbances, techniques like robust control [11], [12]
and adaptive control [13] use feedback-based approaches.
Observer-based control methods compensate for disturbances
through disturbance observers [14], [15], [16], [17]. Sliding
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mode control (SMC) is widely used in EHAs due to its
conceptual simplicity and robustness against disturbances.
By incorporating disturbance feedforward compensation,
SMC reduces the switching actions required for stability in
the presence of uncertainties.

Implementing SMC in hydraulic systems presents two
primary challenges. Firstly, SMC requires the measurement
of all system states, which can be challenging in practice.
If the systemmodel satisfies the Davidson-Kimura condition,
static output feedback SMC can be applied [18]; otherwise,
an observer or a dynamic compensator is needed. Secondly,
designing an appropriate switching gain for disturbance
suppression is crucial. Small switching actions can cause
the system to deviate from the sliding surface, especially
under significant uncertainties, leading to degraded system
performance and potential instability. Conversely, large
switching actions can excite high-frequency unmodeled
system dynamics, resulting in chattering.

Various effective disturbance estimation techniques have
been developed alongside SMC to mitigate uncertainties. The
nonlinear disturbance observer (NDO) [17], [19] employs
auxiliary variables to estimate disturbances when state
derivatives are unknown, applied in the control of velocity
and pressure dynamics [20]. The Sliding mode observers
(SMO) achieves precise disturbance estimation through
switching actions, addressing nonlinearity in pump control
system dynamics [7], [21]. Recently, neural network based
approaches have successfully achieved universal approxi-
mation of uncertain dynamics and disturbances [22], [23],
[24], [25], [26]. Although these methods do not require
knowledge of uncertainty bounds, they are complicated to
implement and lack a systematic discussion concerning their
training efficiency and over-fitting issues. The extended
state observer (ESO) [27] is another simple yet effective
method widely used for synchronized system state and
disturbance estimation through nonlinear feedback. The
linear ESO (LESO) [28], [29] replaces nonlinear feedback
with linear high-gain feedback to suppress disturbances.
ESO finds broad applications with sliding mode controllers
in various mechanical and electronic systems, including
power converters [30], [31], robotic manipulators [32], [33],
drones [34], [35], and hydraulic systems [36], [37], [38], [39],
for state observation and disturbance estimation.

However, limited work has thoroughly discussed the
impact of measurement noise on ESO performance. A simple
way to address this issue is by adding a low-pass filter
prior to the ESO, but this method may compromise dynamic
performance [40]. Another approach is to modify the ESO
to make it suitable for a noisy environment. Simulation
results from [41] and [42] indicate that significant noise
is observed in tracking errors when the measured signal
contains Gaussian white noise. Nevertheless, there has been
little discussion regarding the effect of noise on ESO
observations and parameter tuning. It has been suggested
that increasing ESO bandwidth through high-gain feedback

can enhance estimation performance, but measurement noise
constrains the available bandwidth [43], [44]. It’s also
argued that the accuracy of nonlinear ESOs depends on
high gains, which can amplify noise and degrade control
performance. To address this, the fal function in ESO
has been replaced with the tanh function, which exhibits
lower gains when estimation errors are small [39]. Another
approach to mitigate the adverse effects of high gains on
noise amplification is to adopt a cascade structure within
the ESO [31]. Additionally, reduced-order ESO designs have
been proposed to avoid noise amplification associated with
high gains [45]. Departing from conventional strategies of
nonlinear gain adaptation or reduced-order ESOs to address
the impact of measurement noise, this paper introduces a
novel approach: utilizing Kalman filter techniques to design
ESO gains, resulting in the Kalman extended state observer
(KESO).

Adaptive sliding mode control (ASMC) utilizes switching-
gain adaptation to respond appropriately to system states and
disturbances. Conservative adaptive laws [46], [47] dictate
that the derivative of the switching gain is proportional to the
sliding variable or error magnitude, resulting in a continuous
increase of the switching gain until the sliding variable or
error approaches zero. However, the main limitation is that
the switching gain cannot decrease when the disturbance
decreases, potentially causing chattering. Improved gain
adaptation methods share a similar concept: they increase
the gain when the sliding variable is small and decrease
it when the sliding variable or error is large [48], [49],
[50], [51], [52]. These methods differ in their boundaries for
increasing and decreasing the switching gain, as well as the
rates of increase and decrease. For instance, the adaptive law
proposed by Tian et al. [48] swiftly replaces the switching
gain with a predetermined maximum value when the sliding
variable surpasses the boundary and decreases it within the
boundary layer using a tracking differentiator. Li et al. [49]
dynamically increased the switching gain until the sliding
variable reaches a specified boundary and decrease it as the
mean value of the switching action decreases. Tran et al. [50]
adjusted the switching gain by increasing or decreasing it
as the state control variables move away from or approach
the sliding surface. Nevertheless, all these gain adaptation
methods may fail to promptly increase the gain when dealing
with a small sliding variable but a large disturbance because
they all respond to the magnitude of the sliding variable or
error.

This paper presents a conceptually simple and easy-to-
implement KESO-ASMC scheme to address the displace-
ment tracking control problem in practical EHAs with noisy
displacement measurements. The KESO is designed to esti-
mate unmeasurable system states and the lumped disturbance
in the presence ofmeasurement noise. An adaptive switching-
gain sliding mode controller with disturbance feedforward
compensation is responsible for tracking control. The main
contributions of this paper can be summarized as follows:
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1) We employ Kalman filtering technology to adjust the
observer gain for the high-order LESO. Compared to
the conventional high-gain tuning method of LESO,
the proposed KESO effectively balances estimation
accuracy with measurement noise attenuation, achiev-
ing satisfactory estimation performance even in the
presence of significant measurement noise.

2) Inspired by pre-step disturbance estimation in discrete-
time sliding mode, this paper introduces a novel
switching-gain adaptation law based on the desired
switching gain. This law has a clear design concept
and responds quickly to sudden changes in disturbance,
effectively balancing the requirements of robustness
with chattering-free operation of SMC.

The remainder of this paper is organized as follows.
Section II introduces the dynamic model of the electro-
hydraulic actuator and outlines the problem formulation.
Section III conducts the design of the Kalman extended state
observer (KESO) and the adaptive sliding mode controller
(ASMC) based on the desired switching gain. The simulation
verification results are presented in Section IV. Finally,
Section V provides the conclusion of this paper.

II. DYNAMIC MODEL OF THE EHA
In this paper, we introduce a variable speed pump controlled
closed-circuit hydraulic actuator as an example of an EHA.
The structure of the EHA, as depicted in Fig. 1, mainly
consists of an electrical servo motor, a bidirectional fixed-
displacement pump, and a double-rod hydraulic cylinder.
An auxiliary oil source and a flushing valve are employed
to maintain stable pressure in the low-pressure chamber and
dissipate heat. To prevent overpressure, two relief valves
are arranged in opposite directions. The moving part has a
mass mp and is subjected to an external load force FL. The
displacement of the piston rod, which corresponds to the load
displacement, is denoted as xp.

FIGURE 1. Schematic diagram of the electro-hydraulic actuator.

The high and low-pressure chambers of the EHA are
influenced by the external load force, resulting in the load
pressure exerting an opposing force. The pressure in the low-
pressure chamber remains nearly constant, implying that its

pressure dynamics can be disregarded. Pressure dynamics
caused by the pipelines are treated as disturbances, while
external leakage is neglected. The four-quadrant operation of
the EHA is determined by the directions of the load forces and
the rotational orientations of the pumps. It can be derived that
regardless of the operating quadrant, the EHA’s load pressure
dynamics can be characterized as [21]

Vc
βe

dpL
dt

+ CtpL + Ap
dxp
dt

+ fp = Dpω, (1)

where pL is the load pressure, Vc is the high pressure chamber
volume which varies with piston displacement, βe is the
fluid’s effective bulk modulus, Ap is the piston area, Dp is the
displacement of the bidirectional pump,Ct is the total leakage
coefficient, fp is the unmodelled pipe dynamics, and ω is the
rotational speed of the pump. The pump’s speed is identical
to that of the electrical servo motor, which is controlled by
a high-performance vector control strategy integrated into
the servo driver. The speed dynamics of the electrical motor
operate at a significantly higher frequency band than the
electro-hydraulic system. Therefore, the speed control model
of the electrical motor can be regarded as

ω = Kau, (2)

where u is the control input, Ka is the control gain.
The load dynamics follow Newton’s third law and can be

described as

m
d2xp
dt

= AppL − FL − ff, (3)

where fr is the total frictional force, which includes Coulomb
friction and viscous friction. By deriving expressions for pL
and ṗL from (3), and substituting them into (1), we obtain
the standard single-input single-output dynamics of the EHA,
represented as

x(3)p = a1ẋp + a2ẍp + bu+ F, (4)

with parameters a1 = −
A2pβe
mVc

, a2 = −
Ctβe
Vc

, b =
βeApDpKa

mVc
, and

F = −
ḞL+ḟf
m −

βe(CtFL+Ctff+Apfp)
mVc

. Furthermore, defining the

state vector as X = [x1 x2 x3]T =
[
xp ẋp ẍp

]T, the dynamic
system is rewritten as

Ẋ = AX + B
(
u+ b−1F

)
=

0 1 0
0 0 1
0 a1 a2

  x1
x2
x3

 +

 0
0
b

 (
u+ b−1F

)
. (5)

Considering parameter variations, let An and Bn represent
the nominal values of A and B, while ∆A and ∆B represent
the parameter perturbations. Consequently, (5) can be further
rewritten as

Ẋ = (An + 1A)X + (Bn + 1B)
(
u+ b−1F

)
= AnX + Bn (u+ d) . (6)
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FIGURE 2. Block diagram of the proposed ASMC-KESO.

Here, d represents the lumped disturbance that encompasses
unknown external loads, unmodeled dynamics, and parame-
ter uncertainties, satisfying

Bnd = 1AX + 1Bu+ Bb−1F . (7)

As only the displacement of the piston rod is measurable, the
output equation can be denoted as

y = CX = [1 0 0]X . (8)

III. ADAPTIVE SLIDING MODE CONTROL WITH KALMAN
EXTENDED STATE OBSERVER
To achieve precise displacement tracking control for the
EHA, it is essential to estimate both the system state variables
and the lumped disturbance from the noisy displacement
measurement signal. Additionally, the sliding mode switch-
ing gain needs adaptive adjustment to handle variations in
unknown disturbances while maintaining stability and min-
imizing chattering. Fig. 2 illustrates the proposed controller
structure, featuring a sliding mode controller with adaptive
switching gain and a Kalman extended state observer.

A. KALMAN EXTENDED STATE OBSERVER
The unknown lumped disturbance can be incorporated into
the extended system as an additional state variable, followed
by the design of an observer for the observable extended
system [16]. In the case of the EHA, only x1 is directly
measurable using the displacement sensor. However, due
to factors like on-site electromagnetic noise, vibration of
the hydraulic cylinder piston rod, and sensor measurement
accuracy, x1 comprises both the true value and measurement
noise. The Kalman filter can estimate the unknown states in a
dynamic system from noisy measurements using statistical
information about random noise. This study employs the
Kalman filtering technique to adjust the feedback gain
of the extended state observer, facilitating the estimation
of displacement, velocity, acceleration, and the lumped
disturbance from the noisy displacementmeasurement signal.

Assuming that the lumped disturbance in the EHA exhibits
relatively slow variations compared to the controlled system,

the differential of the disturbance can be modeled as zero-
mean random white noise. Treating the disturbance as an
additional state, the extended system is represented as [27]

[
Ẋ
ḋ

]
=

[
A B
0 0

] [
X
d

]
+

[
B
0

]
u+

[
0
1

]
w

y =

[
C 0

] [
X
d

]
+ v

≜

{
˙̄X = ĀX + B̄u+ Fw

y = C̄X̄ + v
, (9)

where X̄ is the extended state vector, Ā, B̄ and C̄ are matrices
appropriate for the extended system. v and w denote zero-
mean white noise with variances R and Q, respectively. The
KESO, which is a suboptimal steady-state Kalman filter,
is designed for the extended system (9) as [53]

˙̂
X̄ (t) = Ā ˆ̄X (t) + B̄u+ K

[
y (t) − C̄ ˆ̄X (t)

]
K = PC̄TR−1

ĀP+ PĀT + FQFT − PC̄TR−1C̄P = 0

, (10)

where ˆ̄X represents the estimation of X̄ and K is the steady-
state Kalman gain. It can be easily verified that the matrix
pair [Ā, F] is completely controllable, and the matrix pair
[Ā, C̄] is completely observable. Under those conditions, the
stability of theKalman filter type ESO is guaranteed [54]. The
Kalman gain calculated by (10) depends on the variances of
the process noisew andmeasurement noise v. Obtaining these
variances in practical systems can be challenging. However,
Theorem 1 demonstrates that this gain can be easily tuned.
Theorem 1: The Kalman gain K in (10) is determined

solely by the ratio of the process noise variance Q to the
measurement noise variance R, irrespective of the absolute
values of Q and R.

Proof: Let K0 be the Kalman gain when the noise
variances are Q0 and R0, satisfying the Riccati equation

ĀP0 + P0ĀT − P0C̄TR−1
0 C̄P0 + FQ0FT = 0. (11)

By multiplying both sides by a scaling factor β, we obtain

Ā (βP0) + (βP0) ĀT + F (βQ0)FT

− (βP0) C̄T (βR0)−1 C̄ (βP0) = 0. (12)

This implies that P = βP0 is the solution to the Riccati
equation when Q = βQ0 and R = βR0. Subsequently, the
new Kalman gain is derived as

K ′
= (βP0) C̄T (βR0)−1

= P0C̄TR−1
0 = K0. (13)

Thus, we can conclude that the Kalman gain remains constant
when the ratio of noise variances Q to R remains the same. □
Remark 1: Theorem 1 demonstrates that the steady-

state Kalman filter gain is solely determined by the ratio of
variances between the process noise w and the measurement
noise v, without consideration of their absolute values.
As a result, we can adjust the Kalman feedback gain
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by maintaining constant measurement noise variance and
iteratively modifying the process noise variance. This trial-
and-error method allows us to achieve the desired observer
gain.

B. ADAPTIVE SWITCHING-GAIN SLIDING MODE CONTROL
1) SLIDING MODE CONTROL WITH OBSERVATIONS
The control objective is to ensure that the displacement of
the piston rod x1 of the EHA accurately follows the desired
reference displacement xd. The tracking error is denoted as
e = x1 − xd. Furthermore, the reference vector is denoted as
Xd = [xd ẋd ẍd], and the error vector is E = X − Xd =

[e1 ė1 ë1]. The linear sliding variable is defined as

s = ScE . (14)

Here, Sc =
[
λ2 2λ 1

]
, and the positive parameter λ reg-

ulates the speed of error convergence on the sliding surface.
Considering state estimation, a sliding mode controller with
switching action and disturbance compensation is designed
as

u = (ScB)−1
[
ScẊd − ScAX̂ − kssgn

(
ŝ
)]

− d̂, (15)

where sgn (•) represents the signum function. The switching-
gain must satisfy the robust condition

ks >

∣∣∣ScAX̃ + ScBd̃
∣∣∣ , (16)

where X̃ = X̂ − X and d̃ = d̂ − d represent the state and
disturbance estimation errors, respectively.
Remark 2: Due to the presence of state estimation error,

sgn
(
ŝ
)

= sgn
(
s+ ScX̃

)
. Therefore, sgn

(
ŝ
)

= sgn (s)

holds true only when |s| = |ScE| >

∣∣∣ScX̃ ∣∣∣. Thus, sliding
mode control based on state observers inherently results in
a boundary layer with a thickness determined by the upper
bound of

∣∣∣ScX̃ ∣∣∣.
2) ADAPTIVE SWITCHING-GAIN
Equation (16) necessitates that the value of ks surpasses
the upper bound of uncertainty. Opting for an excessively
large ks value leads to a conservative fixed gain and induces
chattering. Conversely, selecting an overly small ks value
results in unstable sliding mode control. To introduce an
adaptive law for the switching gain, it is imperative for
the switching gain to automatically increase as uncertainty
grows, as well as decrease.

By substituting the sliding mode control law (15) into the
sliding variable (14), we can derive

ṡ = −ScAX̃ − ScBd̃ − kssgn
(
ŝ
)
. (17)

Thus, the uncertainty can be expressed as∣∣∣ScAX̃ + ScBd̃
∣∣∣ =

∣∣ṡ+ kssgn
(
ŝ
)∣∣ . (18)

The desired switching gain ks0 is defined as

ks0 =

∣∣∣˙̂s+ kssgn
(
ŝ
)∣∣∣ + kb >

∣∣∣ScAX̃ + ScBd̃
∣∣∣ , (19)

where the derivative of the sliding variable ˙̂s is determined
using methods such as tracking differentiators [55]. kb
represents the base switching gain employed to suppress
uncertainties arising from sliding variable estimation and
derivative errors.
Remark 3: The desired switching gain provides an esti-

mation for the majority of varying uncertainties within the
system. Compared with the conventional design of switching
gain, this method only needs a smaller base gain kb to
suppress the remaining uncertainties, and can adapt according
to the varying unknown disturbance. This concept of the
desired switching gain is inspired by the common practice
in discrete-time sliding mode control, which employs the
previously computed disturbance value as an estimate for
the current time step’s disturbance [56]. This means that
the uncertainty under the current switching control directly
influences the changing rate of the sliding variable over time,
and the inversely calculated value provides a good estimation
of the uncertainty.
The explicit solution for the desired switching gain (19)

cannot be obtained under the current slidingmode control due
to the presence of the algebraic loop. Hence, the adaptive law
for the switching gain is defined as

k̇s =


−λks + λac (ks0 − ks) , ks > ks0
λks + λac

(
ks0 − ks +

∣∣ŝ∣∣) , ks < ks0
0, ks = ks0

, (20)

where λks and λac are positive parameters that satisfy λks >∣∣∣k̇s0 + λac

∣∣∣ScX̃ ∣∣∣∣∣∣.
3) STABILITY ANALYSIS
Theorem 2: According to the proposed sliding mode

control law (15) and adaptive switching gain (20), the system
is capable of converging towards the vicinity of the sliding
surface s ≤ sup

∣∣∣ScX̃ ∣∣∣, and remaining within the sliding band.
Proof: Define the Lyapunov function as

V =
1
2
s2 +

1
2λac

(ks − ks0)2 . (21)

Substituting the expression for ṡ from (17), the derivative of
V is obtained as

V̇ = sṡ+
1

λac
(ks − ks0)

(
k̇s − k̇s0

)
= −s

(
ScAX̃ + ScBd̃ + kssgn

(
ŝ
))

+
1

λac
(ks − ks0)

(
k̇s − k̇s0

)
. (22)

We consider the condition that the system states are outside
the sliding band, i.e., s > sup

∣∣∣ScX̃ ∣∣∣. As noted in Remark 2,

we now have sgn
(
ŝ
)

= sgn
(
s+ ScX̃

)
= sgn (s). Then V̇ is

rewritten as

V̇ = −s
(
ScAX̃ + ScBd̃

)
− ks|s| +

1
λac

(ks − ks0)
(
k̇s − k̇s0

)
.

(23)
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The Lyapunov function is then discussed in the following two
cases.
Case 1: if ks > ks0, according to the definition of ks0

from (19), we have

V̇1 = −

(
ScAX̃ + ScBd̃

)
s− ks |s|

< −

(
ScAX̃ + ScBd̃

)
s− ks0 |s|

<

∣∣∣ScAX̃ + ScBd̃
∣∣∣ |s| − ks0 |s|

< 0.

Furthermore, based on the definition of adaptive law (20) and
the parameter tuning of λks, we have

V̇2 =
1

λac
(ks − ks0)

(
k̇s − k̇s0

)
=

1
λac

(ks − ks0)
(
−λks − λac (ks − ks0) − k̇s0

)
= − (ks − ks0)2 −

1
λac

(ks − ks0) (λks − k̇s0)

< 0.

Hence, in this case, V̇ = V̇1 + V̇2 < 0.
Case 2: if ks < ks0, by substituting definition of the

adaptive law from (20), V̇ is further transformed into

V̇ = −

(
ScAX̃ + ScBd̃

)
s− ks0 |s| + (ks0 − ks) |s|

+ (ks − ks0)
(

λks − k̇s0
λac

+ ks0 − ks +
∣∣ŝ∣∣)

= −

(
ScAX̃ + ScBd̃

)
s− ks0 |s|

+ (ks − ks0)
(

λks − k̇s0
λac

−

∣∣∣ScX̃ ∣∣∣) − (ks0 − ks)2 .

Due to the parameter λks >

∣∣∣k̇s0 + λac

∣∣∣ScX̃ ∣∣∣∣∣∣, it follows
that

(
λks−k̇s0

λac
−

∣∣∣ScX̃ ∣∣∣) > 0. Therefore, in this case, we also

have V̇ < 0.
Consequently, we can conclude that if the system states are

outside the sliding band, the system will converge within the
sliding boundaries that determined by the observation error
under the proposed adaptive sliding mode control law. □

IV. SIMULATION RESULTS
A. SIMULATION SETUP
This study employs the Amesim simulation platform to
model and simulate the electro-hydraulic actuator for lift-
ing loads. Amesim provides extensive libraries covering
mechanical, power transmission, hydraulic components, and
signal processing. These libraries support the development
of a comprehensive simulation model for a practical EHA
system, comprising the EHA itself, a pulley-wire rope
lifting mechanism, a sliding mode controller, and observers,
as depicted in Fig. 3. This model also accounts for additional
components not explicitly addressed in the controller design,
such as flushing valves, relief valves, pipelines, and the

FIGURE 3. Simulation model of a practical EHA system in Amesim.

TABLE 1. Simulation parameters.

electric motor. The parameters for the simulated system are
listed in Table 1.

During the simulation, the EHA operates in a reciprocating
motion to track a displacement trajectory with a trapezoidal
velocity profile. The maximum stroke of the EHA is set to
1m, and the period of the motion cycle is 5s.

B. COMPARISON OF OBSERVERS
We compare the performance of LESO and KESO under two
scenarios: noise-free measurements and measurements with
noise. Both LESO and KESO receive the same displacement
signal and control input to generate state observations and
estimate the lumped disturbance. In this simulation, the
sliding mode controller assumes knowledge of system states,
using observers solely for state observation rather than
closed-loop control.

1) MEASUREMENTS WITHOUT NOISE
The lumped disturbance’s variance is calculated as Q =

0.17 based on the disturbance estimation results in Fig. 6.
We assume zero variance for measurement noise in this
case and assign a very small value of R=1e-9 for gain
computation. The gain for KESO is computed as K1 =

[38.356 735.60 325.10 13115]T using (10). In the case of
LESO [28], the gain is designed by setting the equivalent
bandwidth parameter ωo to 100, which exceeds the dynamics
of the electro-hydraulic system. Consequently, the LESOgain
is L =

[
4ωo 6ω2

o 4ω3
o ω4

o
]T
.
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FIGURE 4. State observation errors and disturbance estimations without measurement noise: (a) Displacement observation errors, (b) Velocity
observation errors, (c) Acceleration observation errors, (d) Estimated disturbances.

The state observation errors and disturbance estimations of
the two observers in the condition of noise-free displacement
measurements are presented in Fig. 4, while the mean and
standard deviation of the absolute observation errors for the
three states are listed in Table 2. It is evident that both
KESO and LESO achieve satisfactory state observations in
the absence of measurement noise, with the mean absolute
error of x1 less than 0.07mm. However, three key differences
can be identified: (1) LESO, with its high-gain feedback,
effectively suppresses unknown system disturbances, result-
ing in minimal displacement observation errors, whereas the
low-gain KESO exhibits a maximum absolute displacement
observation error of 0.36mm. (2) Since only the displacement
signal is available as the output, the advantage of high-
gain feedback in LESO gradually diminishes in terms of
velocity and acceleration observation accuracy, resulting in
similar magnitudes of velocity and acceleration observation
errors for both observers. (3) The disturbance estimation
curves of both observers largely overlap, but due to KESO’s
lower gain, its disturbance estimations display a slight time
delay of 0.05s compared to LESO. Additionally, significant
velocity and acceleration observation errors occur for both
observers during the high-to-low pressure transition in fluid
chambers of the EHA. This transition introduces model
discontinuity and pressure impact, preventing the observers
from accurately tracking abrupt changes in velocity and
acceleration, resulting in notable errors.

2) MEASUREMENTS WITH NOISE
In this scenario, noise is introduced to the measurement
signal. The noise includes white noise with a variance of
1e-7, as well as small harmonic signals 1 × 10−4 sin (4π t)
and 1 × 10−5 sin (40π t), as depicted in Fig. 5. The white
noise arises from electromagnetic interference during the
transmission of the measurement signal, and its variance
is estimated based on actual usage patterns. The small
harmonic noise is tomimic the low-frequency harmonic noise
related to mechanical vibrations of the commonly used rope-
type displacement sensors for long-stroke cylinders. The
estimated variance of the process noise remains at 0.17. As a
result, the gain of KESO in this condition is calculated as
K2 = [11.977 71.726 − 3.0109 1311.5]T.
Fig. 6 displays LESO’s observation results in the presence

of measurement noise, where the high-gain LESO amplifies
this noise, resulting in significantly noisy observations. The
maximum absolute displacement error under the influence
of noise is 0.5 mm, which may be considered acceptable.
However, it is evident that the velocity and acceleration
observations are significantly affected by severe noise con-
tamination. Hence, the presented curves are the observations
rather than errors. The estimated lumped disturbance is also
heavily contaminated by noise. In this noisy measurement
scenario, LESO loses its effectiveness. Consequently, we can
conclude that while LESO exhibits satisfactory observation
performance in the ideal noise-free conditions (Fig. 4), its
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FIGURE 5. Measurement noise in the displacement output signal.

practical application in real systems with measurement noise
may be constrained.

We also conduct a simulation experiment to assess the
impact of adding a low-pass filter (LPF) before the LESO.
A second-order LPF, featuring a fixed damping ratio of
0.707, is applied at the input of LESO. The cutoff frequency
is determined based on the noise signal, with values set
at f1 = 10Hz and f2 = 25Hz. Fig. 7 illustrates the
results of this ‘‘LPF + LESO’’ approach. In comparison to
scenarios without the LPF, LESO’s observation performance
is improved. However, an analysis of velocity, acceleration,
and disturbance observations indicates that the LPF at
both frequencies inadequately filters white noise in the
measurement signal, resulting in significant spikes in the
observed results. Moreover, opting for a lower LPF cutoff
frequency f1 yields a relatively higher noise reduction in the
observation results compared to the higher cutoff frequency
f2 configuration. Nevertheless, the lower cutoff frequency f1
introduces a larger phase lag, leading to greater displacement
observation errors. In summary, the ‘‘LPF +LESO’’ approach
fails to effectively suppress white noise in the measurement
signal and introduces a significant phase lag, impacting the
dynamic performance, as discussed in [40].
We further analysis the KESO under different feedback

gains, providing an empirical guidance for tuning the
parameters of KESO. Fig. 7 illustrates the observed results
of the KESO under two gain conditions. K1 and K2 are
computed above in the text, where K1 represents a large
gain associated with a low measurement-to-process noise
variance ratio, and K2 represents a small gain associated
with a high measurement-to-process noise variance ratio.
It can be noted that: (1) Employing a larger gain, K1, results
in a smaller observation errors. The maximum absolute
displacement observation error is 0.4 mm at K1, which is
approximately one-third of the error at gain K2. This is due
to the non-ideal white noise characteristics of the process
noise, resulting in more significant suppression of process
disturbance with a larger gain. (2) The error curve at K1, with
a larger gain, showsmore spikes compared to the curve at gain
K2, indicating better suppression of random measurement
white noise at gain K2. This aligns with the Kalman gain

calculation process, where large measurement noise leads to
a smaller contribution of measured values to the estimated
value compared to observed values. (3) The disturbance
estimation at gainK2 display smoother changes but with some
phase lag.

Hence, while a small Kalman gain K2 theoretically offers
better accuracy under white noise conditions, opting for
a larger Kalman gain proves more beneficial for effec-
tively reducing non-white noise disturbances, improving
state observation, and enhancing disturbance estimation.
In practice, this feedback gain could be adjust according to
the prior known statistic characteristics of the noise, and fine-
tuning by trial-and-error. Table 2 lists the mean and standard
deviation of state observation errors for the three observers,
equally demonstrating that KESO with gain K1 achieved the
best observation performance.

C. EFFECTIVENESS OF THE ADAPTIVE SWITCHING-GAIN
In this subsection, we conducted a comparative analysis
of the control performance of the sliding mode control
law (15) using three sets of switching gains: ks = 200,
ks = 500, and ks automatically adjusted based on the
adaptive law (20). It is assumed that the system state is
known, measurement noise is neglected, and the observer is
solely utilized for disturbance estimation. When employing
the adaptive switching gain (20), the kb within the desired
switching-gain ks0 (19) is set to 200, while λks and λac are
chosen as 100 and 30, respectively.

Fig. 8 illustrates the tracking errors of the EHA over
two cycles with different switching-gain settings. The high-
pressure and low-pressure chambers of the EHA undergo a
switch at t = 1.1s and 4.1s, resulting in a peak tracking
error of 0.89 mm during this disturbance process when
ks = 200. These observations indicate that the switching
gain ks is not sufficiently large to suppress the disturbance
effectively during these instances. The system’s tracking error
consistently decreases throughout the entire duration when
ks = 500, with a notable reduction during pressure switching,
resulting in a maximum tracking error decrease to 0.12 mm.
By employing adaptive switching gain, the tracking error
remains nearly identical to ks = 500, while further reducing
the maximum tracking error to 0.04 mm during pressure
switching.

Fig. 9 depicts the switching gain employed during its
adaptation, which adjusts in response to disturbance changes
and varies above the base switching gain kb. At t =

1.1s, the adaptive switching gain reaches its peak value of
749 and then decreases rapidly. This suggests that using a
fixed switching gain of 500 is insufficient at this specific
moment, leading to reduced tracking errors when using
adaptive gain, as shown in Fig. 8. Hence, this demonstrates
the capability of the proposed adaptation law to detect
changes in the sliding variable induced by disturbances and
automatically adjust the switching gain to match the desired
value.
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FIGURE 6. Observation results of LESO in the presence of measurement noise: (a) Displacement observation errors, (b) Observed velocity values,
(c) Observed acceleration values, (d) Estimated disturbances.

TABLE 2. Comparison of observation errors between KESO and LESO.

D. POSITION TRACKING WITH KESO FOR STATE
OBSERVATION
1) COMPARISON WITH KNOWN STATE CONDITION
Now we investigated the EHA tracking control problem
with noisy displacement measurements by combining ASMC
with KESO. In Fig. 10, two curves depict the displacement
observation error x̃1 = x̂1 − x1 and the displacement tracking
error e1 = x1 − xd, showing approximate symmetry around
the x-axis. This behavior is due to the sliding mode controller,
which ensures that x̂1 approximates xd after processing the
state observation, as opposed to x1 approaching xd in a
known state condition. Therefore, the tracking error e1 ≈

x1 − x̂1 = −x̃1 can be obtained, as shown by the two
curves in Fig. 10. The maximum absolute value of e1 is
1.03 mm, slightly exceeding the 0.77 mm amplitude of the x̃1,
and significantly greater than the 0.04 mm amplitude in the
known state condition. This result suggests that introducing a
state observer will primarily include state observation error

in the tracking error, further compounded by the control-
induced tracking error, resulting in a slightly higher final
tracking error compared to the observation error. In contrast,
in the known state condition, the tracking error is minimized.

The estimated and true values of the sliding variable are
presented in Fig. 11. While the estimated value ŝ remains
close to zero, the true value s fluctuates around the x-axis.
This demonstrates that using sliding mode control with a
state observer confines the observed state to the sliding
surface instead of the true state. Furthermore, state-observed
sliding mode control naturally introduces a boundary layer
whose thickness correlates with the state observation error,
as explained in Remark 2.

Fig. 12 illustrates the adaptive switching gain, which varies
with system disturbances. In the presence of significant
tracking errors caused by disturbances, the switching gain
rapidly increases, keeping the tracking error only slightly
larger than the state observation error. Compared to the
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FIGURE 7. Observation results of the ‘‘LPF + LESO’’ method (with cutoff frequencies f1 and f2) and the KESO (with gains K1 and K2) in the
presence of measurement noise: (a) Displacement observation errors, (b) Velocity observation errors, (c) Acceleration observation errors,
(d) Estimated disturbances.

FIGURE 8. Tracking errors of the EHA under different switching-gain
conditions without measurement noise.

maximum adaptive switching gain of 749 in the known state
condition, the maximum adaptive switching gain under state
observation conditions is reduced significantly to 404. This
reduction is credited to KESO’s filtering effect, which lowers
the changing rate in the sliding variable and the switching
action, leading to a decreased calculation of the desired
switching gain.

Hence, during EHA displacement tracking with KESO-
ASMC, the observer configuration significantly influences
tracking performance, and the displacement tracking error
is mainly determined by the displacement observation error.
When employing larger Kalman gains, KESO effectively
suppresses non-white random disturbances, thereby reducing
observation errors. However, this may weaken filtering

FIGURE 9. Switching-gain adaptation without measurement noise.

effect on white noise in the measurement, leading to
signal processing failure. Conversely, smaller Kalman gains
provide good white noise filtering capabilities but poorly
suppress random disturbances, resulting in larger observation
errors. Therefore, fine-tuning the Kalman gains of KESO is
necessary through an iterative approach to strike a balance
between observation errors and observation noise suppres-
sion, ultimately achieving optimal displacement tracking
performance.

2) COMPARISON WITH THE PID CONTROLLER
We assess the control performance of KESO-ASMC against
the widely used PID controller, which dominates industrial
applications and serves as a practical baseline for control
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FIGURE 10. Displacement tracking error e1 and observation error x̃1 in
KESO-ASMC.

FIGURE 11. Estimated and true values of the sliding variable.

FIGURE 12. Adaptive switching gain in the observed state condition.

TABLE 3. Comparison of tracking errors among three controllers.

performance. In this subsection, we focus on the first two
simulation cycles, which differs from prior comparisons that
concerning the last two cycles of the simulation. The PID
controller is initially configured using the Ziegler-Nichols
closed-loop tuning method to find the initial parameters, and
then its parameter is further tuned by trial-and-error through

FIGURE 13. Displacement tracking errors from simulation start for three
controllers.

FIGURE 14. Control actions from simulation start for three controllers.

batch simulations. Finally, the PID controller attains nearly
optimal parameters: kp = 62, ki = 3900, kd = 0.61.
Fig. 13 depicts the performance of three controllers: the

PID controller, the proposed KESO-ASMC, and KESO-
SMC (sliding mode control with a constant gain of 500) in
tracking the displacement of the EHA. Tracking errors for
these controllers are illustrated across two motion cycles,
commencing from the simulation’s initiation. Because of
notable disparities in system state values between the initial
simulation phase and normal runtime, it’s like introducing
an initial disturbance in the early simulation stage, leading
to significant tracking errors for all three controllers during
this phase. In comparison to the sliding mode controller, the
PID controller exhibits more pronounced error oscillations in
terms of both magnitude and duration. Conversely, KESO-
ASMC adjust its switching to the maximum permitted value
(set to 8000 in the simulation) in face of the large disturbance
at the beginning of the simulation, and rapidly converges
to a stable tracking error through a dynamic switching gain
approach. Additionally, control performance is evaluated
using metrics such as Maximum Absolute Error (MAAE),
Mean Absolute Error (MAE), and Integral Absolute Error
(IAE). A summary of these performance indices is presented
in Table 3. It is evident that KESO-ASMC outperforms the
other two controllers across all three metrics, showcasing its
capability to effectively mitigate disturbances, even in the
presence of measurement noise, and ensure high-precision
tracking control.
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Another drawback of the PID controller, in comparison
to KESO-ASMC, is the relatively high noise in the control
action. Adaptive sliding mode control with KESO effectively
suppresses white noise in the measurement signal, while the
high-gain feedback in PID control amplifies it, as shown in
Fig. 14. Therefore, the KESO-ASMC method proposed in
this paper is more practical than the traditional PID controller
in noisy measurement conditions.

V. CONCLUSION
This paper presents an adaptive sliding mode control scheme
that integrates the Kalman extended state observer for track-
ing control of electro-hydraulic actuators in the presence of
noisy displacement measurements. By utilizing the Kalman
filtering technique to tune the observer gain of the LESO,
simultaneous state observation and disturbance estimation
are effectively achieved in the presence of measurement
noise. To ensure control performance and reduce chattering,
the proposed adaptive switching gain method, which is
based on its desired value, tracks disturbance variations
and dynamically adjusts the gain to keep it slightly larger
than the required value. Simulation results demonstrate
that the proposed control scheme is capable of real-world
control of EHAs with measurement noise and unknown
disturbances. The proposed method is conceptually simple
and straightforward to implement, yet it still requires some
prior knowledge and parameter tuning. In future work,
methods such as neural adaptive techniques will be explored
further to address these constraints.
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