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ABSTRACT Detection based on LiDAR and camera fusion is increasingly popular for researchers in the
autonomous driving domain. Compared to the camera-only and LiDAR-only methods, the fusion-based
methods indeed improve the detection accuracy on public-available datasets. However, due to the complexity
of the projection or fusion mechanism, few of these methods can run in real time even on an advanced
desktop GPU. Thus, in this paper, we propose a new fusion detection model G-Fusion with a light and fast
image view-transform module. According to our receptive field analysis of image feature maps, we directly
project image features to only one voxel layer located on the ground, then fuse the LiDAR and image
features by concatenation and convolution.With this delicately designedmodule, G-Fusion greatly boosts the
state-of-the-art speed performance on the nuScenes dataset, achieving a good balance with the competitive
detection scores. Meanwhile, since the precision of sensor extrinsic parameters is important for most fusion-
based methods, we also deeply dig into our model’s calibration error tolerance ability and discover the failure
noise condition.

INDEX TERMS Autonomous driving, LiDAR, camera, fusion, 3D detection, deep-learning.

I. INTRODUCTION
Perception is essential for an autonomous driving vehicle,
especially the 3D detection module that can accurately locate
and categorize obstacles in the surrounding area [1], and
this module also plays an important role as an upstream
module of the planning and control system. Camera and
LiDAR are the two kinds of sensors commonly equipped
on a self-driving car for perception functions [2]. So,
in current research, 3D detection methods usually use these
two types of sensors. The camera, as a 2D sensor, can
capture rich shape, color, and texture information, which
is suitable for semantic information extraction and obstacle
classification [3]. However, since the camera misses the 3D
depth information, image-based 3D detection always suffers
from imprecise location and size regression [4], [5]. While
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LiDAR collects 3D information and generates point clouds
with 3D coordinates and reflection intensity [6]. However,
due to the sparsity of the point cloud, LiDAR-based 3D
detection is often relatively poor for distant targets [6].

Therefore, LiDAR-Camera fusion is attracting more and
more attention for developing more accurate and robust
3D detection methods. The key to this task is to fuse
2D and 3D information effectively and efficiently. Existing
fusion methods can be roughly classified into the following
three types: proposal-level fusion [7], [8], [9], point-level
fusion [10], [11], [12], [13], and mid-level fusion [14], [15],
[16], [17], [18]. The proposal-level fusion methods, such as
[7], [8], and [9], extract image features by 2D backbones
and generate 2D proposals which are then mapped into 3D
space. Afterwards, the proposals are refined by the inside
point cloud features. However, the 2D proposal usually
contains a lot of background noise that causes plenty of wrong
detection [19]. To avoid background noise, point-level fusion
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methods enrich the point cloud data by image segmentation
results or project the points onto image pixels. For example,
[10] and [20] project the segmentation result into point
clouds, [11] uses image segmentation result to separate
3D point clouds, [12], [13] map the point clouds onto an
image to enhance the image features. However, according
to [18], point-level fusion methods suffer from inaccurate
image segmentation results while projecting images to point
clouds or missing the geometric information when projecting
point clouds to images, as well as the noise of calibration
parameters for projection [19]. Thus, [18], as a middle-level
fusion method, concatenates the BEV feature maps extracted
from both the camera and LiDAR sensors followed by a
bird-eye-view (BEV) encoder, which retains both geometric
structure and semantic information. This method further
boosts the 3D detection state-of-the-art performance, but we
consider that its inference speed is relatively slow because
the method cannot run in real-time on an advanced desktop
GPU (NVIDIA® GeForce® RTX 3090). So, in this work,
we propose a new LiDAR-camera fusion 3D detection
network G-Fusion with a new view-transform module which
is more direct and light.

Similar to BEVFusion [18], we also align themulti-sensory
features in the BEV latent level, since this way is capable
of maintaining both the geometric structure of LiDAR and
the semantic density of the camera [18]. Inspired by the
image 3D-detection method FastBEV [21], we propose a
light and fast feature projection approach for image view
transformation. Specifically, we generate a ground-voxel
space catching the image features aligned with the voxel
coordinate through LiDAR-camera extrinsic and camera
intrinsic matrices. With the help of this module, our method
runs two times faster than BEVFusion and three times faster
than TransFusion, and the detection accuracy of G-Fusion is
also decent on the nuScenes [22] detection task.

In addition, since our view-transform module depends on
the calibration extrinsic parameters, to explore the failure
boundary, we conduct experiments that add translation and
rotation disturbance to the extrinsic parameters, and the
experiment is detailed in Sec. V-B.

The main contributions of the G-Fusion are listed below:
• A new view-transform module with a projection mask is
designed to faster fuse the image feature to the LiDAR
BEV feature space.

• A novel LiDAR-Camera fusion 3D detection method
G-Fusion is proposed. The method is light and fast,
also with competitive performance on the nuScenes [22]
detection task.

• The calibration noise tolerance ability is fully analyzed
to verify the usability of the proposed model in real
driving scenarios.

II. RELATED WORKS
A. CAMERA-ONLY-BASED 3D DETECTION METHODS
LiDAR point clouds provide accurate depth information
but lack the rich semantic content found in images [19].

In addition, due to the high cost of LiDAR [23], many
researchers have focused on improving 3D target detection
by using images as inputs [24]. They achieve this by either
applying a network to learn depth information [25] or
employing a multi-view transformation technique to convert
images into stereoscopic representations like BEVs or 3D
voxels.

LSS [26] uses a depth estimation network to extract
implied depth information, generating a depth probability dis-
tribution. It projects features pixel by pixel onto the predicted
depth distribution, creating camera-truncated cones. These
cones are compressed vertically along the ground direction
and converted into BEV features, mapping 2D features to
BEV space. BEVDet [27] modularizes multi-camera 3D
target detection. Specifically, it uses ResNet [28] and Swin
Transformer [29] as backbone models, projecting image
features into the BEV space using LSS, combining features
of different resolutions in the BEV space, and employing the
first-stage 3D target detection head of CenterPoint [30].

DETR3D [31] utilizes the transformer structure, decoding
each BEV query as a 3D reference point. Then DETR3D
transforms the reference points into the image space and
extracts 2D features from relevant image locations for object
query refinement. For the training process, it uses set-to-
set loss. BEVFormer [32] is also based on transformer.
It uses spatial and temporal self-attention to allow BEV
queries to aggregate multi-view features and extract temporal
information, which improves the estimation speed and the
target detection that is heavily occluded.

FCOS3D [33] presents a target detection framework.
It translates a 7-degree-of-freedom 3D target into the
image domain, detects objects of various sizes through
feature pyramid network (FPN) layers, and employs different
prediction heads for 3D box prediction based on different
attributes. Fast-BEV [21] leverages temporal information
throughmulti-frame feature fusion and introduces the fast-ray
transform to quickly transfer image features to the BEV
space. Its efficient BEV encoder speeds up on-vehicle
inference, proposing a benchmark on an on-vehicle chip.

B. LiDAR-ONLY-BASED 3D DETECTION METHODS
In nowadays autonomous driving systems, LiDAR serves
as a commonly used sensor, generating point cloud data
known for its characteristics of disorder, sparsity, and
irregularity [34]. To streamline data processing, researchers
have traditionally converted this point cloud data into either
regular 3D voxels [6] or collections of images [35]. However,
this practice often results in unwarranted data inflation and
potential loss of valuable information [36].
PointNet [35] introduces a groundbreaking deep neural

network that offers a unified approach to various 3D
recognition tasks. It takes the number of original point clouds
and the 3D information of each point as input, preserving the
critical alignment invariance of the input data. This method
paves the way for the DeepLearning-based point cloud
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perception approaches. PointRCNN [37] adopts a two-stage
detection methodology for 3D target detection from original
point clouds. In the first stage, the network segments
the original point cloud into foreground and background
points, learning point-by-point features, and simultaneously
generating high-quality 3D proposals from the foreground
points. In the second stage, a sub-network converts each
proposed set of points to canonical coordinates, refining local
spatial features. These features are combined with the global
semantic features of each point learned in the first stage for
precise box refinement and confidence prediction.

Vote3deep [38] presents a unified strategy for rasterizing
point clouds into 3D voxels. During this process, each voxel
cell is assigned features extracted or designed manually.
A voting-based method then estimates the centre and
orientation of the point cloud within each voxel, generating
candidate bounding boxes. These candidates undergo clas-
sification to identify target objects and fine localization for
precise target location and shape determination. This method
simplifies point cloud analysis but necessitates manual
feature selection and design for specific scenarios, potentially
overlooking complex point cloud structures. VoxelNet [6]
directly processes sparse 3D point clouds by subdividing
3D space into equal-sized voxels and utilizing the network
to learn features from nonempty voxels. This approach
eliminates the need for labour-intensive handcrafted feature
representations, efficiently capturing 3D shape information.
However, the substantial computational demands of VoxelNet
pose challenges for real-time applications. To address this,
SECOND [39] applies improved sparse convolution to radar-
based networks, greatly enhancing training and inference
speed. Additionally, SECOND introduces a novel data
augmentation technique: randomly injecting a Ground Truth
(GT) point cloud into the training data, accompanied by
collision testing. This approach significantly accelerates con-
vergence speed and performance. Nevertheless, SECOND
retains the costly 3D convolution layer.

PointPillars [40] transforms raw point cloud data into a
stacked column tensor and a column index tensor. From
these stacked columns, the encoder facilitates the learning
of features to be reassembled into a 2D pseudo-image.
This enables subsequent processing with 2D convolution,
achieving further computational efficiency. In the case of
CenterPoint [30], the first stage employs a standard 3D
backbone to extract map-view features from radar point
clouds. It then employs a 2D CNN detection head to locate
the object centre and regress the 3D box using center point
features. The second stage extracts a point feature from the
3D centre of each face of the predicted 3D box, concatenating
these features into anMLP for box refinement and confidence
score prediction.

3DETR [41] is an end-to-end trainable transformer that
processes point clouds. In its second stage, it extracts a
point feature from the centre of each face of the predicted
3D box and concatenates these features into an MLP
for box refinement and confidence score prediction. The

3DETR system involves downsampling and set-aggregating
the original point cloud through the MLP. In the encoder,
3DETR employs the multiple-layer self-attention to generate
a set of per-point features. Following this, in the decoder,
these features are combined with Query embeddings to
generate a set of 3D frame predictions.

C. LiDAR-CAMERA-BASED 3D DETECTION METHODS
To combine the accurate depth information of LiDAR point
clouds with the rich semantic content of images, researchers
have explored various integration approaches:

Frustum PointNets [7] leverages a 2D CNN target
detection network to generate a 2D region proposal. This
proposal is projected into 3D view cones, and PointNet
is utilized to segment the point cloud inside each view
cone into foreground and background points. Finally, the
foreground points are processed through PointNet for 3D box
prediction and regression. PointPainting [10] projects object
edge information from camera images onto the LiDAR point
cloud. This process enriches the point cloud data by providing
additional geometric information. By using projected image
edge information to guide LiDAR point cloud processing,
the network can more accurately distinguish dynamic objects
from static environments, to improve the target detection
robustness.

EPNet [14] introduces a two-stream Region Proposal
Network (RPN). The image stream employs 2D convolution
to extract semantic image features, while the geometric
stream directly extracts features from the point cloud through
Set Abstraction and Feature Propagation layers. These
features are then enhanced with corresponding semantic
image features at different scales using the LI-Fusion
module to obtain more discriminative feature representations.
RoarNet [8] employs Faster R-CNN to extract features from
input images and predict the target’s 3D pose and 2D
bounding box. Following this, a geometric agreement search
is applied to determine the location prediction. A cylinder-
shaped region proposal is set around each location prediction,
and the point cloud data in each region proposal is passed
into the RPN module to generate a new region proposal.
Finally, the point cloud data in the new region proposal
is passed into the BRN module for 3D frame regression.
Transfusion [19] aims to enhance small object detection using
high-resolution images. It initializes the object query by
projecting image features into Bird’s Eye View (BEV) space
and performing cross-attention with LiDAR BEV features.
This approach establishes a soft correlation between point
cloud and image data, improving robustness on image quality
degradation and sensor misalignment.

PI-RCNN [12] introduces a new fusion module called
PACF. This module selects the nearest k points within a
specific range around each 3D point, projects them onto
the image feature map, retrieves corresponding semantic
features from the image, and combines them with the
geometric offsets of the 3D points. The semantic and
geometric characteristics of these k points are then fused
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FIGURE 1. The overview of G-Fusion. The top-right block shows the process of voxel BEV feature map extraction. Upon receiving input from
LiDAR, the point cloud first goes through a 3D-convolutional backbone and generates a 3D voxel feature map. Then within this feature map,
we integrate the height dimension into channels and derive a 2D feature map as a voxel BEV representation. The top-left block illustrates
the generation of the image BEV feature map. A CNN backbone is utilized to meticulously extract image features, followed by an FPN
structure. Leveraging our proposed v-transform module, the image features are projected into the BEV space and generate an image BEV
feature map. Then the voxel and image BEV feature maps are fused via concatenation and a convolutional layer. Finally, the decoder and
head further decode the fused features and predict the detection bounding boxes for different obstacle categories.

through a convolutional layer to obtain image features
with higher resolution and more semantic information.
BEVFusion [18] unifies images and point clouds in a shared
BEV space. Instead of mapping a single modality sensor to
another, it converts multi-modal features into a unified BEV
representation to preserve the semantic density information
of the camera and the geometry information of the LiDAR.

III. PROPOSED METHOD
The overview of our method is presented in Fig. 1. The
pipeline consists of five modules: feature extraction module,
view-transformmodule, fusion module, decoder module, and
detection head module. The structure and function of these
modules are illustrated in detail in the following subsections.

A. FEATURE EXTRACTION MODULE FOR IMAGES AND
POINT-CLOUDS
The input of the pipeline consists of both images and
point clouds. When given an image input, a pre-trained
CNN backbone (for example, ResNet [28]) is employed and
followed by an FPN to extract the image features. For the
point clouds, we choose a 3D-convolutional backbone (for
example VoxelNet [6]) to generate a 3D voxel feature map.
Then in this feature map, wemerge the height and the channel
dimensions and derive a LiDAR BEV feature map.

B. VIEW-TRANSFORM AND FUSION MODULE
This part aims to project the image features into a ground
voxel space and fuse with the LiDAR BEV feature map.
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FIGURE 2. Illustration of projection mask. The upper figure shows the
image features on the ground voxel space. The green dash line indicates
the features projecting to the correct object 3D position, while the red
line demonstrates the over-projection areas where the image features are
projected beyond the real object boundary. To erase these over-projection
areas, we calculate a projection mask. The mask is generated with the
help of the LiDAR feature map. As shown in the lower figure, we set 1 and
0 on the mask depending on if there exists LiDAR features, for example,
the features reflected from the vehicle. Therefore, utilizing the mask
would be able to avoid the projected voxel space carrying many
over-projection noises.

Firstly, similar to [21], we build a look-up table based
on the projection matrix calculated from the extrinsic and
intrinsic matrices. Secondly, with the table, we project the
features on the image feature map to the ground voxels to
be the image BEV feature map. The ground voxels are in
a voxel space where the width and length resolution is the
same as the LiDAR BEV feature map, and the layer number
of this voxel space is only one and located H meters lower
than the LiDAR coordinate origin, where H is the distance
between the LiDAR sensor and the ground. When the slopes
are ignored, this voxel space falls exactly on the ground, sowe
call it ground-voxel space.

Fourthly, to filter the over-projection area on the ground-
voxel space, as described in Fig. 2, a mask is generated
from the LiDAR BEV feature map. For details, since the
LiDAR features are sparse and fall on real-existing obstacles,
we set 1 on the mask where the LiDAR features exist. Finally,
we concatenate the image and LiDAR BEV feature maps and
fuse them through a convolutional layer.

C. DECODER AND DETECTION HEAD MODULES
In the decoder module, we use a feature-pyramid structure to
generate a dense representation in different receptive fields
from the sparse features on the fusion result mentioned above,
which could be beneficial to the detection of both large
objects (trucks, buses) and small obstacles (such as traffic

cones and pedestrians). we follow the detection head in [19]
to predict the size, location, and orientation of the object
bounding boxes.

IV. EXPERIMENT AND ANALYSIS
A. SETUP
1) DATASET SETTING
We choose nuScenes dataset [22] to evaluate our proposed
method. This is because nuScenes provides a rich set of
urban road scene data collected from LiDAR and a set of
cameras. All these cameras capture six views surrounding the
collection vehicle by 360 degrees.

2) EVALUATION METRICS
There are standard metrics for nuScenes datasets, which are
mean average precision (mAP) and nuScenes detection score
(NDS). The mAP metric evaluates the precision and recall of
prediction centre distance in the BEV view from the ground
truths with 4 thresholds 0.5, 1, 2, and 4 meters. The NDS
metric evaluates the comprehensive performance considering
mAP and several average errors towards translation, scale,
orientation, velocity, and attribute.

In addition, we also consider running speed as an essential
factor in evaluating detection performance. So, in addition
to mAP and NDS, following [44], we apply a new metric,
called NDS on each Computational Unit (NCU), which
can evaluate the running speed and detection performance
comprehensively. This metric is calculated as Eq. 1.

NCU = NDS × log(
Max Method Latency
Method Latency

+ 9) (1)

whereMax Method Latency indicates the running time of the
slowest method in the comparison group andMethod Latency
is the latency of the current method compared.

3) TRAIN SETTING
Our method is implemented in PyTorch. We choose
ResNet [28] as the image backbone network and VoxelNet [6]
as the voxel backbone network. In the training process, the
images are down-sampled and cropped to 256 × 704. The
vertical resolution of the LiDAR in nuScenes is 32-line,
which is relatively sparse compared to the novel 128-line
LiDARs. So, to provide a dense point cloud in the training
process, we apply a commonly used data augmentation
method that projects and merges the LiDAR points of sweep
frames into their key frames. We use a one-cycle scheduler,
similar to [45], with a max learning rate of 0.001 for
20 epochs. The optimizer is AdamW [46] with a weight decay
of 0.01. The training process is completed on a workstation
with 8 × NVIDIA® GeForce® RTX 3090 GPUs.

B. COMPARISON WITH STATE-OF-THE-ART METHODS
To quantitatively evaluate our proposed pipeline, we compare
G-Fusion with nuScenes benchmark methods, which depend
on different sensory conditions. In detail: PointPillars [40],
SECOND [39], and CenterPoint [30] are on LiDAR-only;
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TABLE 1. Experimental results of the comparison group on nuScenes validation dataset, where C and L mean camera and LiDAR, respectively. R18 and
R50 represent different layer numbers of ResNet backbones.

TABLE 2. Latency and MACs of each module in G-Fusion (ResNet50). The
running time of the proposed view-transform module is only around 6%
of the whole pipeline.

M2BEV [42], BevFormer [32], FastBEV [21] are on Camera-
only; PointPainting [10], FUTR3D [43], MVP [20], Trans-
fusion [19], and BEVFusion [18] are on LiDAR-Camera.
In addition to comparing the detection metrics, we also
measured the inference latency of networks running on a
single GPU.

The experiment result is shown in Tab. 1. Firstly, G-Fusion
outperforms the three camera-only methods by more than
30% (the percentages in the experimental section all rep-
resent the percentage increase compared to other methods).
We consider that this is because even though these camera-
only-based methods are with delicately designed 2D-3D
view-transform approaches, the lack of depth information
in images still highly harms the 3D perception capabil-
ity. Secondly, compared to LiDAR-only based methods,
G-Fusion is 7% better than the best CenterPoint on mAP
with lower MACs and shorter inference latency, which
shows the improvement brought by the image branch and
also proves the light computational burden of our proposed
view-transform module (also see Tab. 2). Thirdly, looking
at the LiDAR-camera-based methods, with the same image
backbone ResNet-50, the mAP and NDS of G-Fusion
are under 2% lower than BEVFusion. But considering
the inference latency, G-Fusion is over 100% faster than
BEVFusion. Thus, the NCU of our method is much higher
than BEVFusion. Overall, our method achieves the highest
NCU among the SoTAs, which illustrates that we find the best
balance between detection performance and running speed.

Furthermore, we also compile statistics on the time
consumption and computational cost of each module in
G-Fusion, as detailed in Table 2. From the table, it can be
seen that the time consumption of our view-transformmodule
only accounts for 6% of the entire pipeline, and aside from the
projection operation, the computational cost of this module is
negligible.

V. ABLATION STUDY
A. IMAGE FEATURES
From the image view-transform process described in
Sec. III-B, it is easy to find that G-Fusion only utilizes a
part of the image features which can be projected to the
ground voxels. This is different from those methods, such
as BEVFusion [18] and TransFusion [19], which use all the
image features. We will explain the reason for our design by
answering two questions:

• Why are fewer features used?
• Why only ground voxels?
To the first question: We consider that after CNN

backbones, the receptive field of the feature map is large,
so the feature vectors located on neighbouring pixels usually
carry similar context information. Therefore, only a few
of the feature vectors on the object would be enough to
represent the object’s feature information. To verify our
theory, we visualize the cosine similarity of neighbouring
image features using a superimposed heat map, as shown
in Fig. 3. From the figure, we can see that all the feature
vectors on or even a bit out of the bus carry similar
information to the yellow star-marked vector. So, as Fig. 3,
even though not all the feature vectors on the bus can be
projected onto the ground voxels and fused with the LiDAR
features, it is already enough to indicate that there is a bus
with semantic and geometric information from the image
branch.

To the second question: We think that less projection
means less calculation. The view-transformmodules of many
methods, such as FastBEV [21], project image features onto
the voxel layers. We analyze this as redundant. Firstly,
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FIGURE 3. Cosine similarity of the features on the image feature map. We input the images into the CNN backbone ResNet-18 [28] and derive latent
feature maps with a 256-channel vector on each pixel. Then we choose one vector located on the vehicle (the yellow star) as the query and calculate the
cosine similarity between the query and others. The temperature of the heatmaps visualizes the similarity values.

TABLE 3. Experimental result on nuScenes validation dataset, analyzing
the influence of different layer numbers and layer heights in the
view-transform process. In the last row we also ablate the projection
mask (w/o Proj-m) mentioned in Sec. III-B.

as discussed above, because of the large receptive field of the
image featuremaps after a CNNbackbone, the image features
projected to the voxels at the same vertical column may
carry very similar information. Secondly, to fuse with LiDAR
BEV feature maps, the projected voxel layers need to be
vertically compressed into BEV feature maps. Compressing
with a simple summarizing operation is light but would
harm the feature representation, while concatenation and
convolutional structures would bring heavy computational
overhead. Therefore, we only choose one voxel layer for
projection. But why do we choose the ground-voxel layer
instead of the others? Because although the higher voxel layer
easily carries the features from the big objects such as buses
and trucks, it is hard to get the small objects like traffic cones.
The much lower voxel layer is unreasonable since things

under the ground are ignored in the detection tasks. Thus,
we only choose the ground-voxel layer.

We conduct experiments to support our consideration, and
the detection performances are shown in Tab. 3. With only
one voxel layer, we compare the layers with heights between
−1.7 m and −0.2 m, which are located between the ground
and the upper half of the common objects (cars, pedestrians),
and the detection score is shown in the three rows of the
table. It can be seen that the detection performance with the
ground-voxel layer is better than that with the −0.2 m and
−1.0m layers, on average by 0.3 onNDS andmAP. The result
illustrates the rationality of our chosen height. In the upper
middle two rows, we compare the model performance with
different layer numbers. As described above, we have two
ways to compress the projection layers into one layer BEV
feature. Here we choose summarizing operation. Because
of the numerous feature channels in each project layer, the
concatenation and convolutional structures are expensive and
will cause memory management problems for GPU. From
the scores, we see that increasing the voxel layers does
not lead to performance improvement, so more projection
voxel layers are proved to be redundant. In addition, the
last row ablates the projection mask described in Sec. III-B,
and the performance decay proves the effectiveness of this
design.

What is more, the top row shows the performance
of the model trained under LiDAR-only conditions, and
the lower detection scores indicate that the camera
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FIGURE 4. Visualize calibration noise. We project LiDAR points onto an image and highlight them with red spots. We selected two distinct
markers and labelled them with yellow boxes. The corresponding projected point clouds are enclosed with blue boxes. As observed, with
increasing noise levels, the discrepancy between the green and blue boxes continues to widen.

branch works effectively with the proposed view-transform
module.

B. INFLUENCE FROM CALIBRATION ERROR
Detection by multi-sensor fusion needs accurate extrinsic
calibration between sensors. However, there are unavoidable
vibrations in real autonomous driving scenarios, leading to
biases in extrinsic parameters [47]. Thus, in this subsection,
we experiment to analyze the impact of calibration errors at
different levels. The experiment is divided into two parts.
In the first part, the noise is added both to the training
and validation process, then we observe the decline in the
detection performance. In the second part, we train our
model with ground-truth calibration extrinsic but add noise
to the data during the validation process. In these two parts,
the noise contains both translation noise and rotation noise.
The translation noise is a uniform distribution on x, y, and z

axes. The rotation noise is also set as a uniform distribution
on all the row, yaw, and pitch axes.
For the first part, the experimental result of the first part

is shown in Tab.4. In this table, the models are evaluated
under two conditions: with and without noise. From the
statistical results we can see that with the training noise level
shown in the table, the without-noise validation performance
has barely dropped, with less than 0.5% under the two
metrics. The with-noise validation scores decline slightly
higher than above but no more than 1% decreases on both
mAP andNDS. These phenomena indicate that ourmodel can
tolerate the calibration noise under the ±50 cm translation
and ±2.5◦ rotation bias level for training and inference.
Furthermore, we can see that in training with ±10 cm
translation noise and ±0.5◦ rotation noise, the without-noise
validation performance does not decline but even shows little
increase. This illustrates that adding low-level calibration
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TABLE 4. Performance decay of our model with increasing calibration noise on both training and validation datasets. Both the translation noise and
rotation noise adhere to a uniform distribution, measured in the centimetre scale and degree scale, respectively.

FIGURE 5. Qualitatively visualize the statistics in Tab. 5. When evaluating the performance under increasing noise
conditions, it becomes evident that the camera branch demonstrates a notable decline in detection capability. But,
as long as the noise level is maintained below thresholds of 100 cm and 3.5◦, this camera branch can provide a
positive contribution to the overall detection performance.

noise to train data can be taken as a data augmentation
strategy to improve model performance.

For the second part, training with ground-truth calibration
extrinsic, we separately analyze the translation and rotation
noises of the calibration parameters and observe the per-
formance decay. To evaluate the fused feature, we make a
definition of the model failure boundary. The boundary is set
as the inference performance on the nuScenes dataset when
removing the camera input, which is under the condition that
the model is trained with both LiDAR and camera branches
with accurate calibration parameters. Lowering the boundary
means that the bad calibration extrinsic results in the image
information contribute negatively to the fusion network.
The score of the failure boundary is shown in Fig. 5 with
black dash lines. Noise condition and detection scores are
shown in Tab. 5 and Fig. 5, quantitatively and qualitatively.
From the table and graphs, we see that with lower than
20 cm translation noise, the performance barely changes,

and increasing the noise to 50 cm, the model performance
only drops less than 0.6%, which is far away from the
failure boundary. Therefore, our method demonstrates strong
resistance to translation noise. However, as the pure rotation
calibration noise rises, our method suffers an observable
performance decline. With the bias of less than 0.5◦, the
detection scores do not change, but when the noise level
increases to 2.5◦, the detection mAP drops by nearly 2.4%,
and the performance passes the failure limit before 5◦. With
both the translation and rotation noise, we find that the
model is mostly influenced by the angle error because the
detection score under combined noise is nearly as same as
under pure rotation noise. In conclusion, under calibration
noise lower than 100 cm and 3.5◦ bias on three axes, the
camera branch can work positively and contribute to the
detection accuracy, which we believe is robust enough to deal
with the vibration disturbances in real autonomous driving
scenarios.
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TABLE 5. Decline in our model performance with increasing calibration noise only on the validation dataset. Same as Tab. 4, the noise in translation and
rotation both align with a uniform distribution, quantified in terms of centimetres and degrees, respectively.

VI. CONCLUSION
This paper designs a lightweight 3D detection method
G-Fusion based on LiDAR and Camera. According to
the analysis of the receptive field of image feature maps,
a light feature projection module is proposed and highly
accelerates the image view transformation compared with
the other fusion detection methods. Also, G-Fusion achieves
competitive performance on nuScenes datasets with two
times faster running speed than the SoTAs. In addition,
considering practical application scenarios, we conduct
experiments to analyze the tolerance ability of G-Fusion to
the LiDAR-Camera calibration bias. Experimental results
show that the camera branch can positively support the
detection performance as long as translation and rotation bias
are lower than 100 cm and 3.5◦, proving the usability of our
method in real driving scenarios.
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