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ABSTRACT Recently, convolutional neural networks (CNNs) have proven successful in automating the
detection of defective photovoltaic (PV) cells within PVmodules. Existing studies have built a CNN based on
fully supervised learning, which requires a training dataset consisting of PV cell images annotated according
to whether the individual cells are defective. However, manually annotating all the PV cells is labor-intensive
and time-consuming, leading to substantial annotation costs. In this study, we propose a weakly supervised
learning method to build a CNN for cell-level defect detection in a cost-efficient manner. Our method uses a
training dataset solely with module-level annotations indicating whether each PV module contains defective
cells, thereby substantially reducing the required annotation costs. The CNN is trained in a weakly supervised
manner such that all cells in a normal module are classified as normal and at least one cell in a defective
module is classified as defective. The CNN can then be used to detect cell-level defects in new PV modules.
The effectiveness of the proposed method is validated through experiments using real-world data provided
by a PV module manufacturer.

INDEX TERMS Photovoltaic cell defect detection, photovoltaic module manufacturing, weakly supervised
learning, convolutional neural network.

I. INTRODUCTION
Photovoltaic (PV) cells, also known as solar cells, are
semiconductor devices that convert light energy into elec-
tricity through photovoltaic effects. In the PV module
manufacturing, a PV module consists of several PV cells that
are wired and sealed in a protective laminate. During theman-
ufacturing process, PV modules are occasionally damaged
for various reasons, such as thermo-mechanical stresses and
assembly failures [1], [2]. Therefore, manufacturers inspect
the fabricated PV modules for quality assurance.

Electroluminescence (EL) imaging is a standard inspection
method for detecting defects in the cells in PV modules [3].
Various defects in the cells, such as micro-cracks and wiring
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problems, can be identified by inspecting the EL image of a
PV module, an example of which is shown in Figure 1. After
the EL inspection, the engineers replace the defective cells
with new cells.

Typically, experienced engineers visually inspect EL
images. However, the visual inspection of numerous EL
images is laborious and time-consuming. Engineers working
for long periods of time can become visually fatigued,
which increases the risk of inspection errors. Therefore, the
automation of EL inspection has been in demand [1].

Research attempts have been made to apply machine
learning to automate the inspection of defective cells in PV
modules. Existing studies have built a convolutional neural
network (CNN) that uses a cell image as input to predict
whether it is defective [1], [2], [4], [5], [6]. In the context of
fully supervised learning, a CNN is trained using a cell-level
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FIGURE 1. Example of EL image for PV module.

annotated dataset, where each cell is annotated with its
class label, as shown in Figure 2a. To construct a training
dataset of N PV modules with each module containing K
cells, a total of N × K cell-level annotations are required.
Although ensuring a large training dataset improves the
classification accuracy of the CNN, performing the cell-level
annotation task on a large scale is highly labor-intensive and
time-consuming.

In this study, we propose a weakly supervised learning
method to build a CNN with reduced annotation costs
for PV cell defect detection. Unlike the existing studies,
the proposed method uses a training dataset annotated
at the module level as shown in Figure 2b, where each
module is annotated to indicate whether it contains at
least one defective cell. Since annotating a module can be
performedmore efficiently by engineers than annotating each
individual cell within the module, acquiring N module-level
annotations incurs substantially lower costs than acquiring
N × K cell-level annotations. To train the CNN using
the module-level annotated training dataset, we introduce a
weakly supervised learning objective such that all cells in
a normal module are classified as normal and at least one
cell in a defective module is classified as defective. The
effectiveness of the proposed method is verified by experi-
ments using a real-world dataset provided by a PV module
manufacturer.

The remainder of this paper is organized as follows.
We review related work in section II. The proposed
method is presented in section III. section IV describes the
experimental settings and results. Finally, section V presents
the conclusions.

II. RELATED WORK
A. AUTOMATION OF PHOTOVOLTAIC CELL DEFECT
DETECTION
To automate the detection of defective PV cells, most
previous studies have attempted to build a classification
model based on supervised learning using a cell-level

annotated training dataset. Demant et al. [7] manually
extracted handcrafted features from cell images and built a
support vector machine based on the handcrafted features as
a classification model to detect defective cells with micro-
cracks. With advances in deep learning for computer vision
tasks, recent studies have adopted CNNs as classification
models [1], [5], [6]. A CNN processes a cell image without
requiring manual feature extraction to predict the defect
score. Deitsch et al. [2] and Ahmad et al. [4] showed that
CNNs were superior to models based on manual feature
extraction in detecting defective cells. Otamendi et al. [8] and
Mayr et al. [9] built CNNs for the pixel-level defect detection
in defective cell images.

Some studies have implemented an unsupervised learning
approach using a training dataset consisting of normal
cell images only in the absence of defective cell images.
This approach is useful when defective cell images are
unavailable during the training phase. Tsai et al. [10] and
Tsai et al. [11] applied the Fourier transformation and
independent component analysis, respectively, to learn the
normal class structure of a training dataset. A query cell
image was identified as an anomaly when the reconstruction
error was high. Shou et al. [12] sequentially trained a
generative adversarial network and an autoencoder network
using a training dataset. They determined the anomaly score
by calculating the residuals between the query image and the
image produced by the generator.

The supervised learning approach generally performs
better than the unsupervised learning approach, because
defective cell images are explicitly used to train the
classification model. However, a major challenge is the
high cost of acquiring cell-level annotations that indicate
whether a cell is defective. The objective of this study is
to alleviate the annotation cost required to build a classi-
fication model for cell-level defect detection. We propose
a method based on a weakly supervised learning approach
that utilizes module-level annotations instead of cell-level
annotations.
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FIGURE 2. Schematic of training and inference for PV cell defect detection.

B. WEAKLY SUPERVISED LEARNING
Weakly supervised learning is an umbrella term that
encompasses various attempts to build a model by learn-
ing from a training dataset under weak supervision [13].
It is practically useful when it is difficult to acquire
strong supervision information for the training dataset,
owing to the high annotation cost. Weak supervision can
be categorized as incomplete, imprecise, and inaccurate
supervision.

Incomplete supervision refers to a situation in which only
some training instances are labeled, whereas others are not.
Active learning [14] is used to selectively annotate unlabeled
instances to improve the performance of the model. Semi-
supervised learning [15] uses both labeled and unlabeled
instances in a partially annotated training dataset to train the
model.

Imprecise supervision refers to a situation where the
training dataset contains only coarse-grained labels. The
multiple-instance learning approach [16], [17] uses a set of

labeled bags, each containing many instances, as a training
dataset to build a model for instance-level prediction. Each
bag is annotated with a single label and the labels of
individual instances are not provided.

Inaccurate supervision refers to a situation where the
labels of the training instances are noisy. Noisy labels
in the training dataset negatively affect the training of
the model, thereby degrading its performance [18]. The
preprocessing approach [19] identifies mislabeled train-
ing instances before training the model. The re-labeling
approach [20], [21] iteratively re-annotates labeled instances
whose labels are expected to be incorrect by the model.
The robust learning approach [22] uses a model architecture,
loss function, or regularization that is robust to noisy
labels.

This study aims to use a module-level annotated training
dataset to build a CNN for cell-level prediction, which
corresponds to imprecise supervision. In the training dataset,
each module consists of multiple cells and is annotated as
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TABLE 1. Notations.

defective if at least one cell is defective and as normal
otherwise. We adapt the multiple-instance learning approach
by considering a module and a cell as a bag and an instance,
respectively.

III. METHODOLOGY
A. OVERVIEW
We formulate the PV cell defect detection as a binary
classification problem, where a classification model f takes
a PV cell image x as the input to predict whether the cell is
defective as follows:

ŷ = f (x), (1)

where ŷ ∈ [0, 1] is the predicted defect score. A high defect
score signifies an increased likelihood that a given cell is
defective. As the classification model f , the objective is to
build a CNN by learning from a module-level annotated
training dataset Dmodule

= {(Xi,Yi)}Ni=1, where Xi =

(xi,1, . . . , xi,K ) is the i-th module containing K cells and Yi ∈

{0, 1} is the corresponding class label. Each cell xi,k ∈ Rm×n

in the module is represented as a grayscale image of shape
m × n. The cell-level class label yi,k is not provided. The
module-level class label Yi takes values of 0 and 1 to indicate
that the module belongs to the normal and defective classes,
respectively.

Although the module-level annotated training dataset
Dmodule is provided in the training phase, the trained CNN f
is required to make cell-level predictions during the inference
phase, as illustrated in Figure 2b. The supervised learning
approach shown in Figure 2a, which has been used in existing
studies, is not applicable in this situation because it requires
cell-level annotations in the training dataset.

In this study, we introduce a weakly supervised loss
function to bridge the gap in granularity between the
training and inference phases. The loss function leverages
information from the module-level annotations in the training
datasetDmodule. Themodel f is trained in aweakly supervised
manner so that all cells in a normal module are predicted to be
normal, and at least one cell in a defective module is predicted
to be defective. The details of the loss function are described
in the following subsection. The notations used in this paper
are listed in Table 1.

B. TRAINING WITH MODULE-LEVEL ANNOTATIONS
A PV module is considered normal if all associated cells are
normal, whereas it is considered defective if at least one cell
is defective. Accordingly, all the cells in a normal module
should be classified as normal, whereas at least one cell in
a defective module should be classified as defective. Owing
to the absence of explicit cell-level annotations, the weakly
supervised loss function is designed to identify the cell in
a defective module that differs the most from normal cells.
Using the loss function, the CNN f is trained to classify all
cells in a normal module as normal and the identified cell in
a defective module as defective.

For a training instance (Xi,Yi), the CNN f predicts
the defect scores of the individual cells xi,1, . . . , xi,K as
ŷi,1, . . . , ŷi,K . The K defect scores are compared with the
module-level label Yi. The loss function is computed as
follows:

L(Xi,Yi)=−(1 − Yi)
K∑
k=1

log(1 − ŷi,k ) − γ · Yi log(max
l
ŷi,l),

(2)

where γ is a hyperparameter that balances these two terms.
The computational path of the loss function is illustrated in
Figure 3. If the module is normal (Yi = 0), then the first
term is used to decrease the defect scores of all cells in the
module. If the module is defective (Yi = 1), then the second
term is used to increase the maximum defect score among
the cells in the module. As training progresses, the CNN f
is encouraged to exclusively output higher defect scores for
defective cells within defective modules, while suppressing
the defect scores for normal cells in both normal and defective
modules.

For each training iteration with a mini-batch S ⊂ Dmodule,
the parameters of the CNN f are updated by minimizing the
following objective function J :

J =
1

|S|

∑
(Xi,Yi)∈S

L(Xi,Yi), (3)

where |S| is the number of modules in the mini-batch.
In terms of computational cost during the training phase,

the proposed method is comparable to existing methods that
rely on fully supervised learning with cell-level annotations.
In each training iteration, the existing methods require K
forward and backward passes for each module. The proposed
method requires the same for each normal module. However,
it requires K forward passes and only a single backward pass
for each defective module.

C. INFERENCE FOR CELL-LEVEL AND MODULE-LEVEL
DEFECT DETECTION
For inference, the trained CNN f is used to detect defective
PV cells. For cell-level defect detection, the inference process
of the proposed method is identical to that of existing
methods that rely on fully supervised learning with cell-level
annotations. Given a query cell image x∗,k , the defect score
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FIGURE 3. Weakly supervised loss function.

FIGURE 4. Examples of EL images for normal and defective cells.

FIGURE 5. Receiver operating characteristic (ROC) curve (VGG11).

ŷ∗,k can be obtained as follows:

ŷ∗,k = f (x∗,k ). (4)

A cell is classified as defective if the defect score ŷ∗,k is
greater than a threshold θ , i.e., ŷ∗,k > θ .

For module-level defect detection, the defect score of the
query module X∗ = (x∗,1, . . . , x∗,K ) is calculated as the

FIGURE 6. False positive rate and false negative rate at different
thresholds (VGG11).

maximum defect score among the cells in the module:

Ŷ∗ = max
k

f (x∗,k ). (5)

IV. EXPERIMENTS
A. DATA ACQUISITION AND PREPROCESSING
The effectiveness of the proposed method was investigated
using a real-world dataset collected from Shinsung E&G,
a PV module manufacturer in South Korea, by EL imaging
of the manufactured PVmodules. This dataset consists of two
parts with different levels of annotations by domain experts,
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FIGURE 7. Confusion matrices with thresholds optimized for different performance measures (VGG11, average over 10 replications).

the first part with module-level annotations Dmodule and the
second part with cell-level annotations Dcell.
The first part Dmodule contained 1,418 module EL images

with module-level annotations. The resolution of the images
ranged from 5243 × 2676 to 5392 × 2702. Each image
consisted of 144 cell images (i.e., K = 144) in 6 rows
and 24 columns. Of the 1,418 images, 604 (42.6%) and 814
(57.4%) images were annotated as normal and defective,
respectively. We split the EL image of each raw module into
144 individual cell images using border lines. As the borders
between the cells were relatively dark, the positions of the
border lines were automatically detected by finding the peaks
of the horizontal and vertical means of the pixel values in the
module image [6].

The second part Dcell contained 4,861 cell EL images that
were separately examined by domain experts. Each image
was annotated at the cell level. Among the 4,861 images,
4,464 (91.8%) and 397 (8.2%) images were annotated as
normal and defective, respectively, indicating that the class
distribution was imbalanced. The types of defects included
crack, contamination, dead zone, dark area, dark spot, and
solder darkness. The resolution of the images ranged from
84×201 to 105×213. Figure 4 shows examples of EL images
for normal and defective cells.

In the experiments, the first part of the dataset was used
as the training dataset to train the classification model. The
second part was used as the test dataset to evaluate the
performance of the model.

Each cell image was preprocessed as follows. We resized
the image to 50 × 100 and increased the contrast by a factor
of two to emphasize the defective region. The pixel values
were standardized using the mean and standard deviation of
ImageNet [23].

B. EXPERIMENTAL SETTINGS
The performance of the proposed method was evaluated
using different settings for the classification model. It is
important to note that the existing methods are not applicable

to the problem situation addressed in this study, where
a cell-level defect detection model needs to be trained
using a module-level annotated training dataset. We used
two common CNN architectures with different numbers
of layers: VGG11, VGG13, VGG16, and VGG19 for the
VGGNet family [24] and ResNet18, ResNet34, ResNet50,
and ResNet101 for the ResNet family [25]. We initialized
each model with ImageNet-pretrained parameters [23]. For
the VGGNet models, we removed all fully-connected layers
and the flatten operation, and then added a new global average
pooling and a new fully-connected layer with a single output
unit. For the ResNet models, the existing fully-connected
layer was replaced by a new fully-connected layer with a
single output unit.

In the training phase, we trained the classification model
with the module-level annotated training dataset, among
which 90% of the dataset was used to update the parameters
and the remaining 10% was used to monitor the validation
loss. The hyperparameter γ in the objective function J was
set to 0.01. Data augmentation was applied by randomly
transforming the cell images at each training iteration based
on vertical/horizontal flip (p = 0.5), rotation ([−1, 1◦]),
vertical/horizontal shift ([−1, 1%]), brightness adjustment
([−10, 10%]), and contrast adjustment ([0, 50%]). To update
the parameters, we used the Adam optimizer with an initial
learning rate of 10−5 and a weight decay factor of 10−8. The
mini-batch size was set to eight modules, with 144 cells each
(i.e, 144 × 8 = 1, 152 cells). The learning rate was halved
if the validation loss did not decrease over 5 consecutive
epochs. The training was stopped if the validation loss did
not decrease for 20 consecutive epochs or if the number of
epochs reached 1,000.

In the inference phase, we evaluated the performance of
the model by using the cell-level annotated test dataset.
We applied test-time augmentation with the same transfor-
mation operations as in the training phase. For a query
image, inference was performed 30 times with different
random image transformations. The individual predicted
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FIGURE 8. Example of heatmap visualization for cell-level predictions (VGG11, θ = 0.00038).

defect scores were then averaged to obtain the final defect
score.

We calculated four performance measures on the test
dataset: accuracy, balanced accuracy, F1 score, and area under
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TABLE 2. Comparison of classification performance (average±standard deviation over 10 replications).

the receiver operating characteristic curve (AUROC). The
first three measures are dependent on the threshold θ ; thus,
we individually optimized the threshold θ for each measure.
The AUROC is a threshold-independent measure.

The proposed method was implemented using PyTorch in
Python. The experiments were conducted with 10 indepen-
dent replications using different random seeds. We report
the mean and standard deviation of each result over
10 replications.

C. RESULTS AND DISCUSSION
Table 2 presents an overall comparison of the classification
performance of the classification models trained using the
proposed method. Most of the models achieved a consid-
erably high classification performance with an AUROC of
over 0.97, especially when the CNN architectures used were
relatively small. This indicates that the proposed method
successfully trained the models in a weakly supervised
manner using only module-level annotations. Among the
compared models, the smallest model, VGG11, yielded
the highest AUROC value. On the other hand, when the
architecture was larger (e.g., ResNet101), we observed a
tendency towards instability in training and a deterioration
in classification performance, thereby resulting in a lower
average and a higher standard deviation of the performance
measures over the 10 replications.

We further analyzed the classification results for VGG11,
which yielded the highest AUROC value. Figure 5 presents
the ROC curve of VGG11, where the true positive rate
against the false positive rate is plotted at different threshold
settings. Figure 6 illustrates the trade-off between false
positive rate (FPR) and false negative rate (FNR) at various
thresholds. Increasing the threshold θ leads to a lower FPR
but a higher FNR, whereas decreasing θ leads to a lower
FNR but a higher FPR. This suggests that the threshold θ

can be optimized by taking into account the different costs
associated with different types of misclassification errors. For
example, we can decrease the threshold θ if false negatives
(i.e., classifying defective cells as normal) should be avoided.
The threshold θ can also be optimized based on a specific
performance criterion. Figure 7 shows the confusion matrices
of VGG11 for various threshold values, each optimized based
on different performance measures. The results showed that
the optimal thresholds differed depending on the specified
performance measure. The use of accuracy and balanced

accuracy resulted in the highest and lowest thresholds,
respectively.

Figure 8 presents the heatmap visualization of the cell-level
predictions of the PV module examples for VGG11. One
was a normal module and the other three were defective
modules containing different types of defective cells. The
cells predicted as normal and defective were shaded green
and red, respectively. When a module contained more than
one defective cell, the proposed method successfully detected
these cells by assigning high defect scores, as shown in
Figure 8c and Figure 8d. In these examples, all cells in the
normal module had low defect scores, whereas the cells with
high defect scores in the defective modules were identified as
defective by domain experts.

V. CONCLUSION
In this study, we proposed a weakly supervised learning
method to build a CNN to detect PV cell defects without
cell-level annotations. By introducing a weakly supervised
loss function, the CNN was trained using a module-level
annotated training dataset such that the most defective cell in
a defectivemodule was predicted as defective and all cells in a
normal module were predicted as normal. The CNN success-
fully detected defective cell images in a real-world dataset.

While previous studies relied on supervised learning
with costly cell-level annotations, this study pioneers the
application of weakly supervised learning with module-level
annotations to build a CNN for cell-level prediction.
Although a CNN trained with cell-level annotations can
provide better classification performance, the proposed
method is useful in practical scenarios where reducing the
annotation cost for constructing the training dataset is crucial.
We expect that the proposedmethod will lead to cost-efficient
applications in the automatic PV cell defect detection. In the
future, we plan to extend the proposed method to multi-class
or multi-label classifications, where each cell should be
classified according to its specific defect categories.
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