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ABSTRACT This paper revisits small private key attacks on common prime RSA, with a focus on critically
analyzing the most recent Mumtaz-Luo’s attack and rectifying its flaws. Through a detailed examination of
relevant parameters while solving a specific trivariate integer polynomial equation, we present a refined and
enhanced small private key attack. Extensive numerical computer experiments validate the proposedmethod,
confirming its accuracy and efficiency. Additionally, our simulated attacks successfully break common
prime RSA instances that employ small private keys, enabling the rapid factorization of a given modulus.
Our work not only corrects significant shortcomings in previous cryptanalysis but also offers a synthesized
attack illustration of small private key attacks on common prime RSA. Moreover, the findings emphasize
the importance of robust parameter selection in cryptographic implementations.

INDEX TERMS Common prime RSA, cryptanalysis, lattice, small private key attack, trivariate integer
polynomial.

I. INTRODUCTION
Common prime RSA, i.e., an enhanced RSA [1] variant, was
first mentioned byWiener [2], and later refined and named by
Hinek [3]. This RSA variant involves two balanced primes p
and q with a special structure that provides resistance against
previous attacks. Hinek defines p = 2ga+1 and q = 2gb+1,
where a and b are coprime positive integers, and g is a prime.
Besides, h = 2gab+a+b is ensured to be a prime, and hence
(pq− 1)/2 equaling to gh is a semiprime.

Its public/private exponents e, d are defined in the key
equation

ed ≡ 1 (mod lcm(p− 1, q− 1)). (1)

As lcm(p− 1, q− 1) = lcm(2ga, 2gb) = 2gab, we have

ed ≡ 1 (mod 2gab), (2)

which leads to ed = 2gabk + 1 for an unknown integer k
relatively prime to 2g.We denote the greatest common divisor
as g ≃ N γ , and its private exponent as d ≃ N δ . We have
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0 < γ < 1/2 for balanced primes, and hence e is
approximately 2gab, implying e ≃ N 1−γ .

Cryptanalysis of common prime RSA has been extensively
conducted by various previous works [3], [4], [5], [6],
[7], focusing mainly on polynomial-time small private key
attacks. We briefly summarize the results of attack bounds on
δ as follows.

• Wiener’s Attack. Wiener [2] used a continued fraction
attack to prove that given a public key (N , e) with δ <

1/4 − γ /2, one can factorize the common prime RSA
modulus N in polynomial time.

• Hinek’s Attack. Hinek [3] conducted a systematical
study on common prime RSA with two lattice-based
attacks. To be concrete, N can be factorized in
polynomial time when δ < γ 2 or δ < 2γ /5.

• Jochemsz-May’s Attack. Jochemsz and May [4]
reevaluated the equation introduce by Hinek [3] and
solved it using different unknown variables. The bound
on δ has been further improved to

δ <
1
4

(
4 + 4γ −

√
13 + 20γ + 4γ 2

)
. (3)
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• Sarkar-Maitra’s Attack. Sarkar andMaitra [5] showed
two improved lattice-based attacks. One is applicable for
γ ≤ 0.051 under a complicated condition, and another
is applicable for 0.051 < γ ≤ 0.2087with the following
bound:

δ <
1
4

−
γ

2
+

γ 2

2
. (4)

• Lu et al.’s Attack. Lu et al. [6] further analyzed the
security of common prime RSA by solving simultaneous
modular equations and obtained an improvement for
γ ≥ 0.3872. The bound on δ has been further
improved to

δ < 4γ 3, γ > 1/4. (5)

• Mumtaz-Luo’s Attack. Mumtaz and Luo [7] applied
to solve multivariate polynomial equations using a
generalized lattice-based method for the small private
key attack on common prime RSA. They proposed an
attack that works when

δ < 2 − γ −
1
4

√
4γ 2 − 28γ + 37. (6)

It is worth noting that Mumtaz-Luo’s attack utilized
incorrect or incomplete parameters, rendering their findings
inapplicable. Our examination reveals the presence of
incorrect parameters and incomplete conditions, prompting
us to make the necessary corrections to their approach.
Consequently, we present a refined security assessment of
common prime RSA based on small private key attacks,
offering a detailed illustration of its insecure and secure
boundaries.

In this work, we adopt the lattice-based integer polynomial
solving strategy [8], a technique commonly employed in
previous cryptanalysis. We carefully check the relevant
parameters associated with the specific solving condition in
Mumtaz-Luo’s attack and identify instances of inappropriate
usage and missing explanations. Subsequently, we propose
corrective measures, leading to the refinement of our small
private key attack through a discussion of an optimizing
parameter. Our refined attack is effective for the following
bound on δ:

δ < γ + 1 −

√
4γ 2 + 20γ + 13

4
, 0 < γ ≤

3
10

,

δ <
4γ + 1
11

,
3
10

< γ <
1
2
.

(7)

Taking into account previous small private key attacks as
well as our refined one, we present an illustrative security
assessment of common prime RSA in Figure 1.

The rest of this paper is structured as follows. In Section II,
we provide an introduction to lattice-based solving method,
along with a solving condition for multivariate polynomial
equations. We review Mumtaz-Luo’s attack to point out
several existing flaws and present our corrections with a
refined small private key attack on common prime RSA
in Section III and Section IV. We validate our proposed

corrected attack through intensive numerical experiments in
Section V. Finally, we conclude the paper in Section VI.

II. PRELIMINARIES
The fundamental concepts include the lattice reduction
algorithm, notably the LLL algorithm by Lenstra et al. [9],
and Coppersmith’s lattice-based method [8], which was later
refined as Howgrave-Graham’s lemma [10]. Additionally,
a solving condition essential for finding the root of integer
polynomials is introduced. For a more comprehensive
understanding, interested readers can refer to [11] and [12].

Let us begin by defining lattice as a discrete additive
subgroup of Rn.
Definition 1: A lattice L consists of all integer linear

combinations of ω many linearly independent vectors
b⃗1, . . . , b⃗ω ∈ Rn. In other words, it can be expressed as

L =

{
ω∑
i=1

zib⃗i : zi ∈ Z

}
. (8)

The lattice determinant, denoted as det(L), is calculated as√
det(BBT), where each b⃗i is considered as a row vector of the

basis matrix B. The integers n and ω are called the dimension
and rank of the lattice L, respectively. When dealing with
a full-rank lattice with ω = n, the determinant becomes
det(L) = |det(B)|.

The LLL algorithm [9] is a widely used mathematical tool
for efficiently finding approximately short lattice vectors.
As proven in [11], the LLL algorithm yields a reduced basis
(v⃗1, v⃗2, . . . , v⃗ω) with the following property.
Lemma 1: The LLL algorithm outputs a reduced basis

(v⃗1, v⃗2, . . . , v⃗ω) of a given ω-dimensional lattice L satisfying

∥v⃗1∥, . . . , ∥v⃗i∥ ≤ 2
ω(ω−1)
4(ω+1−i) det(L)

1
ω+1−i , 1 ≤ i ≤ ω. (9)

Its time complexity is polynomial in ω and the logarithmic
maximal input vector.

An essential lemma introduced by Howgrave-Graham [10]
provides a principle for determining whether the root
of a modular polynomial equation also corresponds to a
root over the integers. This lemma concerns an integer
polynomial g(x1, . . . , xn) =

∑
ai1,...,inx

i1
1 · · · x inn and its norm

∥g(x1, . . . , xn)∥ :=
√∑

|ai1,...,in |2.
Lemma 2: Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an

integer polynomial, consisting of at most ω monomials. Let
R,X1, . . . ,Xn be known positive integers. If the two following
conditions are satisfied:

• g(x⋆
1, . . . , x

⋆
n) ≡ 0 (mod R), where we assume |x⋆

1 | ≤

X1, . . . , |x⋆
n | ≤ Xn,

• ∥g(x1X1, . . . , xnXn)∥ < R/
√

ω.

Then g(x⋆
1, . . . , x

⋆
n) = 0 holds over the integers.

Combining the LLL algorithm’s outputs with
Howgrave-Graham’s lemma, we can efficiently solve
modular/integer polynomial equations. Suppose that we have
calculated the first ℓmany reduced vectors, the key to success

5204 VOLUME 12, 2024



M. Zheng: Revisiting Small Private Key Attacks on Common Prime RSA

FIGURE 1. The shadows delineate the small private key attack region on common prime RSA. These attack curves function
as critical boundaries differentiating between secure and insecure common prime RSA settings.

lies in satisfying the condition

2
ω(ω−1)

4(ω+1−ℓ) det(L)
1

ω+1−ℓ < R/
√

ω. (10)

It reduces to

det(L) < Rω+1−ℓ2−
ω(ω−1)

4 ω−
ω+1−ℓ

2 . (11)

We always have ℓ < ω ≪ R and hence it further leads to
det(L) < Rω−ϵ with a tiny error term ϵ. We finally derive the
following asymptotic solving condition as

det(L) < Rω, (12)

which allows us to effectively solve given modular/integer
polynomial equations under a well-established assumption.
Assumption 1: The polynomials output by the LLL

algorithm are algebraically independent.
The lattice-based solving strategy involves the following

stages. Initially, we generate a set of shift polynomials using
the provided polynomial f (x1, . . . , xn) and upper bounds
X1, . . . ,Xn. These shift polynomials are specifically designed
to share a common root modulo R. Subsequently, we create
a lattice by converting the coefficient vectors of each shift
polynomial gi(x1X1, . . . , xnXn) into row vectors of a lattice
basis matrix. Utilizing the LLL algorithm, we then obtain
the first few reduced vectors. These vectors are further
transformed into integer polynomials hi(x1, . . . , xn). Once we
ensure that the resulting integer polynomials hi(x1, . . . , xn)
are algebraically independent, the equation system can be
effectively solved using trivial methods, thus extracting the
desired root.

Several studies have focused on constructing an elegant
lattice basis matrix with optimized solving conditions,

including works such as [4], [6], [13], and [14]. In this
paper, we adopt Jochemsz-May’s strategy [4], which involves
creating a triangular basis matrix, where det(L) is easy to
compute as multiplication of matrix’s diagonal elements.
For a comprehensive and detailed explanation, refer to
Section IV.
To find the roots of a given trivariate integer polynomial in

the specific form as

f (x1, x2, x3) = a0 + a1x1 + a2x21 + a3x2 + a4x3
+ a5x1x2 + a6x1x3 + a7x2x3, (13)

we should establish upper bounds X1, X2, and X3 for the
unknown variables x1, x2, and x3. Additionally, X∞ is defined
as the maximal individual term value related to the trivariate
polynomial, which is given by

X∞ = ∥f (x1X1, x2X2, x3X3)∥∞. (14)

To proceed, we introduce the parameter

R = X∞X
2(s−1)+t
1 (X2X3)s−1, (15)

where s is a positive integer, and another integer t is
the nearest integer of τ s with τ ≥ 0 to be determined
and optimized during the subsequent lattice construction.
Therefore, this ensures that R is always an integer. Note
that we will use τ s instead of its rounding integer t in the
subsequent analysis for simplicity.

We then construct a basis matrix using coefficient vectors
of shift polynomials using two monomial sets S and M.
We define g(x1, x2, x3) = a−1

0 f (x1, x2, x3) mod R to set the
constant term as 1. The corresponding shift polynomials are

VOLUME 12, 2024 5205
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given by

x i11 x
i2
2 x

i3
3 g(x1, x2, x3)X

2(s−1)+t−i1
1 X s−1−i2

2 X s−1−i3
3 , (16)

where x i11 x
i2
2 x

i3
3 ∈ S, and

Rx i11 x
i2
2 x

i3
3 , (17)

where x i11 x
i2
2 x

i3
3 ∈M \ S.

Upon straightforward and meticulous computations with
the above parameters, we establish a parameterized solving
condition. We obtain the first two vectors of the reduced
basis under the proposed procedure and transform them
into two polynomials f1(x1, x2, x3) and f2(x1, x2, x3) that
share a common root over the integers. The extraction
of the common root can be accomplished using resultant
computation or Gröbner basis computation [15]. The running
time primarily depends on computing the reduced lattice
basis and recovering the desired root, both of which can
be efficiently achieved in polynomial time concerning the
inputs.

The lattice-based solving strategy is a heuristic approach,
as there is no assurance that the derived integer polynomials
will always be algebraically independent. However, in the
realm of lattice-based attacks, it is commonly assumed that
the polynomials obtained through the LLL algorithm possess
algebraic independence.

III. REVIEWING MUMTAZ-LUO’S ATTACK
We begin by reviewing Mumtaz-Luo’s analysis of common
prime RSA and identify several incomplete or incorrect
derivations. It capitalizes on a special property of common
prime RSA, specifically, ed = 2gabk + 1 for an unknown
integer k from the key equation (2). By substituting 2ga =

p − 1 and 2gb = q − 1 into ed = 2gabk + 1, Mumtaz and
Luo get

ed = (p− 1)bk + 1, ed = (q− 1)ak + 1. (18)

Furthermore, it leads to

ed − 1 + bk = pbk, ed − 1 + ak = qak. (19)

Multiplying them together yields

(ed − 1 + bk)(ed − 1 + ak) = pbk · qak = abk2N , (20)

which simplifies to

e2d2+ed (ak + bk − 2) − abk2(N − 1) − ak − bk+1 = 0.

(21)

They merge the variable k with a and b, resulting in the
following trivariate integer polynomial:

f (x, y, z) = e2x2+ex(y+ z− 2) − (y+ z− 1) − (N − 1)yz.

(22)

Thus, it turns to finding the root (x⋆, y⋆, z⋆) = (d, ak, bk) of
this trivariate integer polynomial. The estimated upper bound
values are

|x⋆
| ≤ X = N δ,

|y⋆| ≤ Y = N δ−γ+1/2,

|z⋆| ≤ Z = N δ−γ+1/2 (23)

considering that k ≃ N δ and a, b ≃ N 1/2−γ .
They employ the generalized Coron’s reformulation [16],

[17], similar to Jochemsz-May’s strategy [4]. The maximal
coefficient W = ∥f (xX , yY , zZ )∥∞ is defined for f (x, y, z),
but the specific value of W is not explicitly mentioned.
Through generalized Coron’s reformulation, they derive the
following solving condition:

X7+9τ+3τ 2 (YZ )5+9τ/2 < W 3+3τ , (24)

which coincides with the solving condition presented in [4].
Subsequently, they use X ,Y ,Z , andW and simplify to obtain
an inequality involving δ, γ , and an optimizing parameter τ as

3δτ 2 + (12δ + 3γ − 9/2)τ + 11δ + 4γ − 5 < 0. (25)

To maximize its left side, they let

τ =
3 − 2γ − 8δ

4δ
. (26)

Substituting τ back into (25), they obtain the inequality with
respect to δ and γ as follows:

−16δ2 − 32δγ + 64δ − 12γ 2
+ 36γ − 27

16δ
< 0. (27)

Thus, they obtain the following bound:

δ < 2 − γ −
1
4

√
4γ 2 − 28γ + 37 (28)

omitting the tiny term ϵ presented in the original bound
[7, Formula (12)]. Mumtaz and Luo recover the desired root
(x⋆, y⋆, z⋆) = (d, ak, bk) through the resultant computation.
Thus, they claim that the factorization of common prime
modulus is done in polynomial time.

However, their derivation from (24) to (25) is not smooth
and intuitive, as W is not explicitly given during their
analysis. Conversely, we aim to discover the value ofW they
use through the following inverse computation. Assuming
that the condition (25) is correctly derived for X = N δ,Y =

Z = N δ−γ+1/2 given in (23) and W = N ξ with a fixed ξ to
be recovered, we have

N (7+9τ+3τ 2)δN 2(5+9τ/2)(δ−γ+1/2) < N (3+3τ )ξ . (29)

Simplifying it gives us

(7 + 9τ + 3τ 2)δ + (5 + 9τ/2)(2δ − 2γ + 1) < (3 + 3τ )ξ.

(30)

After rearrangement, we have

3δτ 2 + (18δ − 9γ − 3ξ + 9/2)τ

+ 17δ − 10γ − 3ξ + 5 < 0. (31)
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Comparing the corresponding coefficients in (25) and (31),
we must ensure{

18δ − 9γ − 3ξ + 9/2 = 12δ + 3γ − 9/2,
17δ − 10γ − 3ξ + 5 = 11δ + 4γ − 5.

(32)

Solving the above simultaneous equations, we encounter a
contradiction about ξ as follows:{

ξ = 2δ − 4γ + 3,
ξ = 2δ − 14γ /3 + 10/3.

(33)

It implies that 2δ−4γ +3 = 2δ−14γ /3+10/3, which leads
to γ = 1/2. However, this value of γ cannot be achieved in
common prime RSA since 0 < γ < 1/2.
Even if we still assume that condition (25) is correct, the

derived bound on δ is not accurate. Mumtaz-Luo’s bound on
δ is presented as

δ < 2 − γ −
1
4

√
4γ 2 − 28γ + 37. (34)

However, it overestimates the capability of the small private
key attack since they ignore a crucial prerequisite, i.e., τ ≥ 0,
used in the lattice-based method. The optimizing parameter
is set to τ = (3 − 2γ − 8δ)/(4δ) according to (26). Hence,
we must ensure that

3 − 2γ − 8δ
4δ

≥ 0, (35)

which results in 3−2γ −8δ ≥ 0. Therefore, we obtain another
constrained bound

δ ≤
3 − 2γ

8
. (36)

Taking both (28) and (36) into consideration, we obtain an
accurate bound on δ as follows:

δ < 2 − γ −
1
4

√
4γ 2 − 28γ + 37, and δ ≤

3 − 2γ
8

. (37)

This leads to

δ ≤
3 − 2γ

8
. (38)

However, this result is actually a weaker bound on δ,
as Mumtaz and Luo pick

τ =
3 − 2γ − 8δ

4δ
, (39)

which can be further optimized.
To provide a better attack, we calculate a stronger bound

on δ using another simplified approach. It can be inferred
from (25) that

(3τ 2 + 12τ + 11)δ + 3γ τ − 9τ/2 + 4γ − 5 < 0. (40)

Therefore, as τ ≥ 0, we have

δ <
9τ/2 − 3γ τ − 4γ + 5

3τ 2 + 12τ + 11
. (41)

Let

λ(τ ) := (9τ/2 − 3γ τ − 4γ + 5)/(3τ 2 + 12τ + 11), (42)

where given 0 < γ < 1/2. Its derivative with respect to τ is

∂ λ

∂ τ
=

3
(
(6γ − 9)τ 2 + (16γ − 20)τ + 10γ − 7

)
2

(
3τ 2 + 12τ + 11

)2 . (43)

Because 0 < γ < 1/2, we have

6γ − 9 < 0, 16γ − 20 < 0, 10γ − 7 < 0 (44)

and hence the numerator of the above derivative is negative.
Thus, λ(τ ) is decreasing in the domain of τ ≥ 0, and its
maximum is taken at τ = 0. Therefore, we derive the bound
(5 − 4γ )/11 when maximizing λ(τ ) by setting τ = 0.
Through a direct comparison, it can be easily checked that

5 − 4γ
11

>
3 − 2γ

8
. (45)

Thus, under Mumtaz-Luo’s analysis idea, the exact bound on
δ is

δ <
5 − 4γ
11

. (46)

To conclude, Mumtaz-Luo’s attack [7] suffers from several
fatal flaws, rendering their attack result incorrect and
inapplicable. The summary of these flaws is as follows.

• Repetitive Approach. They use generalized Coron’s
reformulation to solve a trivariate integer polynomial,
but the specific monomial form and its relevant
unknown variables are the same as those analyzed in
Jochemsz-May’s attack [4, Section 5.2].

• Incorrect Parameter W . The parameter W , i.e., the
maximal coefficient of f (xX , yY , zZ ) with upper bounds
X ,Y ,Z , is not explicitly provided. Moreover, the value
of W implied by their analysis derivation contradicts
itself, leading to uncertainty and inconsistency in their
analysis.

• Incorrect Bound on δ. They ignore a crucial pre-
requisite described in the lattice-based method, where
the optimizing parameter should satisfy τ ≥ 0. This
oversight results in an incorrect bound on δ, and the
theoretical bound values given in Theorem 1 do not
agree with the ones presented in Table 2 of [7].

• Incomplete Factorization. Their analysis lacks how to
factorize the given common prime RSA modulus if the
root (d, ak, bk) is recovered. This omission renders the
proof of Theorem 1 incomplete and leaves their attack
without a crucial step.

These mentioned flaws in Mumtaz-Luo’s analysis raise
significant concerns about the reliability and validity of their
proposed attack. Addressing these issues is essential before
considering the effectiveness of their approach in practical
attack scenarios.

IV. CORRECTIONS TO PREVIOUS CRYPTANALYSIS
In light of the flaws inMumtaz-Luo’s analysis [7], we present
a refined small private key attack and make corrections to
their previous findings.
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Proposition 1: Given a common prime RSA modulus N =

pq for balanced primes p, q and (p− 1)/2, (q− 1)/2 having
a prime g ≃ N γ , and e ≃ N 1−γ , d ≃ N δ satisfying
ed ≡ 1 mod lcm(p− 1, q− 1), then one can factorize the
given common prime RSA modulus in polynomial time if δ < γ + 1 −

√
4γ 2 + 20γ + 13

4
, 0 < γ ≤

3
10

,

δ <
4γ + 1
11

,
3
10

< γ <
1
2
.

(47)

Proof: To refine the small private key attack, we focus on
solving the trivariate integer polynomial

f (x1, x2, x3) = e2x21 + ex1(x2 + x3 − 2)

− (x2 + x3 − 1) − (N − 1)x2x3. (48)

Following the lattice-based solving strategy [4], it can be
rewritten as

f (x1, x2, x3) = 1 − 2ex1 + e2x21 − x2 − x3
+ ex1x2 + ex1x3 + (1 − N )x2x3 (49)

for a0 = 1, a1 = −2e, a2 = e2, a3 = −1, a4 = −1, a5 =

e, a6 = e and a7 = 1 − N . We aim to find the desired root
(x⋆

1, x
⋆
2, x

⋆
3) = (d, ak, bk).

Using e ≃ N 1−γ and d ≃ N δ , we estimate ak ≃ N δ−γ+1/2

and bk ≃ N δ−γ+1/2 based on (18). The upper bounds Xi are
identical to the previous ones (23) as follows:

X1 = N δ, X2 = N δ−γ+1/2, X3 = N δ−γ+1/2. (50)

The maximal term X∞ is used in the solving condition, and it
can be computed as

X∞ = ∥f (x1X1, x2X2, x2X2)∥∞

= max
{
|a0|, |a1|X1, |a2|X2

1 , |a3|X2, |a4|X3,

|a5|X1X2, |a6|X1X3, |a7|X2X3
}

= max
{
1,N δ−γ+1,N 2δ−2γ+2,N δ−γ+1/2,

N δ−γ+1/2,N 2δ−2γ+3/2,N 2δ−2γ+2
}

= N 2δ−2γ+2. (51)

We use one extra shift of x1 in the lattice-based method as
it is smaller than x2 and x3. We construct two monomial sets
S andM for s and t = τ s as follows:

S =

⋃
0≤j≤t

{
x i1+j1 x i22 x

i3
3 : x i11 x

i2
2 x

i3
3 ∈ f s−1}, (52)

M =

⋃
0≤j≤t

{
x i1+j1 x i22 x

i3
3 : x i11 x

i2
2 x

i3
3 ∈ f s

}
. (53)

We know the relationship between monomials x i11 x
i2
2 x

i3
3 in

S andM and the corresponding exponents i1, i2, i3 via the

expansion of f s−1 and f s as follows:

x i11 x
i2
2 x

i3
3 ∈ S ⇔


i2 = 0, . . . , s− 1,
i3 = 0, . . . , s− 1,
i1 = 0, . . . , 2(s− 1) − i2 − i3 + t.

(54)

x i11 x
i2
2 x

i3
3 ∈M⇔


i2 = 0, . . . , s,
i3 = 0, . . . , s,
i1 = 0, . . . , 2s− i2 − i3 + t.

(55)

The constant term of f (x1, x2, x3) is required to be
1 and fortunately a0 is exactly 1. Thus, we define the
shift polynomials g[i1,i2,i3] according to distinct monomial
x i11 x

i2
2 x

i3
3 in S and M for R = X∞X

2(s−1)+t
1 (X2X3)s−1 as

follows. We have

x i11 x
i2
2 x

i3
3 f (x1, x2, x3)X

2(s−1)+t−i1
1 X s−1−i2

2 X s−1−i3
3 , (56)

where x i11 x
i2
2 x

i3
3 ∈ S, and

Rx i11 x
i2
2 x

i3
3 , (57)

where x i11 x
i2
2 x

i3
3 ∈ M \ S . To be concrete, the monomials of

M \ S are related to the following (i1, i2, i3) triples:
i2 = s,
i3 = 0, . . . , s− 1,
i1 = 0, . . . , s− 2−i3+t.


i2 = 0, . . . , s− 1,
i3 = s,
i1 = 0, . . . , s− 2−i2+t.

(58)

and
i2 = 0, . . . , s− 1,
i3 = 0, . . . , s− 1,
i1 = 2s− 1 − i2 − i3 + t, 2s− i2 − i3 + t.

(59)

and 
i2 = s,
i3 = s,
i1 = 0, . . . , t.

(60)

The coefficient vectors of g[i1,i2,i3], where xiXi is substi-
tuted for each xi, generate a latticeL. We need to compute the
lattice determinant det(L). The respective diagonal elements
of g[i1,i2,i3](x1X1, x2X2, x3X3) are

X2(s−1)+t
1 (X2X3)s−1

= R/X∞, (61)

and

RX i11 X
i2
2 X

i3
3 . (62)

Thus, we obtain

(R/X∞)s0 RsRX s11 X
s2
2 X

s3
3 < Rω, (63)

where s0 = |S|, sj =
∑

x
i1
1 x

i2
2 x

i3
3 ∈M\S ij, sR = |M \ S| and

ω = |SR|. Moreover, ω = |M| = |S| + |M \ S| = s0 + sR.
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Therefore, R in the left and right sides cancel each other out,
and we obtain

X s11 X
s2
2 X

s3
3 < X s0∞, (64)

for sj =
∑

x
i1
1 x

i2
2 x

i3
3 ∈M\S ij and s0 = |S|. By calculating sj for

j = 0, 1, 2, 3 through the above deduction, we obtain

s0 = |S| =

s−1∑
i2=0

s−1∑
i3=0

2(s−1)−i2−i3+t∑
i1=0

1 = s3 + s2t + o(s3),

s1 =

∑
x
i1
1 x

i2
2 x

i3
3 ∈M\S

i1

=

s∑
i2=0

s∑
i3=0

2s−i2−i3+t∑
i1=0

i1 −

s−1∑
i2=0

s−1∑
i3=0

2(s−1)−i2−i3+t∑
i1=0

i1

=
7s3

3
+ 3s2t + st2 + o(s3),

s2 =

∑
x
i1
1 x

i2
2 x

i3
3 ∈M\S

i2

=

s∑
i2=0

s∑
i3=0

2s−i2−i3+t∑
i1=0

i2 −

s−1∑
i2=0

s−1∑
i3=0

2(s−1)−i2−i3+t∑
i1=0

i2

=
5s3

3
+

3s2t
2

+ o(s3),

s3 =

∑
x
i1
1 x

i2
2 x

i3
3 ∈M\S

i3

=

s∑
i2=0

s∑
i3=0

2s−i2−i3+t∑
i1=0

i3 −

s−1∑
i2=0

s−1∑
i3=0

2(s−1)−i2−i3+t∑
i1=0

i3

=
5s3

3
+

3s2t
2

+ o(s3). (65)

Using t = τ s (omitting its rounding) and skipping lower
terms o(s3) gives us

s0 = (1 + τ )s3,

s1 =

(
7
3

+ 3τ + τ 2
)
s3,

s2 = s3 =

(
5
3

+
3τ
2

)
s3. (66)

We substitute the values of X1,X2,X3, X∞, sj for j =

0, 1, 2, 3 into (64). This results in the inequality

δ

(
7
3

+ 3τ + τ 2
)

+ 2
(

δ − γ +
1
2

) (
5
3

+
3τ
2

)
< (2δ − 2γ + 2)(1 + τ ). (67)

Further simplifying, we get

δτ 2 +

(
4δ − γ −

1
2

)
τ +

11
3

δ −
4γ
3

−
1
3

< 0, (68)

which can be reduced to

6δτ 2 + (24δ − 6γ − 3) τ + 22δ − 8γ − 2 < 0. (69)

To minimize the left side, we find the optimizing value of

τ =
2γ − 8δ + 1

4δ
. (70)

Therefore, we get

−
3(2γ − 8δ + 1)2

8δ
+ 22δ − 8γ − 2 < 0. (71)

Simplifying it, we obtain

16δ2 − 32(γ + 1)δ + 3(2γ + 1)2 > 0. (72)

From this inequality, we can deduce the bound on δ:

δ < γ + 1 −

√
4γ 2 + 20γ + 13

4
. (73)

Additionally, we should ensure that τ = (2γ − 8δ + 1)/(4δ)
meets its prerequisite τ ≥ 0, which implies

δ ≤
2γ + 1

8
. (74)

Comparing it with (73), we deduce that (73) holds for 0 <

γ ≤ 3/10 in our proposed analysis.
Therefore, we determine the bound on δ for 3/10 < τ <

1/2 and we should set τ = 0. It directly indicates

11δ − 4γ − 1 < 0, (75)

which simplifies to

δ <
4γ + 1
11

. (76)

Gathering (73) and (76) together, we finally derive the
following result: δ < γ + 1 −

√
4γ 2 + 20γ + 13

4
, 0 < γ ≤

3
10

,

δ <
4γ + 1
11

,
3
10

< γ <
1
2
.

(77)

Once we obtain several integer polynomials sharing the
common root (x⋆

1, x
⋆
2, x

⋆
3) = (d, ak, bk) over the integers,

we can proceed to extract d , ak , and bk to factorize N .
To factorize the given common prime RSA modulus N using
the obtained values d , ak , and bk , we make use of the fact
that gcd(a, b) = 1. So, k = gcd(ak, bk) is first computed by
k = gcd(x⋆

2, x
⋆
3). Then, we know a = x⋆

2/k and b = x⋆
3/k .

Next, we apply ed = 2gabk + 1 with known a, b, and k to
compute g = (ed − 1)/(2abk). Finally, using a, b, and g,
we can find p = 2ga + 1 and q = 2gb + 1. These values
of p and q give us the factorization of N . The root extraction
and factorization can be done in time that is a polynomial
regarding logN and s. □
Remark 1: In addition to addressing the flaws in

Mumtaz-Luo’s analysis, we have further enhanced
Jochemsz-May’s attack by refining the bound on δ for 3/10 <

γ < 1/2. It is important to note that Mumtaz-Luo’s analysis
essentially reproduces Jochemsz-May’s attack, albeit with
incorrect and incomplete derivation.
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TABLE 1. Experimental results of our proposed attack on common prime RSA.

V. VALIDATING EXPERIMENTS
The experimental results are provided to demonstrate the
performance of the proposed small private key attack based
on Proposition 1. The experiments were carried out on a
laptop running a 64-bit Windows 10 operating system with
Ubuntu 22.04 installed onWSL 2.We utilized SageMath [18]
for conducting the experiments, and the parameters for
generating the common prime RSA instances were randomly
chosen.

Initially, we generated a common prime RSA modulus N
with bit-size denoted by ℓ using a predetermined γ value.
Subsequently, we generated the private exponent d with a
predetermined bit-size in each experiment. To derive the
public exponent e, we utilized ed ≡ 1 (mod lcm(p− 1, q−

1)). Additionally, the bit-size of d was gradually increased to
achieve a larger δ for performing a successful small private
key attack.

To execute the proposed attack, we carefully constructed
a lattice via suitable integers s and t . Table 1 provided
the experimental results for our proposed small private key
attack. The column γ ℓ represents the bit-size of g in the
generated common prime RSA instances, while ℓe denotes
the bit-size of e. The column δtℓ provides the theoretical
bound on d , and the corresponding experimental result is
presented in the column δeℓ. The column AR indicates
the achieving rate δe/δt of our experimental bound in
estimating the distance from the theoretical one. The lattice
settings are controlled by s and t , with the lattice dimension
specified in the ω column. The time consumption of our
experiments is recorded in the Time column, measured in
seconds.

Throughout each experiment, we collected sufficient
integer polynomials that met the solvable requirements
after running the LLL algorithm. As indicated in Table 1,
the running time increases while the lattice dimension
becomes higher or the given modulus gets larger. After
obtaining the integer polynomial equationswith a shared root,
we successfully recovered (x⋆

1, x
⋆
2, x

⋆
3) in attacks on generated

instances. Consequently, we retrieved d , ak , and bk , enabling

us to factorizeN using the root extraction approach. However,
the experimental results fell short of reaching the theoretical
bound, likely due to limited computing resources. It is evident
that the attack performance improves with the use of a lattice
of increasing dimension. We believe that practical attack
results can be further optimized by constructing lattices with
higher dimensions.

VI. CONCLUSION
We revisit small private key attacks on common prime
RSA, thoroughly examineMumtaz-Luo’s attack, and identify
several critical flaws that render their attack inapplicable.
To rectify these issues, we provide corrections to the previous
cryptanalysis and present a refined small private key attack.
The experimental results demonstrate the correctness of
our refined attack. To be specific, our attack successfully
penetrates common prime RSA instances that employ
small private keys, allowing us to factorize the given
modulus in reasonable time consumption. Our results not
only address deficiencies in existing cryptanalysis but also
provide a comprehensive understanding of small private key
attacks on common prime RSA. Furthermore, our findings
underscore the significance of robust parameter selection in
cryptographic implementations.
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