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ABSTRACT In recent times, the limited availability of fossil fuels and growing concerns regarding the
emission of greenhouse gases (GHGs) have directly impacted the shift from conventional automobiles to
electric vehicles (EVs). Additionally, there have been notable advancements in new energy research, which
have significantly improved the viability of EVs. Consequently, EVs have gained widespread recognition
and have been rapidly adopted in many countries worldwide. However, the rapid growth of EVs has given
rise to several challenges, such as insufficient charging infrastructure, unequal distribution, high costs, and
a lack of charging stations, which have become increasingly significant. The limited availability of charging
facilities is hindering the widespread adoption of EVs. However, as more people embrace EVs, there has
been a growth in the installation of electric vehicle charging stations (EVCSs) in public locations. Recent
research has focused on identifying the ideal locations for EVCSs in order to assist the electrification of
transport systems and meet the growing demand for EVs. A well-developed EVCS infrastructure can help
address some key issues facing EVs, such as pricing and range limitations. Researchers have used various
methodologies, objective functions, and constraints to formulate the problem of identifying the best sites for
EVCSs. Current research is focused on determining the best locations for EVCSs. This endeavor intends
to ease the transition to electrified transport networks while also addressing the growing demand for EVs.
This review article explores various optimization techniques to achieve optimal solutions while considering
the impact of EV charging load on the distribution system (DS), environmental implications, and economic
impact. The research used a standard IEEE 33-bus radial distribution system (RDS) with a full variety of
potential energy sources to improve understanding of the subject. The use of the bald eagle search algorithm
(BESA) and cuckoo search algorithm (CSA) aided in the best identification of energy source locations
and their relative capacities. In addition, the examination of EV charging techniques, including both the
traditional charging technique (TCT) and the innovative charging technique (ICT), is being undertaken to
assess the effectiveness of these approaches. The study included ten separate scenarios, each of which was
thoroughly evaluated to demonstrate the individual and synergistic usefulness of various energy sources in
mitigating the effects of EV charging on the DS. The collected data from the empirical inquiry was aggregated
and thoroughly analyzed.

INDEX TERMS Electrical vehicles, electric vehicle charging stations, bald eagle search algorithm, cuckoo
search algorithm, renewable distributed generations, distribution static compensator, battery energy storage
system, capacitor, innovative charging technique, radial distribution system.
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I. INTRODUCTION

In modern times, the emergence and widespread adoption of
alternative energy sources have garnered significant atten-
tion worldwide. This has led to the rise in the popularity
of electric vehicles (EVs) as a symbol of the progress and
implementation of these new energy technologies [1]. In the
past decade, there has been a notable surge in the demand
for EVs attributed to their remarkable capacity for reducing
carbon dioxide (CO,) emissions [2], along with their cost-
effectiveness in operations compared to conventional internal
combustion engine (ICE) vehicles [3]. Studies have indi-
cated that by 2030, EVs could potentially contribute to a
noteworthy 28% reduction in CO; emissions [4]. The rising
prevalence of new energy vehicles has consequently gener-
ated an increased need for accessible electric vehicle charging
stations (EVCSs). Nevertheless, during the transition to EVs,
the general public encounters two major challenges: the
relatively high upfront costs of EVs and the insufficient avail-
ability of EVCSs [5]. The integration of EVs and EVCSs into
DS carries significant systemic implications, encompassing
heightened electrical losses, alterations in voltage profiles,
and potential congestion in power lines. Moreover, the cur-
rent absence of efficient fast EVCS further exacerbates the
underlying strain on power demand, exerting an impact on the
overall electrical grid dynamics [6]. As a result, the precise
determination of optimal EVCS placements has emerged as
a pivotal focal point in scholarly research.

According to one study, the EV market will be worth USD
974 billion by 2027. This expansion is fueled by a strong
compound annual growth rate from 2020 to 2027, which
is affected by global industries and governments [7]. The
rising global use of EVs offers new problems for DS infras-
tructure and operators. Elevated electrical power needs, bus
voltages, power loss, stability, harmonic distortion, voltage
mismatches, and power efficiency are all potential difficul-
ties. These elements, taken together, have the potential to
have a significant impact on the DS. Notably, experts high-
light the scarcity of EV charging infrastructure as a major
worry. The increased popularity of EVs has created a demand
for more dependable EVCS capable of quickly refilling EV
battery charges. This necessity has given rise to the concept
of fast charging, which allows for the quick charging of EVs
in as little as 20-30 minutes [8]. However, the deployment of
fast charging has some constraints, particularly in terms of
its impact on the DS. To address this issue, EVCSs must be
meticulously planned [6]. Significant research has recently
been spent to understanding the appropriate placement of
EVCSs and the ramifications for the DS [9].

This study’s researchers investigated several strategies for
locating EVCS. These strategies include those used by distri-
bution network operators (DNOs), EV customers, and EVCS
owners. While several studies have focused on the tactics
used by investors in EVCS, there has been no extensive
research into the perspectives of EV users regarding the best
placement of EVCS. Prior research has looked into the DNO
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technique for EVCS deployment, which focuses on minimiz-
ing bus voltage fluctuations, reducing overall power loss, and
improving DS reliability.

The global sales of electric vehicles (EVs and PHEVs)
are illustrated in Figure 1. The Electric Vehicle World
Sales Database predicts that the EV industry will generate
$457.60 billion in sales by 2023, with revenue expected
to grow at a 17.02% annual rate (CAGR 2023-2027).
This growth is expected to result in a market volume of
US$858.00 billion by 2027, with projected unit sales of
16.21 million cars. The volume weighted average price of
EVs is estimated to be US$53.19k in 2023. China is antic-
ipated to earn the most considerable income in 2023, with
a forecasted revenue of US$190,400.00 million [10]. These
statistics highlight the significant impact of EVs and EVCSs
in modern society, with the International Energy Agency
predicting global EV sales to reach 16.21 million.

World's EV Sales Statistics
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FIGURE 1. Yearly world’s EV sales statistics.

In recent times, the rise in EVs and the corresponding
expansion of charging infrastructure have presented a range
of challenges for the existing electricity DS. Researchers have
extensively delved into addressing these challenges, focusing
on the effects of EVs on electricity generation capacity, aging
of transformers, and power quality within the DS. It is antic-
ipated that the act of charging EVs during periods of peak
demand could potentially result in an escalation of peak load
requirements, consequently necessitating the augmentation
of power generation capabilities. Furthermore, the increased
demand for EV charging has the potential to strain substation
and service transformers, thereby shortening their operational
lifespans. The integration of EVCS may also introduce power
quality complications like voltage fluctuations, imbalances in
power distribution, and disturbances in voltage/current wave-
forms [11]. Nonetheless, the quantity and strategic placement
of EVCSs are influenced by a variety of factors, encompass-
ing economic considerations for operators, the satisfaction
levels of EV drivers with the available charging amenities,
vehicle energy efficiency, traffic flow in the transportation
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network, and the overall stability of the power grid. While
EVs offer substantial environmental and economic benefits,
the strategic deployment of charging infrastructure must be
a meticulously calculated endeavor to effectively meet the
requirements of EV users [12].

The primary goal of this review article is to examine vari-
ous issue formulations offered by researchers to establish the
appropriate allocation of EVCSs and discover the optimum
solution using multiple solutions. The significant contribu-
tions are summarized here.

i. This article provides an overview and comparative study
of several issue formulation methodologies for EVCSs
placement used by researchers. Each strategy comprises
of various goal functions for placing the EVCSs. As a
result, all techniques of placing the EVCSs have been
evaluated in this work.

ii. This paper provides a comprehensive review of the
objective functions and constraints in formulating the
problem of identifying optimal sites for EVCS. The
study also explores various solution strategies for achiev-
ing the optimal solution to this problem.

iii. This study also examines the impact of EV load integra-
tion on current distribution networks.

iv. This article provides a thorough examination of the ben-
efits and drawbacks EVCS on DS.

v. This article presents a comprehensive evaluation of var-
ious EV types and EVCSs from different perspectives.

vi. This article discusses the optimization methods utilized
for determining the appropriate sizing and placement
of EVCS while considering multiple objectives and
constraints.

vii. Addressing the vital problematic challenges and research
gaps in the EVCS allocation dilemma in the suggestions
and future directions section.

viii. To analyze the performance of various energy sources,
a case study was undertaken on a conventional IEEE
33-bus system with varied situations.

i. An innovative charging approach is suggested for EV
owners, enabling them to generate income through the
Vehicle-to-Grid (V2G) mode.

ii. Two optimization algorithms (BESA & CSA) have been
implemented in IEEE 33-RDS to show the effectiveness
of the proposed methodology.

Il. ELECTRIC VEHICLES TECHNOLOGY

EVs include various modes of transportation, such as trams,
metros, electric automobiles, electric trains, and trolley-
buses, which operate either fully or partially using electricity.
Although private EVs have received a lot of attention in recent
years, the technology that powers them is not new. It dates
back to the nineteenth century when lead-acid batteries were
used to power them. However, due to the higher energy
density of fuel, ICE vehicles outperformed EVs and were
more commonly used. Despite this, EVs have become more
mature and widely used in recent times.
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A. ELECTRIC VEHICLES MARKET

While several manufacturers provide a variety of EVs with
varying specifications, the global market for EVs in the
category of light-duty passenger vehicles has yet to expand
significantly. Despite the rapid growth of the EV sector, there
is still a long way to go to effectively reduce greenhouse
gas emissions and significantly reduce reliance on oil. There-
fore, much work must be done to increase the adoption and
market share of EVs to make a meaningful difference in
reducing carbon emissions and dependence on fossil fuels.
It is crucial to consider the possible economic impacts of
widespread EV adoption from both the perspective of EV
owners and the power grid [13]. One consideration is that
the addition of a high-power load represented by EVs to the
power system may result in increased fuel and generating
capacity costs [14]. Additionally, there may be an increase
in power losses on the grid, although this can be alleviated
by implementing regulated charging procedures [15]. On the
other hand, EV owners may experience various benefits, such
as lower operating costs due to cheaper electricity prices
in comparison to gasoline and greater efficiency of electric
motors (EMs) used in EVs versus ICEs used in traditional
gasoline-powered vehicles (ICEVs) [16], [17].

B. TYPES OF ELECTRIC VEHICLES

Different types of EVs can be classified based on their energy
converter, power source, and charging method. The energy
converter can either be an ICE or an EM that moves the vehi-
cle. The power source can be a battery, fuel cell, or gasoline.
Additionally, EVs can charge from an external source such
as a charging station or home charger. Figure 2 illustrates the
fundamental structure of different EV types. The subsequent
sections provide a brief overview of these various types [18].

1) HYBRID ELECTRIC VEHICLE (HEV)

HEVs are similar to ICEVs, except they have a larger electric
motor and battery. At low loads, the battery can be charged
using regenerative braking and the ICE. At lower speeds,
the vehicle is typically powered by the battery and EM,
while the ICE takes over at higher speeds. Moreover, the
electric motor can assist the ICE during high-load situations,
improving the car’s efficiency and performance. HEVs are
environmentally friendly, emitting fewer greenhouse gases
and consuming less fuel compared to ICEVs. The current
model does not make use of EV chargers to obtain power
from the DS. As a result, its impact on battery charging and
inability to provide electrical services is negligible. HEVs
are available in a variety of configurations, including series,
parallel, series/parallel, mild, and complicated HEVs. In the
following section, we will look at a series/parallel plug-in
hybrid electric vehicle (PHEV). Figure 2(i) depicts the fun-
damental similar HEV layout.

2) PLUG-IN HYBRID ELECTRIC VEHICLE (PHEV)
This vehicle is classified as a HEV, capable of charging its
battery through regenerative braking, the ICE, and an external

VOLUME 12, 2024



T. Yuvaraj et al.: Comprehensive Review and Analysis of the Allocation of EVCSs

IEEE Access

(i) Hybrid Electric Vehicle (HEV)

(i) Plug-In Hybrid Electric Vehicle
(PHEV)

(iii) Battery Electric Vehicle (BEV) ‘

(iv) Fuel Cell Electric Vehicle
(FCEV)

FIGURE 2. Various types of EVs.

EV charger. To improve its electric range, it features a higher
electric motor (EM) power, a smaller ICE, and a larger battery
capacity than a typical HEV. It can operate solely on elec-
tricity powered by the EM, resulting in zero GHG emissions.
However, due to its relatively low battery capacity, its impact
on the electric power system is predicted to be minor, with
limited ability to provide electricity services. The parallel
PHEV configuration can be applied to any hybrid system.
See, Figure 2(ii) for an essential representation of the similar
PHEYV setup [19].

3) BATTERY ELECTRIC VEHICLE (BEV)
As battery technology advances and prices drop, BEVs are
poised to become the dominant form of EV. BEVs rely solely
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on electric motors powered by batteries, with no ICE. Its
battery capacity determines the range of a BEV, and one of its
main advantages is its ability to produce no local emissions,
making it a desirable option in densely populated urban areas.
Different EV chargers can be used to charge the battery from
the DS. While different companies may have variations on
this basic design, the core configuration and primary compo-
nents are illustrated in Figure 2(iii).

4) FUEL CELL ELECTRIC VEHICLE (FCEV)

FCEVs are fuel cell electric vehicles that, unlike BEVs, use a
fuel cell to create electricity from hydrogen rather of relying
on a battery to store energy. The procedure entails refuel-
ing the vehicle with hydrogen, which is then transformed
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from chemical energy to electrical energy by the fuel cell
and used to power the vehicle’s motor. Hydrogen can be
obtained through processes such as natural gas extraction
or water electrolysis. FCEVs, like standard ICE vehicles,
have the advantage of quick refueling. Figure 2(iv) depicts
the essential configuration of an FCEV, with the option of
incorporating a battery and super capacitors. It’s worth noting
that when a battery isn’t used, FCEVs put no load on the
power system because they don’t require charging from the
power grid [20].

C. CHARGING AND DISCHARGING METHODS

Charging strategies are classified into two types: unidirec-
tional charging and bidirectional charging. The method of
transmitting energy solely from the electrical grid to an
EV is referred to as unidirectional charging. This includes
strategies such as uncontrolled charging, delayed charging,
and regulated charging. Bidirectional charging, on the other
hand, lets electricity to flow both ways, allowing the EV to
not only collect power from the grid but also feed power
back into the system or other energy users such as buildings
and residences. V2X (vehicle-to-everything) system help to
realize this capability. Figure 3 depicts the various charging
and discharging methods that are used in EVCS [21].

Charging/Discharging

Methods

—

> l Bidirectional

ﬂ—ll Unidirectional <+
| —»"
| _>" Controlled Charging
—F" Delayed Charging

FIGURE 3. Various types of charging and discharging methods.

Uncontrolled
Charging

Vehicle-to-everything
(V2X)

1) UNCONTROLLED CHARGING

The most common method for charging EVs is similar to
the way used to charge other rechargeable devices such
as laptops and smartphones. This requires connecting the
EV to a charger, which administers power at full capacity
until the vehicle’s battery reaches full charge, which is nor-
mally 100% charge. This charging method is also known
as uncoordinated, or uncontrolled charging. Nonetheless,
numerous research papers have shown the negative effects of
unregulated EV charging on DS. These implications include
increased peak load demands, overloaded transformers and
cables that result in shorter lifespans, voltage dips, and sys-
tem imbalances caused by single-phase chargers, magnified
power losses, and increased harmonic distortion [22], [23].
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2) DELAYED CHARGING

Delayed charging can be an effective way to prevent the
negative consequences of uncontrolled charging of EVs.
This involves taking advantage of variable electricity pricing
offered by utility companies, where electricity costs are lower
during off-peak hours and higher during peak hours. Instead
of regulating charging power, delayed charging encourages
EV owners to charge their vehicles during off-peak hours,
which can maximize both their utility and the utility of the
power grid. This approach is also called on-peak or indirectly
regulated charging with time-of-use pricing. By implement-
ing an ideal pricing structure that incentivizes charging during
low-cost hours, delayed charging can help control the timing
of EV charging cost-effectively and sustainably [24].

3) CONTROLLED CHARGING

When compared to uncontrolled charging, delayed charging
is a more advantageous technique for reducing the demand
on DS. It does, however, have certain restrictions. Regulated
charging offers a feasible solution to these disadvantages.
Using data from the DS, this strategy entails careful mon-
itoring of both the charging schedule and the power levels
of EVs. Such information includes overall power consump-
tion, transformer capacity utilization, voltage stability, power
efficiency, and other pertinent characteristics. Furthermore,
by considering the EV as a managed load, regulated charging
provides the extra benefit of potential cost savings. This
method is known as synchronized or smart charging, and it
can be efficiently implemented using one of three control
frameworks: centralized, decentralized, or autonomous [25].

D. V2X TECHNOLOGY

V2X, or vehicle-to-everything, represents a comprehen-
sive energy technology paradigm. In this concept, EVs are
regarded as mobile batteries, where the stored energy within
the vehicle can be discharged for various purposes, depending
on the specific application.

V2X technologies offer a range of advantages for both
vehicle owners and grid operators, including:

Grid Flexibility: V2X services provide grid operators with
an accessible power source that can be utilized during peak
energy demand periods. This can involve either directly feed-
ing energy back into the grid or temporarily fulfilling the
power needs of buildings, homes, or other loads.

Compensation Opportunities: Vehicle owners, such as
school districts and other operators, have the potential to
receive financial compensation for the V2X services they
offer to the electric grid. This compensation may be provided
in the form of an electricity bill credit, offsetting other elec-
tricity consumption at the site.

Emergency Preparedness: During emergencies, when
there may be power outages or disconnects from the electric
utility, V2X services can step in as a reliable backup power
source for shelters, homes, command centers, and other crit-
ical locations.

VOLUME 12, 2024



T. Yuvaraj et al.: Comprehensive Review and Analysis of the Allocation of EVCSs

IEEE Access

Renewable Energy Support: V2X technology facilitates
the more efficient utilization of energy derived from renew-
able sources. It achieves this by storing excess renewable
energy during periods of abundance and releasing it when
demand exceeds supply. This helps to optimize the use of
clean energy resources.

Various types of V2X technologies are integral to the EV
ecosystem, enabling interactions and exchanges of energy
and information between vehicles and their surroundings.
Some of the key V2X technologies in EVs include:

1) VEHICLE TO GRID (V2G)

EVs are being extensively researched for their ability to con-
tribute electricity to the power grid and serve as decentralized
energy storage units. Engineers are working on bidirectional
EV chargers, which allow electricity to flow in both direc-
tions: from the grid to the EV for charging and back to the grid
for discharging. This novel technique offers two operational
options. To begin, extra power can be used to charge EVs
during periods of excess electrical supply (known as Grid to
Vehicle or G2V mode). Second, when there is heavy demand
and insufficient energy generation, EVs can feed power back
into the grid, improving the DS’s efficiency and dependabil-
ity [26]. The increasing popularity of EVs has altered utilities’
perceptions of EVs. They are no longer viewed only as power
users, but as potential electricity suppliers. As a result, the
relationship between EVs and power system management
bodies like the DSO has grown in importance. The DSO
is responsible for ensuring that the power system operates
reliably. Notably, V2G technology may perform a wide range
of grid activities, including frequency management, provision
of spinning reserves, integration of renewable energy sources
(RES), peak load mitigation, and load balancing facilita-
tion [27].

2) VEHICLE TO BUILDING (V2B)

V2B is a mode similar to V2G, but it functions differently
in that it only interacts with buildings and not with the grid.
It allows EVs to power buildings to utilize the energy stored
in their batteries. This mode is beneficial during peak load
times and power outages. EV batteries can operate in two
modes, G2V and V2B. During low power demand and excess
electric power generation, the battery charges in G2V mode
at a low cost. However, during peak hours when power prices
are high, the battery switches to V2B mode and supplies the
building loads. These processes help balance power demand
and supply and optimize energy usage [28].

3) VEHICLE TO HOME (V2H)

The concept presented here is similar to V2B, focusing on
a single residence and EV. The EV is engineered to intake
electricity from the household while also being capable of
supplying power back to the home when necessary. This
arrangement involves a simpler design in contrast to V2G
and V2B setups, and offers a more limited range of electrical
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services to the overall power grid. Its primary objective
revolves around diminishing the energy consumption of the
household during peak usage hours, thereby contributing to
a more evenly distributed daily energy consumption pattern.
Moreover, surplus energy produced by local sources like PV
panels or wind turbines can be stored within the EV’s battery
for subsequent utilization. [29].

4) VEHICLE-TO-VEHICLE (V2V)

Vehicle-to-vehicle (V2V) communication stands as a piv-
otal technology in the realm of connected transportation.
It enables direct communication between vehicles in close
proximity, allowing them to share crucial information such
as speed, position, and direction. This real-time exchange of
data empowers vehicles to anticipate and react to each other’s
movements, significantly enhancing road safety and mitigat-
ing the risk of accidents. V2V technology holds immense
promise in revolutionizing traffic management, enabling fea-
tures like adaptive cruise control, emergency braking, and
cooperative merging, ultimately contributing to a safer and
more efficient transportation ecosystem [30].

5) VEHICLE-TO-LOAD (V2L)

Vehicle-to-Load (V2L) technology represents a pivotal
advancement in the realm of EVs, enabling them to serve
as mobile power sources. With V2L capabilities, EVs can
discharge stored energy back into the grid or directly power
electrical devices. This versatile functionality holds immense
potential in various scenarios, from providing emergency
backup power during outages to supporting off-grid activi-
ties. V2L not only enhances the overall grid resilience but
also empowers consumers to leverage their EVs as dynamic
energy assets, ushering in a new era of decentralized and
sustainable energy solutions [30].

6) VEHICLE-TO-DEVICE (V2D)

Vehicle-to-Device (V2D) technology is a pivotal sub-domain
within the broader landscape of Vehicle-to-Everything
(V2X). V2D facilitates seamless communication and data
exchange between EVs and various electronic devices,
including smartphones, tablets, laptops, and wearables. This
technology enables EV owners to remotely monitor and
control their vehicles, offering features like pre-conditioning
the car’s interior, checking charging status, and locating the
vehicle. V2D holds significant potential for enhancing user
convenience and optimizing EV performance by allowing
efficient data transfer and interaction between the vehicle and
personal devices. Additionally, it contributes to the devel-
opment of smart and interconnected mobility ecosystems,
supporting the growth of EV adoption and fostering user
engagement in sustainable transportation [30].

7) VEHICLE-4-GRID (V4G)
Vehicle-for-Grid (V4G) technology represents a pioneer-
ing advancement in the realm of electric mobility. Unlike
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conventional approaches where vehicles primarily draw
energy from the grid, V4G enables EVs to serve as active
contributors to grid stability and energy management. In this
paradigm, EVs are equipped with bidirectional charging
capabilities, allowing them not only to charge from the grid
but also to discharge excess energy back when needed. This
innovative two-way flow of electricity transforms EVs into
dynamic grid assets, capable of alleviating peak demand
periods and supporting the integration of renewable energy
sources. V4G not only optimizes the utilization of the existing
grid infrastructure but also paves the way for a more sustain-
able and resilient energy ecosystem [30].

8) STANDARDIZING V2X TECHNOLOGY FOR SEAMLESS
INTEGRATION

The international energy agency (IEA) has emphasized the
need for comprehensive market, social, and technological
steps to be taken by actors and stakeholders for the successful
application of V2X technology. While numerous studies have
explored strategies, operations, and technologies related to
V2X application, they often fall short in addressing the essen-
tial operational framework and standards necessary for V2X
implementation. A dedicated survey delved into the devel-
opment of new design processes and standards specifically
tailored for V2X implementation. Several prominent orga-
nizations are actively engaged in formulating standards and
grid codes for utility interface. Key standard-setting bodies
include the international electro technical commission (IEC),
Society of automotive engineers (SAE), Institute for electrical
and electronics engineering (IEEE), Infrastructure working
council (IWC), and international organization for standard-
ization (ISO). Notably, SAE and IEC have introduced distinct
standard groups. SAE’s classification of chargers encom-
passes three DC levels and three AC levels, with on-board
chargers utilizing AC 1 and 2 levels, and off-board chargers
utilizing all DC levels due to the high power demand of
DC charging. AC Level 3 is also employed for off-board
charger applications. For the effective deployment of V2X,
the establishment of fast charging requirements is impera-
tive. Presently, the fast chargers available in the market are
designed based on IEC standards, with four primary types:
the combined charging system (CCS), Tesla supercharger,
Charge de move (CHAdeMO), and 43KW AC. Among these,
CCS and CHAdeMO emerge as the most prevalent fast charg-
ers and play a critical role in facilitating V2X application
implementation. These fast chargers adhere to the standards
stipulated by the European automobile industry and beyond,
ensuring a standardized approach to V2X integration [30],
[31], [32].

9) GLOBAL V2X PROJECTS ADVANCING EV INTEGRATION
AND SUSTAINABLE ENERGY

The widespread adoption of V2X technologies is garner-
ing significant attention from both researchers and industry
experts due to its wide-ranging benefits for EV owners and
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society at large. By enabling more efficient and flexible uti-
lization of energy resources, V2X empowers EVs to serve
as distributed energy resources (DERSs), contributing to grid
stability and facilitating the integration of renewable energy
sources. Reports have indicated enhanced vehicle efficiency
and reduced greenhouse gas emissions and air pollution
with the proliferation of millions of EVs globally. Govern-
ments worldwide have recognized the pivotal role of EVs
in their emissions reduction strategies, with 2020 witnessing
a remarkable 43% surge in global EV sales, resulting in an
unprecedented 4.6% market share for the EV sector. Research
suggests that V2X services hold the potential to unlock
nearly 600 GW of flexible capacity across major regions like
China, the United States, the European Union, and India.
This adaptable capacity stands poised to mitigate fluctuations
in renewable energy generation during peak periods. Projec-
tions indicate that by 2030, V2X could obviate the need for
generating 380 TWh of power during peak demand in these
regions. Opting for V2X from EVs over fossil fuel-based
generation during high-demand periods could translate to a
substantial reduction of 330 million tons of CO, emissions
on a global scale. This section provides an overview of sig-
nificant completed and ongoing large-scale V2X technology
projects worldwide, encompassing V2G, V2B, V2L, V2H,
and V4G technologies [31].

10) CHALLENGES AND BARRIERS IN
VEHICLE-TO-EVERYTHING (V2X) INTEGRATION

As EVs continue to gain momentum worldwide in response
to environmental concerns, with substantial growth in sales
due to government incentives, this shift extends beyond cars
to encompass a range of transport modes, from trucks and
buses to trains. Simultaneously, infrastructure enhancements
are underway to support this transition. While the EV indus-
try witnesses ongoing research addressing concerns such as
battery degradation, V2X technology emerges as a crucial
component for integrating EVs with the grid and other sys-
tems. V2X offers numerous benefits and services, yet it is
not without its share of challenges and limitations that require
careful consideration [33], [34].

11) BARRIERS TO WIDESPREAD ADOPTION OF EVS AND
V2X TECHNOLOGY

Numerous barriers hinder the broad adoption of EVs and
V2X technology. Technical challenges arise from consumer
unfamiliarity with these new technologies, concerns about
EV performance and durability, and ensuring a reliable sup-
ply chain of EV components. Infrastructural limitations,
including insufficient charging stations, a lack of mainte-
nance facilities, a limited variety of EV models, and the
need for a consistent power supply during charging, present
hurdles. Financial obstacles stem from the high initial cost of
EVs, uncertainties about their resale value, and operational
expenses. Behavioral barriers encompass a lack of consumer
awareness about the benefits of EVs and skepticism regarding
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their reliability and safety. Addressing these challenges is
crucial for the widespread adoption of EVs and V2X tech-
nology [30], [34].

12) FUTURE PERSPECTIVES AND CHALLENGES IN V2X
TECHNOLOGY IMPLEMENTATION

The implementation of EVs and V2X systems holds great
promise in terms of load management, energy storage, and
grid stability. However, several hurdles must be surmounted
to fully realize their potential. Key obstacles include the
deployment of necessary infrastructure, associated costs, and
their impact on the power grid. The V2X system, facili-
tating two-way communication between EVs and the grid,
presents a promising avenue to address frequency devia-
tions and reduce carbon emissions. Yet, it brings its own
set of challenges including handling generation uncertainty,
implementing robust controllers, mitigating communication
delays, and fortifying against cybersecurity threats. To navi-
gate these complexities and unlock the full potential of V2X
technology, future research and development efforts will be
crucial. This includes advancements in grid management
strategies, controller technology, and cybersecurity measures.
Additionally, policy frameworks and industry collaborations
will play pivotal roles in shaping the trajectory of V2X tech-
nology in the years ahead.

Ill. THE EFFECT OF EVS ON THE DISTRIBUTION SYSTEM
As the deployment of EVCSs continues to grow, it is becom-
ing increasingly clear that the existing DS will encounter
various challenges. Researchers have conducted extensive
studies on this topic. They have defined EV impact analysis as
evaluating EVs’ effects on multiple aspects of the power grid,
including the sufficiency of electricity generation, the aging
of transformers, and the efficiency of the DS. One notable
impact is that EV charging during peak load hours may
increase demand for peak load power, which may necessitate
an expansion of generating capacity. The rise in demand for
EVs poses a potential risk of overloading substations and
service transformers, which can lead to a decrease in their
overall lifespan. Additionally, EV charging can cause power
quality issues such as voltage dips, power imbalances, and
voltage/current harmonics. A diagram in Figure 4 illustrates
the potential effects of EV load on the DS, both positive and
negative. The impact of EV load on DS is further categorized
and explained in detail below. It is essential to consider and
address these issues when implementing and managing EV
charging infrastructure to ensure the stability and reliability
of the DS.

A. NEGATIVE IMPACTS

There is growing agreement that EVs have the potential to
considerably reduce GHG emissions, making them an appeal-
ing alternative to traditional gas-powered vehicles [35]. The
broad use of EVs, on the other hand, poses considerable
challenges to the electric power infrastructure. One of the
most significant challenges is the unexpected increase in
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electricity demand that would result from the spread of
EVCSs. Peak demand spikes, power loss, voltage instability,
lower transformer longevity, and power quality issues linked
to harmonics, voltage sag, and imbalance could all result from
this rise in demand. As EVs grow more common, managing
and planning the electrical grid will become more difficult.

1) VOLTAGE STABILITY

Voltage stability is a critical aspect of power DS that refers
to their ability to maintain stable voltages across all buses
after disturbances are eliminated. Modern power DS often
face voltage instability due to the sudden rise in load resulting
from fast charging stations (FCSs). Such FCS loads are intrin-
sically non-linear, requiring significant power to recharge EV
batteries quickly. As a consequence, FCS load characteristics
considerably impact voltage stability, making it one of the
leading causes of power system blackouts [36].

=
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FIGURE 4. Potential impacts of EV load on distribution system.

2) PEAK LOAD DEMAND

As the demand for FCSs continues to rise, there is a cor-
responding increase in peak load demand in UPN, further
aggravated by a reduction in reserve margin. Unplanned
charging patterns can particularly strain existing generation
capacity. To prevent this, it is recommended that 93% of
EV charging occurs during off-peak hours. Failure to do so
may result in a 53% surge in peak demand, assuming a 30%
penetration rate for EVs. The good news is that adopting
smart/coordinated charging and ToU pricing plans can sig-
nificantly reduce peak demand without requiring additional
generation capacity, as per sources [35], [36].

3) POWER QUALITY

The dynamic nature of EVCS load requirements makes main-
taining power quality (PQ) a significant concern. Harmonics,
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voltage imbalances, and voltage sags characterize load
demand. The conversion of AC power to DC electricity
during the process of charging EV batteries introduces total
harmonic distortion (THD) into the power system, usually
via high-frequency switching converters. This THD injection
has a number of unfavorable outcomes. These include the
possibility of distribution transformer electrical and thermal
overloading, waveform component distortion, and increased
stress on DS equipment such as cables, fuses, and neutral
wires. The cumulative effect of these factors has the potential
to degrade the grid’s overall power quality [37], [38].

4) ISSUES WITH TRANSFORMERS

The increasing adoption of EVCSs can cause extra stress on
power distribution transformers, leading to a shorter lifespan.
This can result in higher loads and hotter hotspot temper-
atures for the transformer. Inadequate coordination of EV
charging can further deteriorate transformer performance and
speed up its aging process. However, a study [22] has shown
that having up to 10% of EV penetration does not adversely
affect transformer lifespan.

5) POWER LOSS

Power system losses become a severe problem when con-
templating the future demand caused by incremental EV
grid inclusion. The source [22] suggests that during off-peak
hours, power loss can increase by approximately 40% when
60% of EVs are charging. This increase is primarily due to
uncoordinated charging, which can result in significant power
losses. However, consistent charging practices can effectively
minimize power losses, as highlighted by sources [35], [36].
To further mitigate the increase in power loss, optimize the
placement of the EVCSs.

6) IMPACT ON VOLTAGE

In this section, the focus is on the effect of integrating EVs
on the voltage profile of the electricity DS. This voltage
profile is critical in ensuring efficient electricity delivery to
customers. Adding EV loads to the current DS can cause
voltage loss at buses, affecting the system’s overall efficiency.
Various studies have reported voltage losses of less than 96%
of the standard voltage in some regions due to charging EVs.
Therefore, system upgrades may be required to address this
issue.

7) IMPACT ON THE RELIABILITY ANALYSIS

The analysis of power systems’ dependability has emerged
as a significant area of research, focusing on the evaluation
of the probability of a system operating correctly within
specific operational conditions over a defined timeframe.
In this context, reliability pertains to a system’s capacity
to function efficiently for a given duration under particu-
lar operational scenarios [35]. Assessing the reliability of
a power system encompasses the assurance of dependable
power generation, transmission, and distribution. Moreover,
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the contentment of consumers is intrinsically tied to the relia-
bility of the DS. Accurate statistical data pertaining to diverse
factors like failure rate, repair rate, average outage duration,
and the number of users linked to network buses or load
points is indispensable for evaluating DS reliability [35], [36].
Figure 5 illustrates a comprehensive categorization of relia-
bility indices for DS, encompassing both consumer-centric
and energy-centric perspectives. Consumer-oriented indices
consist of SAIFI, SAIDI, and CAIDI, while energy-oriented
indices encompass ENS and AENS. It is imperative to ensure
precise collection and analysis of statistical data to effectively
appraise DS reliability.

A 4

Customer Oriented Energy Oriented

-'

<&

11

FIGURE 5. Reliability indices in distribution system.

The phrases SAIFI and SAIDI pertain to the frequency
and duration of power outages, respectively, while CAIDI
assesses the level of customer dissatisfaction resulting from
disruptions. AENS, on the other hand, measures the average
amount of load reduction caused by service interruptions.
Examples of common causes of power disruptions include
outages, equipment malfunction that disrupts power system
operations, sudden spikes in demand necessitating load shed-
ding, scheduled maintenance requiring service interruption,
and severe weather events that damage infrastructure.

In recent times, there has been notable research focused on
the assessment of the dependability of DS. A variety of met-
rics are employed to gauge the robustness of these networks,
encompassing factors like failure rate, repair rate, average
duration of outages, and the count of affected consumers.
An important metric, known as the bus reliability index,
serves as a crucial measure to evaluate the susceptibility of
individual buses within a DS. Additionally, system reliability
indices, which are subcategories of both consumer-oriented
and energy-oriented reliability indices, play a pivotal role in
evaluating the overall resilience of the DS.

Within the realm of consumer-oriented reliability indices,
there are commonly used abbreviations: SAIFI, SAIDI,
and CAIDI. SAIFI stands for System Average Interruption

VOLUME 12, 2024



T. Yuvaraj et al.: Comprehensive Review and Analysis of the Allocation of EVCSs

IEEE Access

Frequency Index, and it quantifies the frequency of system
interruptions experienced by customers within a specific
timeframe. On the other hand, SAIDI, or System Average
Interruption Duration Index, represents the average duration
of outages per customer. It’s important to note that SAIDI is
influenced by both the duration of the outages and the number
of customers impacted [39].

B. POSITIVE IMPACTS

1) POWER GRID ENHANCEMENT

V2G technology can be used to pump power back into the
power grid during power outages, offering numerous advan-
tages when paired with RES. These benefits include peak load
reduction, increased spinning reserve, improved load man-
agement, reduced power line loss, and enhanced frequency
control [37]. Additionally, when EVs supply active power to
the DS in V2G mode, there is a decrease in the percentage of
bus voltage imbalance [23]. The use of V2G technology has
the potential to transform EVCSs from being just load centers
to becoming DGs [22], [40]. This transformation enables
EVs, typically consumers, to become prosumers, taking on
new roles such as participating in Demand Response pro-
grams, providing reactive power support, offering auxiliary
services, tracking renewable energy production, and balanc-
ing the load. These new roles incentivize EV owners to help
maintain power grid stability and generate income [20], [40].

2) ENVIRONMENTAL IMPACT

While most power plants worldwide use fossil fuels to gener-
ate electricity, EV batteries are charged using energy supplied
through a power grid rather than directly burning fossil fuels.
This means that some pollution is shifted from urban areas to
power generation locations. However, integrating RES into
EVCS can help to decrease pollutant emissions, especially
in cities. Therefore, properly incorporating renewables in
charging infrastructure can reduce GHG emissions and other
pollutants in both power generation and transportation. Stud-
ies have shown that deploying EVCSs for EVs can lead to
several environmental benefits, such as reduced emissions
of CO,, carbon monoxide, nitrogen oxide, and particulate
matter. Furthermore, compared to ICEVs, EVs have lower
well-to-wheel emissions [22].

3) ECONOMIC IMPACT

EVs offer cost benefits to both drivers and utility compa-
nies. In comparison to traditional ICEVs, EVs have lower
fuel and operating costs. However, the price of purchasing
and installing EVCSs remains high compared to the cost of
ICEVs and conventional petrol stations. As a result, public
EVCS are currently only marginally profitable due to the
low rate of EV adoption [41]. However, the cost of EVs
and EVCS installations is expected to decrease significantly
with the widespread production of EVs and the subsequent
deployment of EVCSs. Additionally, by implementing V2G
technology, EV owners can earn money by selling their
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battery energy storage back to utility companies. Home-
owners can also participate in DR programs, which help
smooth the electricity grid’s voltage and demand profile [42].
Establishing an EV charging station includes equipment,
installation, and operation and maintenance expenses.

4) EASY HANDLING OF RENEWABLE GENERATION

The integration of renewable energy into power systems
poses a challenge for providers due to the intermittency of the
energy output. However, the use of EV chargers with rapid,
responsive control electronic interfaces, along with battery
storage, has been proposed as a viable solution for addressing
source intermittency. According to a study conducted for one
of the clients, when EVs were used for primary frequency
control, the power system could withstand wind integration
up to 59% of total grid generating capacity. Furthermore,
certain types of solar energy can be used to charge EVs.

C. ENVIRONMENTAL CONSIDERATIONS IN EVCS
ALLOCATION

The transition to EVs is hailed as a crucial step toward
environmental improvement in the transport sector. How-
ever, for this transition to be truly sustainable, it must be
accompanied by a shift towards clean energy sources. This
necessitates powering EVCS with electricity generated from
green resources. The integration of EVs into the distribu-
tion system calls for a mathematical model that considers
environmental impact and uncertainties associated with both
conventional and EV demand, as well as renewable gen-
eration. An innovative mixed-integer linear programming
(MILP) model, implemented using AMPL and solved with
CPLEX, addresses this challenge effectively [43]. Addition-
ally, a joint planning algorithm is introduced to allocate
DG units and EVCS in remote hybrid microgrids, striv-
ing to minimize both total costs and associated greenhouse
gas emissions. This algorithm offers a range of optimal
solutions, allowing for a balanced trade-off between eco-
nomic and environmental objectives [44]. Another bi-level
planning model is proposed, focusing on the integration of
DG and EVCS, incorporating active management strategies
for the distribution network. By employing advanced opti-
mization techniques like improved harmonic particle swarm
optimization (IHPSO), this model significantly enhances
the overall profit of power supply companies while con-
currently benefiting environmental and social welfare [45].
A comprehensive assessment of the environmental impact
of green stand-alone energy systems and their implementa-
tion in the power supply of EVCS underscores the potential
to reduce pollutant emissions and combat the greenhouse
gas effect associated with conventional technologies [46],
[47]. Finally, the introduction of smart electric grids is
advocated, emphasizing the utilization of renewable energy
sources to replace traditional thermal power plants. This
transition not only conserves fossil fuels but also substan-
tially mitigates greenhouse gas emissions, particularly CO»,
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resulting from thermal generation [48]. This research article
proposes an eco-friendly scheme for optimizing the charging
and discharging schedules of Plug-in Electric Vehicle (PEV)
aggregators in Smart Microgrids (SMG). The scheme aims
to minimize system procurement costs and reduce CO, emis-
sions, taking into account various types of PEVs (Battery
Electric Vehicles and Plug-in Hybrid Electric Vehicles). The
model considers V2G capabilities, actual driver behavior
patterns, and practical constraints related to heterogeneous
DERs and distribution networks. It employs stochastic pro-
gramming to handle uncertainties in renewable generation,
ultimately leading to a more environmentally sustainable and
economically efficient power system. The approach involves
utilizing a weighted sum methodology, which transforms the
multi-objective problem into a single-objective Mixed Inte-
ger Non-Linear Programming (MINLP) model. This model
is subsequently minimized using a collaborative grey wolf
optimizer and Taguchi test method, resulting in a satisfactory
solution [49].

The following sustainable solutions are presented based on
the discussion of potential issues with eco-charging systems
and recommendations for environmentally friendly EVCS
allocation:

1) CLEAN ENERGY SOURCES

Embrace renewable energy sources like solar, wind, and
hydroelectric power for generating electricity to power
EVCS.

2) ADVANCED MATHEMATICAL MODELS

Implement sophisticated models like Mixed-Integer Linear
Programming (MILP) to account for environmental factors
and uncertainties related to conventional and EV demand,
along with renewable generation in EVCS planning and
allocation.

3) OPTIMIZED ALLOCATION ALGORITHMS

Develop algorithms that optimize the placement of DG units
and EV charging stations, considering both cost efficiency
and the reduction of greenhouse gas emissions.

4) BI-LEVEL PLANNING MODELS

Incorporate active management strategies into the distribution
network to enhance profit, environmental welfare, and social
benefits while integrating DG and EVCS, employing bi-level
planning models.

5) ADVANCED OPTIMIZATION TECHNIQUES

Utilize advanced optimization techniques, such as Improved
Harmonic Particle Swarm Optimization (IHPSO), to effi-
ciently plan and manage EV charging infrastructure.

6) SMART GRID INTEGRATION
Promote the development of smart grids to optimize energy
generation, transmission, and consumption, with an emphasis
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on renewable energy sources, reducing greenhouse gas emis-
sions, particularly COs.

7) ECO-FRIENDLY SCHEDULING SCHEMES

Develop schemes and models to optimize the charging and
discharging schedules of Plug-in Electric Vehicle (PEV)
aggregators in Smart Microgrids (SMG) to minimize system
procurement costs and reduce CO;, emissions.

8) LEVERAGING V2G CAPABILITIES
Harness V2G capabilities to enable EVs to contribute to grid
stability and renewable energy integration.

9) DIRECT RENEWABLE ENERGY INTEGRATION

Seamlessly integrate renewable energy sources such as solar
panels and wind turbines into the EVCS infrastructure to
provide clean and reliable power directly to charging stations.

10) COMMUNITY AWARENESS AND ENGAGEMENT

Educate and engage communities in the advantages of sus-
tainable EVCS and green energy solutions to foster adoption
and environmental responsibility.

11) GOVERNMENT POLICY ADVOCACY

Advocate for government policies, subsidies, and incentives

aimed at promoting the use of renewable energy and EVs.
By adopting these sustainable solutions, future researchers

can aim to drive the advancement of EVs and charging infras-

tructure integration while minimizing environmental impact

and greenhouse gas emissions.

D. IMPACT OF HEAVY-DUTY EVS ON THE DISTRIBUTION
GRID

The widespread adoption of Heavy-Duty Electric Vehicles
(HDEVs) like buses, trucks, and fleet vehicles has signifi-
cantly impacted the distribution grid. While promising for
reducing emissions and enhancing cost efficiency, HDEVs
pose challenges to grid infrastructure. The shift from fuel-
based to electricity-based charging infrastructure is essential
for mass electrification of such large vehicles, potentially
affecting both grid operators and external market participants.
Policy makers must take a data-driven, scientific approach
to align the market adoption of HDEVs with the realities
of existing grid infrastructure. Meeting increased electricity
demand during peak charging necessitates grid upgrades and
strategic placement of charging infrastructure. Maintaining
load balance, implementing smart charging, and ensuring grid
resilience are vital. The integration of HDEVs with renew-
able energy sources is pivotal for a sustainable and resilient
grid. Unlike light-duty EVs, HDEV charging presents distinct
challenges with higher power requirements and concentrated
loads. While past research has addressed additional electri-
cal loads on distribution systems, encompassing light-duty
EVs, the impacts of HDEV charging remain predominantly
unexplored.
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This study emphasized optimizing charging stations for
grid stability, favoring fewer stations with more ports. Sim-
ulations revealed a substantial number of HDEVs (about
30,000, or 11% of Texas’ heavy-duty vehicles) needed
to affect the transmission grid. Surprisingly, even a small
number caused severe under-voltage problems. The paper
proposed a metric for guiding grid reliability investments,
highlighting the need for careful consideration before elec-
trification. Prioritizing local grid upgrades was recom-
mended [50]. Charging stations near generation sources
minimally affected voltage, but peak loads from fast chargers
posed downstream challenges. Longer charging times mit-
igated peak load issues, with only strong buses upstream
suitable for charging station placement. Voltage fluctuations
could disrupt EV charging stations and affect battery life [S1].
This study covered depot charging for heavy-duty electric
trucks, including causes, costs, and lead times. Most substa-
tions could handle HDVE charging without upgrades. Fleets
with consistent schedules could strategically manage charg-
ing. Further research was needed for cost-effective HDEV
charging and high-power charging trade-offs [52]. This paper
introduced a systematic methodology for analyzing the grid
impact of HDEV charging stations, applicable across dif-
ferent distribution systems. The results provide insights into
potential voltage impacts and suggest an initial mitigation
plan involving smart chargers. Future plans involve a more
comprehensive mitigation strategy, integrating smart chargers
with on-site DERs [51].

These studies [50], [51], [52] highlighted the significant
impact of HDEVs on the distribution grid. The researchers
stressed the importance of optimizing charging stations for
stability and suggested prioritizing local grid upgrades. Con-
siderations for station placement and challenges posed by fast
chargers were emphasized, advocating for longer charging
times and strategic bus placement. Additionally, the studies
supported the feasibility of depot charging, particularly for
fleets with consistent schedules. In essence, they underscored
the critical need for careful planning and infrastructure opti-
mization in integrating HDEVs into the distribution grid.

IV. REVIEW OF THE TECHNIQUES TO SOLVE THE
OPTIMAL LOCATION PROBLEM OF EVCS

A. OPTIMIZATION TECHNIQUES

The optimization problem of determining the optimal place-
ment of EVCSs is crucial for efficiently using available
resources and achieving desired outcomes. It involves finding
the best design that maximizes or minimizes the objective
function while satisfying the given constraints. To address
this problem, several heuristic optimization techniques and
integer algorithms have been explored in the literature. For
instance, the use of Particle Swarm Optimization (PSO),
Genetic Algorithm (GA), and Simulated Annealing (SA) has
been popular in EVCS research. Mixed-integer linear pro-
gramming (MILP) and Mixed Integer Programming (MIP)
have also been utilized for this purpose.
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Optimization methods play a crucial role in achieving
diverse objectives, encompassing tasks like outage manage-
ment, harmonizing electricity production from DG units with
load consumption, enabling efficient energy trade among
aggregators and power loads, maximizing profits from elec-
tricity sales to PEVs, and determining optimal size and place-
ment of fast-charging stations. Hence, the selection of suit-
able optimization strategies is vital for effectively addressing
specific challenges. In this study, the authors deliver a com-
prehensive overview of optimization approaches aimed at
determining the best placements for EVCSs. The primary
focus is on two categories of optimization techniques: clas-
sical and advanced. Classical optimization methods are adept
at pinpointing optimal solutions or extrema of continuous
and differentiable functions. However, their practical utility
can be restricted since certain techniques mandate objective
functions that lack continuity and/or differentiability.

On the other hand, advanced optimization techniques prove
adept at tackling optimization problems marked by fea-
tures such as multi-modality, high dimensionality, and non-
differentiability. Conventional optimization methods struggle
with these issues, often necessitating gradient informa-
tion and encountering difficulty in locating global optima
within problems boasting multiple local optima. In contrast,
advanced optimization techniques excel in surmounting these
constraints, presenting solutions to intricate optimization
problems.

1) PARTICLE SWARM OPTIMIZATION

PSO is a well-known optimization technique that employs
real-number randomization and global particle communi-
cation to enhance performance [53]. In PSO, a swarm of
particles searches the search space for the best solutions,
continuously exchanging and comparing their personal and
global bests. At the beginning of each iteration, each par-
ticle follows a route vector produced from its unique and
global best, eventually converging to the global optimum.
Recently, the original PSO has undergone significant changes
to improve computational efficiency and yield more accu-
rate results. The optimization problem’s objective functions
involve power loss and other objectives, which are solved
by the PSO algorithm once EVCS and other energy sources
have been deployed at an optimal position in the RDS.
The prominent algorithms utilized for EVCS allocation and
their respective advantages over PSO are elucidated here.
The FPA excels in exploring complex solution spaces with
diverse objectives, striking a balance between exploration
and exploitation. TLBO leverages a knowledge-sharing pro-
cess akin to a classroom, making it robust and effective for
dynamic optimization scenarios. GWO emulates coopera-
tive hunting strategies, demonstrating rapid convergence and
proficiency in high-dimensional spaces. The AOA dynam-
ically manipulates solutions through arithmetic operations,
proving adaptable to various problem types and suitable for
non-linear, non-convex objectives. Finally, the HHO draws
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from hawk hunting behavior, effectively balancing explo-
ration and exploitation strategies and excelling in constrained
optimization scenarios. These algorithms collectively offer
powerful tools to enhance the efficiency and effectiveness of
EVCS deployment, catering to a wide range of optimization
complexities.

2) GENETIC ALGORITHM

GA is computer-based methods that simulate the natural
selection process to optimize candidate populations for a par-
ticular problem [54]. However, implementing a GA requires
careful consideration of its design elements, such as the gene-
encoding system, cross-over process, and fitness functions,
which can directly impact its ability to find the correct
solution. A diverse set of data is necessary to prevent the
algorithm from getting stuck in local minima, often achieved
by randomly selecting genes for cross-over, which can slow
down the convergence rate but ensures exploration. Although
increasing population size can improve GA’s solution, it also
significantly increases computation time, even for minimal
gains in performance. Researchers have explored various
objective functions to formulate EVCS deployment problems
using GA.

3) FLOWER POLLINATION ALGORITHM

The Flower Pollination Algorithm (FPA) is a highly efficient
metaheuristic optimization technique inspired by the process
of flower pollination [55]. One of the unique features of FPA
is its simplicity in formulation and remarkable computational
efficiency. Comparative studies have shown that FPA outper-
forms both GA and PSO in terms of performance. Thus, FPA
is highly recommended for extracting optimal parameters as
the fastest and most precise optimization approach.

4) TEACHING LEARNING BASED OPTIMIZATION ALGORITHM
The Teaching-Learning Based Optimization (TLBO)
algorithm draws inspiration from the educational process
and focuses on a teacher’s influence on the learners’ per-
formance [56]. The algorithm distinguishes two fundamental
learning modes: (i) through instructor interaction, known as
the teacher phase, and (ii) through interaction with other
learners, known as the learner phase. One of the significant
applications of the TLBO method is the optimal placement of
EVCS. It considers five different objective functions, namely
EVCS cost, voltage variation cost, system reliability, power
loss, and the accessibility index of EVCSs.

5) GRAY WOLF OPTIMIZATION

The Gray Wolf Optimization (GWO) technique was devel-
oped by Mirjalili et al. in 2014, based on the natural behavior
and hunting strategies of gray wolves [57]. The author was
particularly inspired by the leadership structure observed in
wolf packs, where alpha wolves lead the group, followed by
beta wolves who support the alpha, and delta wolves who
have less importance and surrender to the alpha and beta
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wolves. The omega wolves are the least important and must
obey the higher-ranked wolves. GWO has been applied in
the literature to effectively address the allocation problem of
EVCSs with other energy sources.

6) ARITHMETIC OPTIMIZATION ALGORITHM

Abualigah and his team introduced a new approach called the
arithmetic optimization algorithm (AOA) that employs arith-
metic operators (addition, subtraction, multiplication, and
division) as a basis for solving arithmetic problems [58]. The
AOA is a population-based metaheuristic technique utilized
to identify the optimal position and number of EVCS in a DS,
which helps to minimize power loss and increase bus voltage.

7) HARRIS HAWK OPTIMIZATION ALGORITHM

The Harris hawks optimization (HHO) is a metaheuristic
algorithm that takes inspiration from the hunting tactics and
cooperative behavior of Harris hawks [59]. The surprise
pounce approach of Harris’ hawks, where multiple birds
attack prey from various angles to catch it off guard, is the
primary source of inspiration for HHO. Harris hawks exhibit
diverse pursuit behaviors based on the prey’s movements and
the dynamic nature of the event. HHO is utilized for finding
the optimal placement and location of EVCS to optimize the
single or multiple objectives of RDS.

8) GRASSHOPPER OPTIMIZATION ALGORITHM

The Grasshopper optimization algorithm (GOA), introduced
in [60] by Saremi et al., is a novel swarm intelligence
technique that mimics grasshoppers’ foraging and swarm-
ing behaviors in nature to solve optimization problems. The
algorithm draws inspiration from the natural behavior of
grasshoppers, which are notorious agricultural pests. In [192],
GOA was applied to the EVCS allocation problem in RDS,
resulting in improved power factor, reduced power loss, and
better voltage profiles.

9) AFRICAN VULTURE OPTIMIZATION ALGORITHM

The concept behind the African Vulture Optimization
Algorithm (AVOA) stems from African vultures’ feeding and
orienting habits. It utilizes powerful operators to resolve opti-
mization problems by striking a balance between exploration
and efficiency [61]. In an attempt to enhance the allocation
of DG and DSTATCOM and reduce the effect of EVCS on
RDS, AVOA was employed.

10) COYOTE OPTIMIZATION ALGORITHM

The Coyote Optimization Algorithm (COA) is a novel opti-
mization technique inspired by coyote intelligence [62]. This
algorithm draws inspiration from coyotes’ social organization
and adaptive behavior and is designed to tackle continuous
optimization challenges. The optimization approach of COA
involves the allocation of RDGs and ESSs optimally within
the RDS to reduce actual power loss and voltage variation
index.
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11) FIREFLY ALGORITHM

Yang created the Firefly Algorithm (FA) in 2008 by animat-
ing the unique behaviors of fireflies [63]. It is described as
swarm intelligent, metaheuristic, and nature-inspired. In real-
ity, the population of fireflies exhibits unique luminary
flashing behaviors that serve as a means of attracting partners,
communicating, and warning predators. Renewable DGs are
installed in the RDS employing FA to mitigate power loss and
maintain a consistent voltage at each bus.

12) WHALE OPTIMIZER ALGORITHM

The Whale Optimization Algorithm (WOA) is a modern
technique for optimization in problem-solving [64]. It incor-
porates three operators that mimic the hunting behavior of
humpback whales, including surrounding prey and bubble-
net foraging. In the context of EVCS, WOA is combined with
DG allocation to improve the voltage profile of the grid and
reduce energy losses.

13) HYBRID OPTIMIZATION ALGORITHMS

During the compilation process, hybrid optimizations utilize
a selection of optimization algorithms that serve the same
purpose. A heuristic is applied to determine the optimal
algorithm for each code segment that requires optimization.
The EVCS allocation problem in RDS can be tackled using
various objective functions and a combination of algorithms.
For instance, researchers have proposed a hybrid GA and
PSO-based algorithm, a hybrid of GWO and PSO algorithms,
a hybrid of HHO and GWO algorithms, a hybrid soccer
league competition and pattern search algorithm, a hybrid
crow search algorithm along with the PSO, and a combination
of GWO and PSO algorithms.

14) OTHER OPTIMIZATION ALGORITHMS

The literature also explores alternative methods for deter-
mining the optimal location and capacity of EVCSs. The
main notable algorithms for the EVCS allocation problems
are, Joint planning algorithm [44], Gorilla Troop Optimizer
algorithm [187], Bear smell search algorithm [195], Marine
Predator Algorithm [197], Salp swarm algorithm [188],
improved bald eagle search algorithm [164], Binary Bat
Algorithm [206], and Dragonfly algorithm [131].

Tables 1-6 display various applications of chosen optimiza-
tion methodologies from 2011 to the present, including over
100 research publications on the EVCS allocation problem
in the DS. Furthermore, most studies use single optimization
methods, with just a few dealing with hybrid approaches
and multi-objective optimization processes, as indicated in
Tables 1-6. The pie chart in Figure 6 depicts several opti-
mization strategies for EVCS allocation problems. In terms
of problem-solving methodologies, the researchers employ a
wide range of approaches. According to the survey, around
23% of the researchers used the PSO approach. Similarly,
6% of researchers employed GA and GWO optimization
techniques, 3% used AOA, HHO, and GOA optimization
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FIGURE 6. Utilization of various optimization algorithms for EVCS
allocation.

techniques, and 20% used hybrid optimization strategies
for EVCS placement. Other methods used by 36% of the
researchers included the marine predator algorithm, salp
swarm algorithm, the enhanced bald eagle search algorithm,
and so on.

B. OBJECTIVE FUNCTIONS

Numerous objective function equations may be used to allo-
cate EVCS in energy distribution networks. The following are
the most typically utilized goal functions for EVCS allocation
issues on DS:

1) MINIMIZATION OF POWER LOSS
One common goal is to reduce power losses in the DS. The
distribution system’s power loss may be reduced by selecting

the best locations for EV charging stations, RDG, capacitors,
DSTATCOM, and BESS. It may be stated as follows:

Minimize =" PT.Logs M

where Pr 1,55 is the total power loss of the RDS.

2) MINIMIZE THE TOTAL VOLTAGE DEVIATION

This goal can be met by mitigating the sum of squared voltage
variances from a target value across all system buses. The
equation is written as follows:

Minimize = Z (V[ - Vref)2 2

where V; is the voltage at bus 7, and V,, is the target voltage.

3) MAXIMIZATION OF VOLTAGE STABILITY

This goal function tries to maximize DS voltage stability by
optimizing the position and capacity of EV charging stations,
DG, capacitors, and DSTATCOMs, as well as redesigning the
network. The objective function can be expressed as follows:

Maximize = > (V))? 3)

4) MAXIMIZE THE UTILIZATION OF THE ENERGY SOURCES
This objective can be met by maximizing the ratio of active
power generated by energy sources (ES) to rated capacity.
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The equation is written as follows:

Maximize = Z (Pgs — PES Max) 4

where Pgg is the active power generated by the energy sources
and PEgs pmax 1s its rated capacity.

5) MINIMIZE THE TOTAL COST OF THE DISTRIBUTION
SYSTEM

This aim may be met by reducing the total capital and oper-
ational expenses of all system components, including the
EVCS, RDG unit, capacitor, DSTATCOM, and BESS. The
equation is written as follows:

Minimize = Cgs )

where Cgg are the capital and operational costs of the energy
sources.

6) MAXIMIZATION OF RENEWABLE ENERGY INTEGRATION
By calculating the ideal placements for The objective func-
tion equation aims to enhance the incorporation of RES,
like solar and wind power, in the DS by maximizing their
utilization.

Maximize = ZPRDG (6)

where Pgpg is the sum of renewable energy generation in the
DS.

7) MINIMIZATION OF CARBON EMISSIONS

This objective function equation seeks to reduce DS car-
bon emissions by evaluating the best sites for EV charging
stations, DG, capacitors, DSTATCOM, and network recon-
figuration. It may be stated as follows:

Minimize = Z PCOZ,Emission (7)

where > Pco2, Emission 1S the sum of carbon emissions in the
DS.

8) MAXIMIZATION OF RELIABILIT

This objective function equation seeks to maximize DS
dependability by selecting the best locations for EVCS and
energy sources. It may be stated as follows:

Maximize = E Pretiabitity (®)

where D Preiiapitiry is the sum of reliability indices in the DS.

9) MAXIMIZATION OF ECONOMIC BENEFITS

This objective function equation seeks to maximize the DS’s
economic advantages by selecting the best locations for EV
charging stations. It may be stated as follows:

Maximize = Z PEconomic 9
where > PEconomic is the sum of economic benefits in the DS.
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10) MAXIMIZATION OF LOAD BALANCING

This objective function tries to maximize load balancing
in the DS by optimizing the position and capacity of EV
charging stations. The objective function can be expressed as
follows:

Maximize = »_ AP (10)
where > AP; is the deviation of the active power at bus ¢
from its nominal value.

These goal functions might be blended and weighted based
on the system’s particular requirements. Furthermore, restric-
tions such as voltage limits, branch capacity limits, and
budget constraints should be taken into account throughout
the optimization process.

C. CONSTRAINTS

The consideration of critical parameters is imperative when
addressing constraints within a system. It is crucial for the
objective function to align with these constraints seamlessly.
Failing to adhere to these limitations could lead to inadequate
sizing and improper placement of components, potentially
resulting in system malfunctions. The task of strategically
planning the placement of EVCS involves navigating through
a set of conditions, encompassing both equalities and inequal-
ities. Once these EVCS units are integrated into the DS,
a multitude of responsibilities arise, encompassing actual and
reactive power compensation, voltage regulation at individual
nodes, restrictions on current flow, and adherence to thermal
thresholds.

Furthermore, it becomes essential to ascertain the optimal
range of EVCS installations, setting the minimum and max-
imum thresholds. Additionally, the arrangement of EVCS
units should account for appropriate spacing between them.
The distance constraint takes into consideration the gaps
between individual EVCS units. The pivotal restrictions
inherent in the EVCS allocation quandary encompass the
following factors.

1) POWER BALANCE

A formulation for power balance constraints, denoted by
equalities, can be stated as follows.

Pr Loss+ ZPD(t)+ ZPEVCS(t) = Z(PES(t))

where, Pp(y) is the power demand at two buses of 7, Pgs(y) is
the power supplied by energy sources and Pgycsy) is the load
absorbed by EVCS.

Y

2) VOLTAGE LIMIT

Vt,min =< |Vt| =< Vt,max

(12)

The boundaries for voltage at bus ¢ are established through
the employment of V; min and V; max, wWhich specify the lower
and upper voltage limits, respectively.
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3) REACTIVE POWER COMPENSATION

Oty < Qesay < Oy t=1.2,......... nb  (13)

At bus ¢, there are minimum and maximum limits for the
reactive power that can be compensated by energy sources,
which are denoted as Qg and Qpgg,, respectively.

4) REAL POWER COMPENSATION
The power system must adhere to the constraint of real power,
where the permissible limits of injected real power at each
optimal bus must not be exceeded.

PR < Pesay < P&, t=1,2,......... nb (14)

m'n . . . . .
where P Eé(t) is the minimum real power limits of compen-

sated bus ¢ and P,';‘;'(‘t) is the maximum real power limits of
compensated by energy sources at bus 7.

5) BRANCH CURRENT
In order to ensure compliance with the maximum limit out-

lined in (15), it is crucial to observe the current I'p for every
branch in the DS.

IB < IB,Max (15)

where Ip < Ip pqx 1s the maximum current flowing in the
branch.

6) THERMAL CONSTRAINTS

It is essential to ensure that the thermal limit of a branch
is set below its upper bound, as shown in the following
representation.

Sp < SB,Max (16)

The apparent power of a branch is denoted as Sp, while
the maximum allowable apparent power of the branch is
represented as Sp pax-

7) SOC OF BATTERY

To maintain the longevity of an EV’s battery, it is essential to
adhere to the permissible upper and lower limits of State of
Charge (SOC) during both charging and discharging, as indi-
cated in (17).

25% < SOC < 90% (17)
D. ENERGY SOURCES

The most advanced EVCS have revolutionized the way
we power our EVs by seamlessly integrating a wide array
of energy resources and cutting-edge energy storage sys-
tems. This groundbreaking approach addresses the escalating
power demands resulting from the surging population of
EVs on our roadways, while also acting as a catalyst for
the widespread adoption of renewable energy sources. The
innovative EVCS harnesses an impressive spectrum of energy
sources, effectively transforming the charging infrastructure
landscape. By drawing from sources such as solar, wind, and
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hydroelectric power, it ensures a diversified and sustainable
supply of electricity. This not only alleviates strain on conven-
tional energy grids but also significantly reduces the carbon
footprint associated with EV charging.

Furthermore, the integration of cutting-edge energy stor-
age systems within the EVCS architecture contributes to a
more resilient and reliable power network. These advanced
storage solutions not only facilitate efficient energy distri-
bution during peak charging periods but also allow for the
accumulation of excess energy generated by renewables,
which can then be utilized during periods of high demand
or low renewable output. In embracing this multifaceted
approach, the latest EVCS not only meets the immediate
power requirements of the burgeoning EV market but also
lays the foundation for a cleaner, greener, and more sus-
tainable transportation ecosystem. This holistic strategy not
only drives technological advancement but also incentivizes
the ongoing development of renewable energy technologies,
positioning us on a promising trajectory towards a more
environmentally conscious future.

Electrical Grid.

Distributed Generation (DG).
Capacitor

DFACTS (DSTATCOM & SVO).
Energy Storage System (ESS).
Protective Devices.

ENENENENENEN

1) ELECTRICAL GRID

The distribution of EVCSs for EVs depends on the electri-
cal infrastructure. Most researchers minimize the impact of
EVCS by utilizing the electrical grid as a source of energy
for their study. Design engineers may assist guarantee that
EVs are a viable and sustainable method of transportation by
carefully developing and maintaining DS that can dependably
transmit electricity to charging stations. The deployment and
accessibility of EVCSs for EVs are intricately intertwined
with the existing electrical infrastructure. To mitigate the
potential impact of EVCSs on the overall energy landscape,
numerous researchers have undertaken studies aimed at opti-
mizing their integration with the electrical grid. By leveraging
the power supply from the grid, these investigations seek to
streamline the operation of EVCSs and ensure their harmo-
nious coexistence within the broader energy ecosystem.

In this context, the expertise of design engineers becomes
pivotal. Their role extends beyond conventional infrastructure
design, as they are entrusted with the task of meticulously
crafting and maintaining DS capable of reliably and effi-
ciently transmitting electricity to charging stations. This
undertaking carries profound implications for the viability
and sustainability of EVs as a transformative mode of trans-
portation. The intricate interplay between EVCSs and the
electrical grid necessitates a holistic approach that addresses
not only the technological aspects but also the societal and
environmental considerations associated with widespread EV
adoption. By orchestrating a seamless integration of EVCSs
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with the existing electrical infrastructure, researchers and
design engineers alike contribute to shaping an electrified
transportation future that is dependable, environmentally
sound, and economically viable.

2) DISTRIBUTED GENERATION (DG)

DG refers to small-scale power production units that are
interconnected with the distribution grid, encompassing tech-
nologies such as solar panels, wind turbines, and small-scale
natural gas generators. In the context of sustainable energy
solutions, the utilization of renewable DG systems gains
prominence, presenting an innovative approach to alleviate
the impact of EVCSs on the DS. By harnessing local-
ized power sources, these DG systems play a pivotal role
in bolstering system stability and enhancing overall grid
resiliency. Numerous comprehensive studies have been con-
ducted to explore the potential of both renewable and
nonrenewable DGs as effective energy sources to mitigate
the challenges posed by EVCS integration into distribution
networks. A range of research endeavors have delved into
this area, shedding light on the multifaceted benefits that
renewable DGs can bring to the table. These studies under-
score the significance of renewable DGs not only in reducing
strain on the distribution infrastructure but also in paving the
way towards a cleaner, more sustainable energy landscape.
By strategically integrating renewable DG systems, such as
solar and wind power, into the distribution grid, a dual objec-
tive is achieved. Firstly, the local generation of electricity
near EVCSs minimizes the stress on the distribution network,
effectively curbing potential overload and voltage fluctua-
tions. Secondly, the deployment of renewable DGs aligns
with broader environmental goals, enabling a reduction in
greenhouse gas emissions and fostering the transition towards
a low-carbon energy ecosystem.

DFACTS Capacitor

K

% Grid
3) CAPACITOR

Reactive power management plays a pivotal role in optimiz-
ing the efficiency and performance of EVCSs and distribution

Protection
Devices

FIGURE 7. Energy sources for EVCS.
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substations. Through the strategic deployment of capacitors,
both at EVCSs and within the distribution substation, a host
of benefits can be harnessed to elevate the power infrastruc-
ture. One of the primary advantages lies in the capacitors’
ability to inject reactive power into the system. This infu-
sion of reactive power serves to augment the power factor,
leading to a reduction in voltage losses and a consequent
enhancement of the overall power quality. By mitigating
voltage drops and minimizing wasteful losses, this approach
not only fosters a more stable power supply but also extends
the longevity of equipment and devices connected to the
grid. A particularly noteworthy aspect of this endeavor is
its synergy with EVs. By factoring in the reactive power
demands of EVs, the incorporation of shunt capacitors can
be leveraged to curtail distribution substation losses. This
dual-effect mechanism not only promotes improved system
efficiency but also translates into tangible energy savings.
This energy conservation not only aligns with sustainabil-
ity goals but also translates into cost-effective operational
practices.

4) DFACTS (DSTATCOM & SVC)

Distributed Flexible AC Transmission System (DFACTS)
technologies, specifically Distribution Static Compensator
(DSTATCOM) and Distribution Static Var Compensator
(DSVC), play a pivotal role in mitigating the challenges
posed by EVCS on the DS. By intelligently manipulating
voltage levels, improving power quality, and effectively dis-
tributing load, DSTATCOM and DSVC emerge as potent
solutions to alleviate the potential disruptions caused by the
integration of EVs into the power grid. This synergy of
advanced technologies, as highlighted in references, offers
a promising avenue to seamlessly integrate EVs into the
power ecosystem while ensuring minimal impact on the dis-
tribution system. Through their dynamic voltage regulation
and load-balancing capabilities, DSTATCOM and DSVC not
only enhance the stability and reliability of the distribu-
tion network but also pave the way for a more sustainable
and harmonious coexistence of EVs and traditional power
infrastructure.

5) ENERGY STORAGE SYSTEM (ESS)

The surge in power demand due to widespread EV charging
presents challenges such as voltage fluctuations and trans-
former overloads. Integrating Energy Storage Systems (ESS)
with EVCS offers an innovative solution. This approach
brings notable benefits, including peak shaving, voltage
support, load balancing, and renewable integration. ESS,
combined with EVCS, strategically manages energy. It stores
excess energy during low demand and releases it during peak
hours, reducing voltage fluctuations and transformer strain.
ESS acts as a voltage regulator, maintaining stable voltage
levels by injecting or absorbing power as needed. This proac-
tive control enhances overall grid stability amid rapid EV
charging.
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ESS excels in load balancing, redistributing energy across
phases and circuits to prevent overloads and optimize grid
resources. It integrates renewable energy, capturing surplus
power for high-demand periods, promoting renewables, and
reducing carbon emissions from traditional sources. Incor-
porating ESS enhances EVCS adaptability, reducing distri-
bution system impact and minimizing costly infrastructure
changes. The combined effects of peak shaving, voltage sup-
port, load balancing, and renewable integration bolster grid
resilience, facilitating harmonious EV-grid coexistence.

6) PROTECTIVE DEVICES

Safeguarding the stability and integrity of the DS in the
face of EVCSs requires the strategic integration of protective
devices. Fuses, circuit breakers, and surge protectors emerge
as critical components in this defense against potential over-
loads stemming from EVCSs. These proactive measures
serve as an intricate web of defense, promptly detecting
and containing issues that may originate from EVCSs, thus
preventing any detrimental ripple effects across the network.
By deploying these protective devices, a two-fold objective
is achieved. First, they act as vigilant sentinels, discern-
ing anomalies attributed to EVCS operation, and promptly
isolating them to prevent their escalation. Second, the intro-
duction of these devices functions as a resilient barrier,
mitigating the impact that EVCSs could exert on the DS.
This delicate balance between safeguarding against disrup-
tions and maintaining the reliability and safety of the entire
system is a paramount consideration. The integration of
protective devices introduces an added layer of sophistica-
tion to the management of EVCS-related challenges. These
devices stand as a testament to engineering ingenuity, ensur-
ing the smooth coexistence of EVCSs within the broader
DS framework. In doing so, they bolster the resilience of
the distribution infrastructure, assuring its ability to meet the
demands of the present and the foreseeable EV-dominated
future.

7) COMBINED ENERGY SOURCES

The integration of advanced technologies such as RDGs,
energy storage systems, capacitors, and DFACTS presents a
promising avenue for mitigating the potential adverse effects
of EVCS on the DS. By synergistically harnessing these
energy sources, the sustainable and efficient operation of
EVCS can be realized, while simultaneously minimizing the
overall impact on the distribution grid. RDGs offer a sophis-
ticated framework for dynamically managing the reactive
power flow within the distribution network. When intelli-
gently integrated with EVCS, RDGs can proactively regulate
voltage levels and enhance power quality, ensuring that the
charging stations operate optimally without causing disrup-
tions to the DS. Moreover, energy storage systems act as
pivotal components, capable of storing surplus energy during
periods of low demand and injecting it back into the grid
during peak hours. This not only alleviates grid congestion
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but also facilitates a seamless charging experience for EVs,
while concurrently bolstering the sustainability of the entire
ecosystem.

Capacitors, renowned for their rapid response to fluctu-
ations in power demand, further contribute to stabilizing
the DS when harmoniously incorporated into EVCS infras-
tructure. Their swift discharge and recharge cycles provide
an instantaneous counterbalance to load variations, thereby
minimizing voltage drops and safeguarding the DS against
potential instabilities. Meanwhile, the strategic deployment
of DFACTS empowers grid operators to actively man-
age line impedance and regulate power flows. By intel-
ligently optimizing the transmission parameters, DFACTS
technology ensures that power is efficiently transported to
charging stations, thereby enhancing operational efficiency
and reducing losses. Through the judicious integration of
these innovative technologies, the environmental footprint
of EVCS can be substantially diminished. By effectively
coordinating reactive power flows, harnessing surplus energy,
swiftly responding to load changes, and optimizing power
transmission, the operation of charging stations becomes
not only sustainable but also harmoniously aligned with
the overarching goals of grid stability and environmen-
tal preservation. In essence, this holistic approach guar-
antees the seamless delivery of power to EVCS while
significantly minimizing their ecological impact, ultimately
paving the way for a greener and more resilient energy
landscape.

E. SERVICES AND TEST SYSTEMS

To enhance the dependability of the power grid and promote
the adoption of EVs, various services are being offered to
owners of EVs and parking lots. These services include (i)
V2G, (ii) G2V (iii) P2G, and (iv) P2V. The above services
are tested on standard and real-time practical distribution test
systems for EVCS allocation problems with various energy
sources. The majorly used test systems in the literature are:
IEEE 9-bus test system, IEEE 15-bus test system, IEEE
24-bus test system, IEEE 30-bus test system, IEEE 33-bus test
system, IEEE 34-bus test system, IEEE 37-bus test system,
IEEE 38-bus test system, IEEE 51-bus test system, IEEE
54-bus test system, IEEE 69-bus test system, IEEE 84-bus test
system, IEEE 85-bus test system, IEEE 118-bus test system,
IEEE 123-bus test system, Modified IEEE 15-bus and 43-bus
test systems [45], Unbalanced IEEE 19-bus test system,
Unbalanced IEEE 25-bus test system, Practical Guwahati DS,
Practical Changping, Beijing DS, Roy Billinton DS, Practical
Allahabad DS, Alibeykoy and Hadimkoy DS in Istanbul,
Turkey Practical DS in Singapore, Practical 31-bus DS in
China, Industrial park in Shanghai, China, Practical distri-
bution network of Nanjing, China, “Practical DS National
University of Sciences and Technology in Pakistan, Wash-
ington D.C. transportation network, Practical 83-bus Taiwan
DS, Indian 28-bus DS and Practical DS in Ireland, practical
Brazil 136-bus RDS.
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V. EMERGING TRENDS AND CONSIDERATIONS IN
ELECTRIC VEHICLE CHARGING INFRASTRUCTURE

A. REAL-WORLD IMPLEMENTATIONS FOR INTEGRATING
RENEWABLE ENERGY INTO EVCS

The integration of renewable energy sources into EVCS rep-
resents a pivotal step in the journey toward establishing a
more ecologically sustainable and environmentally conscious
transportation ecosystem. Through the utilization of renew-
able energy, particularly harnessed from sources such as solar
and wind power, EV charging is poised to undergo a trans-
formation that will significantly diminish its environmental
impact and contribute to the reduction of the carbon footprint
associated with EVs. In the realm of scholarly research,
it is essential to delve into the tangible manifestations of
this transition, examining the real-world implementations and
innovative technologies that underpin this process. Conse-
quently, this research article aims to provide insights into
the practical cases and cutting-edge technologies employed
to seamlessly integrate renewable energy sources into EVCS,
elucidating the pivotal role they play in advancing sustainable
transportation practices [65], [66], [67], [68], [69], [70], [71],
[72], [73], [74], [75].

1) TESLA SUPERCHARGER NETWORK

Tesla has implemented solar canopies with integrated solar
panels at many of their Supercharger stations. These canopies
not only provide shade for parked vehicles but also generate

clean solar energy to offset the charging stations’ power
needs [65].

2) ENVISION SOLAR'S EV ARC

Envision Solar’s EV ARC (Electric Vehicle Autonomous
Renewable Charger) is a mobile charging station that is
entirely powered by solar energy. It requires no grid con-

nection and can be deployed in various locations, providing
off-grid EV charging [66].

3) VIRTA'S DYNAMIC LOAD MANAGEMENT

Virta, a European EV charging platform, employs dynamic
load management to optimize the use of renewable energy
sources. By monitoring real-time grid conditions, the plat-

form intelligently allocates renewable energy for charging
EVs [67].

4) NISSAN'S VEHICLE-TO-GRID (V2G) TECHNOLOGY

Nissan has developed V2G technology that allows Nissan
EVs to not only charge from the grid but also discharge back
into the grid. This enables the vehicle’s battery to serve as a
mobile energy storage unit, contributing to grid stability and
supporting renewable energy integration [68].

5) ALLEGO’S ULTRA-FAST CHARGING STATIONS

Allego, a European charging infrastructure provider, inte-
grates renewable energy sources into their ultra-fast charg-
ing stations. By sourcing electricity from local renewable
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projects, they ensure that the energy used for charging is as
sustainable as possible [69].

6) EVGO'S RENEWABLE ENERGY PARTNERSHIPS

EVgo, a leading U.S. public fast-charging network, partners
with renewable energy providers to procure wind and solar
energy for their charging stations. This ensures a significant
portion of the energy supplied to their stations comes from
renewable sources [70].

7) CHARGEPOINT'S EXPRESS PLUS

ChargePoint’s Express Plus charging stations are designed to
be highly scalable and grid-integrated. They can be config-
ured to take advantage of renewable energy sources, helping

to reduce the carbon footprint associated with EV charg-
ing [71].

8) ABB'S TERRA HP CHARGING STATIONS
ABB’s Terra HP high-power charging stations are capable
of integrating with renewable energy sources, such as solar

or wind, to provide fast and sustainable charging options for
EVs [72].

9) EFACEC'S QC45 ULTRA-FAST CHARGER

Efacec’s QC45 charger allows for easy integration with
renewable energy sources. It can be connected to solar panels
or wind turbines, providing a green charging solution [73].

10) EMOTORWERKS' JUICENET GREEN

eMotorWerks, a subsidiary of Enel X, offers JuiceNet Green,
a platform that allows EV owners to charge their vehicles
when renewable energy generation is at its peak, minimizing
reliance on non-renewable sources [74].

These real-world implementations and innovative tech-
nologies showcase the tangible progress being made toward
making EV charging more sustainable and aligned with
renewable energy sources, contributing to a cleaner and more
eco-friendly future of transportation.

B. ADDRESSING FLUCTUATIONS IN EV LOAD MODELING:
STRATEGIES AND INNOVATIONS

The surge in EV adoption heralds a promising shift towards
sustainable transportation. However, this transition presents
a unique challenge: the unpredictability of user behavior,
which can lead to fluctuations in power demand. This poses
a significant concern for grid stability and necessitates inno-
vative solutions. Below are suggested insights and potential
solutions to address this challenge, ranging from advanced
demand forecasting methods to the integration of smart grid
technologies:

1) ADVANCED DEMAND FORECASTING

Employ advanced demand forecasting methods that integrate
historical data, user behavior analysis, and real-time inputs
to predict EV charging patterns accurately. This helps grid
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operators anticipate and accommodate load variations effec-
tively [75].

2) SMART CHARGING INFRASTRUCTURE

Invest in intelligent charging infrastructure that can commu-
nicate with both the grid and individual EVs. These systems
enable dynamic adjustments in charging rates based on real-
time grid conditions, reducing load fluctuations [76].

3) V2G INTEGRATION

Promote V2G technology, allowing EVs to discharge excess
energy back into the grid during peak demand periods. V2G
integration helps stabilize the grid and minimize load vari-
ability [76].

4) ENERGY STORAGE SYSTEMS

Incorporate Energy Storage Systems (ESS) at charging sta-
tions or within the grid. ESS can store surplus energy during
low-demand periods and release it during high-demand times,
acting as a buffer against load fluctuations [77].

5) COORDINATED CHARGING SCHEDULES

Implement coordinated charging schedules at the aggregator
level, ensuring that EVs are charged and discharged strate-
gically to reduce power fluctuation levels. This approach
enhances load management [76].

6) DYNAMIC DEMAND RESPONSE

Develop a dynamic demand response program that incen-
tivizes EV owners to adjust their charging times based on
grid conditions and peak demand hours. This enables more
controlled load distribution [77].

7) REAL-TIME DATA ANALYTICS

Leverage real-time data analytics to monitor and manage
EV loads continuously. Grid operators can make data-driven
decisions and apply load-shifting strategies to balance power
consumption [78].

8) COMMUNICATION INFRASTRUCTURE

Strengthen communication infrastructure that facilitates
seamless data exchange between EVs, charging stations, and
the grid. Efficient communication enables real-time load
adjustments and minimizes unexpected fluctuations [77].

9) SMART GRID TECHNOLOGIES

Embrace smart grid technologies, including advanced meter-
ing infrastructure (AMI) and grid sensors. These technologies
enhance grid visibility, allowing for better control over energy
consumption patterns and grid stability [79].

10) REGULATORY SUPPORT
Establish clear regulatory frameworks and policies that pro-
mote EV load management and V2G integration. Regulatory
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support is crucial for driving adoption and ensuring compli-
ance with grid-friendly practices [78].

These suggestions and potential solutions empower grid
operators and stakeholders to address the challenge of fluc-
tuations in EV load modeling effectively. By implementing a
combination of advanced technologies, demand forecasting,
and demand response strategies, the power grid can accom-
modate the growing EV market while maintaining stability.

C. OPTIMIZING EV CHARGING PATTERNS SCHEDULING
FOR GRID EFFICIENCY

The surge in vehicle electrification is poised to make a
substantial impact on the power grid, primarily due to the
increased demand for electricity. This shift will inevitably
alter the overall load profile of the electric system, owing
to the introduction of EV charging and discharging. The
charging activities of a substantial population of EVs can
exert a noteworthy influence on the power grid. It has been
projected that in the U.S., the cumulative charging load from
EVs could potentially reach up to 18% of the peak load
during summer, provided the EV penetration reaches 30%
[80]. Conversely, EVs can also function as energy sources
for the power grid through a process known as V2G [81]. The
implementation of an intelligent scheduling scheme holds the
capacity to strategically plan EV charging patterns, conse-
quently smoothing out the load profile of the electric system.
This measure can lead to a reduction in capital costs and
operational expenses. Intelligent scheduling for EV charging
and discharging has emerged as a crucial stride towards the
realization of smart grids [82]. The fundamental principle
underpinning intelligent scheduling lies in reshaping the load
profile by orchestrating the charging of EV batteries from
the grid during periods of low demand, and discharging
them back to the grid during peak demand periods. However,
achieving optimal patterns of EV charging and discharg-
ing poses a challenge. Firstly, attaining a globally optimal
scheduling solution that minimizes overall charging costs,
especially in the context of a large EV population, is a com-
plex task. Secondly, any scheduling scheme must possess
the flexibility to effectively manage the sporadic arrivals of
EVs [83].

The pivotal role that optimal scheduling plays in optimiz-
ing EVCS utilization and mitigating its impact on the grid
is of paramount importance. Optimal scheduling in EVCS
usage holds paramount importance in several key aspects.

1) LOAD BALANCING

Effective scheduling ensures an equitable distribution of
charging sessions across the grid, averting the risk of over-
loading specific areas or substations. This, in turn, minimizes
grid congestion and mitigates potential power quality issues.

2) PEAK DEMAND MANAGEMENT
Strategically timed charging sessions help divert demand
away from peak periods, alleviating stress on the grid during
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times of heightened electricity consumption. This proac-
tive approach reduces the necessity for costly infrastructure
upgrades.

3) RENEWABLE ENERGY INTEGRATION
Scheduling can be synchronized with periods of heightened
renewable energy generation, such as during sunny or windy
conditions. This strategic alignment guarantees that EVs are
charged using clean energy, curbing reliance on fossil fuels
and curbing greenhouse gas emissions.

4) GRID RESILIENCE AND STABILITY

Controlled scheduling empowers grid operators to adeptly
handle abrupt surges in demand, bolstering overall grid sta-
bility and fortitude against unforeseen events or disruptions.

5) DEMAND RESPONSE IMPLEMENTATION

Through scheduling, EV charging rates can be dynamically
adjusted in response to real-time grid conditions. This facili-
tates demand response programs, allowing for modulation of
charging rates to support grid stability during periods of stress
or imbalance.

6) COST OPTIMIZATION

Scheduling allows for the implementation of time-of-use
pricing strategies, incentivizing EV owners to charge during
off-peak hours when electricity rates are lower. This culmi-
nates in cost savings for consumers.

7) USER CONVENIENCE AND FLEXIBILITY

Scheduling systems afford users the ability to establish pre-
ferred charging times, ensuring that their vehicles are ready
for use without placing undue strain on the grid.

8) GRID-INTEGRATED PLANNING

When EV charging schedules are factored into grid planning
and expansion, it enables more efficient sizing and place-
ment of charging infrastructure, harmonizing with overall
grid capacity.

9) REDUCTION OF GRID UPGRADES

Efficient scheduling has the potential to reduce the need for
costly grid upgrades by managing demand in a way that aligns
with existing infrastructure capabilities.

10) ENVIRONMENTAL IMPACT MITIGATION

By optimizing charging schedules, it’s possible to align EV
charging with periods of high renewable energy availabil-
ity, thereby reducing the carbon footprint associated with
charging.

D. INTEGRATION OF DSM AND V2G IN EVCS ALLOCATION
1) BENEFITS OF DSM IN EVCS ALLOCATION

The benefits of integrating DSM and V2G in EVCS allocation
presented as bullet points:
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Enhanced Grid Stability and Reliability: DSM and V2G
integration allows for dynamic responses to grid conditions,
ensuring stable voltage levels and grid frequency.

Reduced Grid Congestion and Overloads: By utilizing
V2G capabilities, excess energy from EVs can be fed back
into the grid during peak demand, reducing stress on the
grid.

Optimized Energy Utilization: DSM and V2G balance sup-
ply and demand, leading to more efficient use of available
resources.

Minimized Environmental Impact: Through intelligent
charging and discharging, the integration reduces reliance on
carbon-intensive power generation methods.

Cost Savings for Consumers and Utilities: Integration can
lead to reduced energy costs for EV owners and potential
revenue streams through grid services, benefiting both con-
sumers and utilities.

Facilitation of Renewable Energy Integration: The inte-
gration synchronizes EV charging and discharging with
renewable energy generation patterns, making it easier to
integrate clean energy sources.

Grid Support During Emergencies: V2G capabilities can
provide critical support in times of grid instability or emer-
gencies, acting as a temporary power source or stabilizing the
grid.

Promotion of Grid Modernization: The integration encour-
ages the adoption of advanced technologies, promoting a
more modern, efficient, and adaptive grid infrastructure.

Flexibility and Adaptability: DSM and V2G integration
offers a flexible approach to energy management, allowing
for adjustments based on real-time grid conditions, energy
prices, and user preferences.

Improved Resilience to Supply Shortages: By actively
managing energy flows, DSM and V2G integration helps
ensure a steady power supply even in situations where the
grid faces limitations or shortages.

2) ISSUES AND CHALLENGES IN IMPLEMENTING DSM IN
EVCS ALLOCATION

The challenges associated with implementing DSM in EVCS
allocation underscore the intricate considerations involved
in optimizing energy consumption within the realm of
EV charging. Each of these challenges addresses a spe-
cific facet of DSM integration, underscoring their critical
role in achieving a successful and efficient implementation
[84], [85], [86].

o Residential loads contribute significantly to peak
demand, straining the grid system’s capacity.

« Adapting pricing blocks to consumption levels can be
complex.

« Selecting the most effective load scheduling approaches
is crucial.

o Centralized controllers are needed for various control
options, but balancing energy savings for clients and
profits for utilities can be challenging.
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« Consumer response to pricing signals varies, influenced
by factors like adaptability, indifference to minor tariff
changes, and awareness of pricing systems.

o Scalability measures are lacking for handling multiple
vendors, upgrades, and expansions.

« Robust privacy measures are necessary to protect cus-
tomer information.

o The neighbor effect can influence consumer behavior
based on perceived price rates.

o A generalized operational framework for DSM partic-
ipants is essential for providing energy consumption
control.

« Balancing peak load reduction with user comfort and
choice is a key consideration.

« Integration of volatile power sources like wind and solar
can impact grid stability.

These challenges represent the complexities and considera-
tions involved in implementing DSM in EVCS allocation and
optimizing energy consumption within the grid system.

3) SUGGESTED SOLUTIONS METHODS
The suggested solutions methods for incorporating DSM and
V2G in EVCS allocation are given below [86], [87]:

Load Management and Scheduling: Utilize DSM tech-
niques to intelligently schedule and manage EV charging
sessions based on grid conditions, user preferences, and cost-
effective time slots.

Grid Support and Stability: Implement V2G capabilities
to allow EVs to feed excess energy back into the grid during
peak demand, helping stabilize the grid and alleviate stress on
the system.

Price-Based Charging: Apply time-of-use pricing models
to incentivize EV owners to charge during off-peak hours,
reducing strain on the grid during high-demand periods.

Intelligent Charging Infrastructure: Install advanced charg-
ing infrastructure that can communicate with both the grid
and individual EVs, enabling dynamic adjustments in charg-
ing rates based on real-time grid conditions.

DR Programs and Incentives: Offer incentives for EV
owners to participate in demand response programs, allowing
utilities to curtail or adjust charging during periods of grid
congestion.

Energy Storage Integration: Integrate energy storage sys-
tems (ESS) with the charging infrastructure to store excess
energy and provide it back to the grid when needed, enhanc-
ing grid reliability.

These methods collectively enhance the effectiveness and
coordination of DSM and V2G implementation in EVCS
allocation, contributing to a more efficient and sustainable EV
charging infrastructure.

4) REAL TIME IMPLEMENTATION

In the article [88], a specific system architecture for Demand
Side Management (DSM) of EV's operating in real-time urban
areas was proposed and discussed. The study thoroughly
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examined the required data throughput for this system.
The article delved into the communication requirements
necessary for managing EVs within urban environments,
with a particular focus on enabling mobile communication
between EVs and smart grids. Additionally, it introduced a
novel approach - a V2G Low-Power Wide-Area Network
(LPWAN) infrastructure using LoRaWAN technology [88].

The step-by-step implementation for DSM of EVs in real-
time urban areas covered the following key points:

Feasibility Testing: The study assessed the feasibility
of the V2G LPWAN infrastructure by establishing mobile
communication links between an EV and the LoRaWAN
infrastructure of A2A Smart City in Brescia, Italy.

Interaction Between EVs and Power Grids: The article
examined the intricate interactions between EVs and power
grids. It emphasized the importance of DSM strategies for
intelligent EV charging, particularly focusing on the V2G
concept.

Operational and Management Objectives: Four main
objectives were identified and discussed, namely medium-
term operational planning, day-ahead optimal scheduling,
intraday optimal scheduling, and real-time emergency grid
control.

Communication Requirements for V2G DSM: The article
analyzed the communication requirements for each opera-
tional scenario, including considerations such as data volume,
refresh intervals, and the nature of communication (e.g., com-
munication while the EV is in motion or connected to Electric
Vehicle Supply Equipment).

System Architecture for Intraday DSM: The study pro-
posed a specific architecture for implementing intraday DSM
for EVs in urban areas. It introduced the concept of the
Electric Vehicle Mobile Service Provider (EV-MSP), which
was responsible for bidirectional communication with EVs
and providing services to EV aggregators.

Data Exchange Procedure: The article detailed a struc-
tured procedure for data exchange, specifying the content,
size of transmitted information, and required refresh intervals
for functions like EV monitoring, EVSE (Electric Vehi-
cle Supply Equipment) information provisioning, and V2G
Demand Response (DR) requests.

Data Throughput Estimates: The study estimated the data
throughput requirements for various functions, emphasizing
the need for specific bandwidths for functions like EV mon-
itoring and EVSE information provisioning.

LPWAN Technology for Mobile Communication: The arti-
cle proposed the utilization of a Low-Power Wide-Area
Network (LPWAN), specifically LoRaWAN, as an innova-
tive approach to mobile communication between EVs and
aggregators. This technology was presented as a comple-
mentary or alternative solution to traditional cellular-based
approaches.

Communication Architecture With LoRaWAN: A specific
communication architecture based on LoRaWAN technology
was introduced, and its scalability was discussed in accor-
dance with the defined communication requirements.

5425



IEEE Access

T. Yuvaraj et al.: Comprehensive Review and Analysis of the Allocation of EVCSs

Scalability Assessment: The study’s results demonstrated
that each LoRa base station had the capability to serve a
significant number of EVs and EVSEs, highlighting the scal-
ability potential of the proposed solution.

Feasibility Demonstration: The article successfully show-
cased the feasibility of the proposed V2G LPWAN solution
within an existing LoRaWAN infrastructure. It demonstrated
the transmission of essential data related to EV battery state,
vehicle and user identification, geographic coordinates, and
acquisition timestamps.

The article offered a comprehensive analysis and a
forward-thinking solution for the practical implementation of
DSM in EVCS allocation, using the innovative V2G LPWAN
infrastructure based on LoRaWAN technology, specifically
designed for real-time urban scenarios [88].

E. LEGAL AND ECONOMIC CONSIDERATIONS IN THE
PLACEMENT OF EVCS

The integration of EVCS into electric power systems neces-
sitates a comprehensive examination of both legal and
economic facets. Regulatory frameworks at local, state, and
federal levels play a pivotal role in determining the permis-
sibility and procedural requirements for EVCS deployment,
encompassing zoning ordinances, building codes, and requi-
site permits [89]. Ensuring accessibility in compliance with
the Americans with Disabilities Act (ADA) is imperative,
entailing adherence to stipulations governing parking space
dimensions, signage, and accessibility routes [90]. Moreover,
considerations of land use and zoning are crucial, encompass-
ing determinations of suitable deployment locations based
on factors such as commercial or residential designations
and proximity to essential facilities. Intellectual property
considerations may arise, necessitating licensing agreements
or addressing patent infringement issues depending on the
technology employed [91]. Grid impact and capacity plan-
ning are paramount, requiring assessments and preparations
by utility companies to accommodate heightened demand
and prevent overloads. Interconnection agreements with util-
ity providers delineate the terms of integrating EVCS with
the grid, including technical specifications, responsibilities,
and compensation arrangements. Liability concerns neces-
sitate robust insurance coverage and contingency plans in
the event of accidents or malfunctions [92]. Environmental
compliance encompasses adherence to regulations governing
hazardous materials and emissions standards, particularly
with regards to battery disposal and emissions [93]. Safe-
guarding data privacy and security is imperative given the
potential collection of user information and charging histories
by EVCS, obliging adherence to relevant data protection laws
and implementation of robust security measures. Contrac-
tual agreements between property owners, EVCS operators,
and third-party entities should be clearly defined, covering
maintenance protocols, revenue-sharing arrangements, and
delineation of responsibilities [94]. Participants in the EVCS
ecosystem may contemplate participation in energy markets
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such as demand response programs, necessitating a thor-
ough understanding and compliance with relevant market
regulations. Selling electricity from EVs involves navigating
complex regulatory, billing, pricing, and grid management
considerations. Agreements, data privacy measures, and lia-
bility plans are essential. Clear consumer protections and
fair market practices are vital. Technological integration for
grid interaction is crucial. Balancing these factors is key
to a successful EV-based electricity sales model, advancing
sustainable charging infrastructure [95].

F. THE ROLE OF EVs IN GRID FLEXIBILITY SERVICES
This section emphasizes the potential of EVs in provid-
ing flexibility for voltage control and congestion issues.
Integrating EVs into flexibility services is a growing trend
with substantial benefits, including demand response, peak
shaving, and grid stabilization. Challenges such as V2G
infrastructure, regulatory frameworks, and standardization
need addressing. Generally, DSOs favored grid reinforcement
over active demand management. However, with EVs proving
efficient flexibility providers, they can reduce infrastructure
needs, enhance congestion management, and aid in voltage
control. Market design adaptations are essential [96]. The
integration of EVs into power systems, especially distribution
grids, presents challenges and opportunities. Identifying key
technical and economic aspects is crucial. Recent advances
and increased regulatory interest show promise [97]. Decen-
tralized energy flexibility management is the most profitable
strategy, benefiting both end users and aggregators. Smart
strategies, treating end user flexibility as an interruptible
load, and shiftable load constraints enhance profitability [98].
A method was developed to reduce load impact on charging
service quality, with specific sites showing significant poten-
tial for flexibility. Office and residential sites prove most
flexible for the power system, while shopping centers have
a more substantial impact on service quality [99]. This study
provides insights into the flexibility behavior of different
vehicle fleets. The logistics site exhibits consistent charging
profiles and high flexibility, distinguishing it from office
and public agency sites. These findings hold implications
for smart charging and ancillary services provision [100].
Seamless integration of EVs into distribution systems for
grid operation and planning is crucial. Identifying techni-
cal, economic, and regulatory obstacles, along with recent
advancements, is key to future applications [101].

Several technical hurdles impeded the development of flex-
ibility services at the distribution level [101]. These included:

1) OBSERVABILITY IN DISTRIBUTION GRIDS

There was a demand for heightened observability by Distri-
bution System Operators (DSOs) in near-real-time, enabling
accurate forecasting and swift flexibility activation.

2) BATTERY AGING
A critical factor influencing economic viability and user
acceptance of grid services, necessitating comprehensive
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examination in the context of distribution grid services, which
could be more energy-intensive than frequency response
services.

3) CHARGING TECHNOLOGY

Bidirectional chargers, while promising, were still in the
nascent stage. Cost and round-trip efficiency remained con-
cerns, though a decline in costs and potential additional
functionalities, such as reactive power compensation, were
anticipated.

4) ECONOMIC AND INSTITUTIONAL BARRIERS
The primary challenges in advancing EV flexibility pertained
more to economic and institutional aspects:

Active Management of Distribution Grids: DSOs needed
to transition from a passive approach to proactive grid man-
agement, necessitating the development of new roles and
responsibilities. Regulators played a crucial role in incen-
tivizing innovation and cost-efficiency.

EV Integration Status in the Grid: V2G-capable EVs
faced notable regulatory and technical hurdles. Streamlined
and standardized connection procedures, along with tailored
metering options, were recommended.

DSO-TSO Cooperation: Enhanced cooperation and coor-
dination between DSOs and Transmission System Operators
(TSOs) were imperative for integrating flexibility across all
grid levels, ensuring a secure and reliable power system.

Value Frameworks for Flexibility: Mechanisms for lever-
aging flexibility at the distribution level were still evolving,
with ongoing projects like flexibility tenders and Network
Access Rights (NWAs) serving as promising developments.

Value of Services: As the utilization of flexibility at the
distribution level was a burgeoning field, the precise value
derived from offering such services remained uncertain. Fur-
ther research was needed to fully understand the additional
value that V2G technology could bring compared to smart
charging.

In recent years, significant strides were made in this
domain, with regulators exhibiting a growing interest in tap-
ping into local flexibility from diverse sources and promoting
intelligent management of DERs. These advancements sig-
naled a promising trajectory toward a more flexible and
resilient grid infrastructure.

G. INTEGRATION OF V2G SERVICES IN SOC ANALYSIS FOR
EVs

In the realm of EVs, SOC analysis plays a pivotal role in
optimizing battery performance and ensuring efficient energy
management. However, as the landscape of energy systems
evolves, an increasingly important aspect is the integration
of EVs into V2G services. V2G technology empowers EVs
not only to draw power from the grid but also to feed excess
energy back into the grid, transforming them into mobile
energy storage units with the potential to provide invaluable
grid support.
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In the context of SOC analysis, it is essential to expand
the discussion to incorporate the prospects and implications
of V2G services. This entails considering the required state
of charge of the EV battery after delivering V2G services.
Defining the minimum SOC that must be maintained in the
battery post-service is critical to ensure the vehicle’s opera-
tional readiness or meet specific regulatory and operational
requisites. Striking this balance is imperative to ensure that
participating in V2G services does not compromise the pri-
mary function of the EV, which is transportation.

The integration of V2G services into SOC analysis requires
a comprehensive understanding of the technical, economic,
and regulatory aspects. This encompasses a thorough eval-
uation of the battery’s charge and discharge characteristics,
the impact on battery degradation, and the potential economic
incentives and revenue streams for EV owners. Additionally,
the integration necessitates addressing challenges such as
V2G infrastructure, regulatory frameworks, and standardiza-
tion to facilitate widespread adoption.

To support this expanded discussion, various studies and
research articles offer valuable insights into SOC analysis,
V2G technology, and the intricate relationship between EVs
and grid services. Notable references include for a compre-
hensive overview of SOC analysis, for an exploration of
V2G technology and its potential, and for insights into the
economic and regulatory aspects of V2G services. By delving
into these sources, this research article provides a holistic
perspective on the evolving landscape of EVs in the context of
grid integration, SOC analysis, and V2G services, contribut-
ing to the advancement of sustainable and responsive energy
systems [102], [103], [104].

1) SOC EQUATIONS WITH V2G SERVICES

Incorporating V2G services into the SOC analysis adds a
layer of complexity to the mathematical modeling of EV
battery dynamics. The following set of equations provides
a comprehensive framework that accounts for the bidirec-
tional flow of energy between the battery and the grid. These
equations not only capture the charging and discharging pro-
cesses but also introduce V2G services, allowing the EV to
actively contribute power back to the grid. This enhanced
model ensures that the SOC remains within predefined limits,
balancing the requirements for grid support with the need to
maintain sufficient charge for continued vehicle operation.

2) BATTERY STATE OF CHARGE (SOC) DYNAMICS WITH V2G
SERVICES

The SOC of a battery at any given time (t) considering V2G
services can be represented as:

SOC (t) = SOC (t — 1) + (Ncharge * Peharge (1))

- (— * Pgischarge (t))
Ndischarge
1
- (— * Pyag (Z)) (18)
Ndischarge
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where, SOC (¢) is the state of charge at time t; 7cparge 1S the
charging efficiency; Peparge (¢) 18 the charging power at time
t; Ndischarge 18 the discharging efficiency; Pgischarge(t) 18 the
discharging power at time t; and Py () is the power sent
back to the grid during V2G operation.

3) V2G SERVICES POWER CALCULATION
The power sent back to the grid during V2G operation can be
determined by:

Py (1) = min(Pdischarge @), PVZG(max)) (19)
where, Pyv2G(nax) 1S the maximum power that can be provided
to the grid.

4) V2G EFFICIENCY

The efficiency of V2G services (ny2g) can be considered,

though it’s typically less than 100% due to losses in the

bidirectional power conversion process:
PvaGactualy = Pvac (1) * nvag (20)

where, Py2Gacmaty 18 the actual power sent back to the grid;

and ny¢ is the V2G efficiency.

These equations represent a more comprehensive model
that takes into account the impact of V2G services on the
battery’s state of charge. It ensures that while providing grid
services, the SOC of the battery is maintained within accept-
able limits for continued vehicle operation. Keep in mind that
specific parameters and efficiencies will vary based on the
specific EV and V2G system being analyzed.

H. THE USE OF CARPORTS IN END-USER INSTALLATIONS
Carports serve as a versatile solution, especially in the con-
text of EV adoption and the deployment of EVCS. They
offer dual benefits by protecting vehicles from the ele-
ments and augmenting property value with solar panels.
Integrated with EVCS, carports create a dedicated, conve-
nient area for EV charging. For commercial sites, carports
with EVCS provide a protected environment while generating
clean energy on-site, offering potential advertising spaces
and reducing parking lot maintenance costs. Carports, when
combined with EVCS, optimize solar energy capture and
offer opportunities for surplus energy storage or selling back
to the grid, further supporting EV electrification efforts.
This technology-oriented concept facilitates EVCS, utilizing
onsite solar energy for EV charging and enabling G2V and
V2G functionalities [105], [106].

Carports play a pivotal role in the integration of EVs into
end-user installations, offering a range of benefits [107]:

Protection for EVs: Carports shield EVs from harsh
weather, ensuring their longevity and reducing maintenance
costs.

Integrated Charging Stations: They provide an optimal
framework for incorporating EV charging stations, creating a
dedicated and weather-resistant area for convenient charging.
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Space for Charging Infrastructure: Carports can house var-
ious charging equipment, making them a crucial component
of an EV owner’s charging setup.

Solar Integration: Equipped with solar panels, carports
serve as a sustainable energy source for EV charging, pro-
moting clean energy adoption in transportation.

Enhanced Aesthetics and Property Value: Stylish car-
ports, especially those with integrated EV charging, not only
complement a home’s exterior but also increase its value,
appealing to the growing EV market.

Energy Efficiency: Compared to traditional garages, car-
ports are more energy-efficient, requiring fewer resources for
lighting and electronic systems, aligning with the sustainable
ethos of electric mobility.

Multi-Vehicle Housing for EV Fleets: They provide an
effective solution for housing multiple EVs, making them an
excellent choice for homeowners with EV fleets.

Savings on Storage and Charging Costs: Carports can
replace the need for off-site EV storage facilities, resulting
in significant cost savings for EV owners.

Customized Design for EV Integration: Carports with inte-
grated EV charging stations can be tailored to harmonize with
the property’s aesthetic, enhancing its overall appeal.

Efficient Organization for Charging Equipment: Carports
enable the efficient organization of charging equipment,
ensuring easy access while keeping it separate from indoor
spaces.

By merging carports with EVCS and EVs, homeown-
ers can establish a comprehensive and sustainable charging
infrastructure that not only protects their vehicles but also
contributes to the broader adoption of electric transportation.

I. RANDOMNESS IN EV GRID CONNECTIONS: CHARGING

AND DISCHARGING SCENARIOS

The integration of EVs into the electrical grid introduces a
dynamic and somewhat unpredictable element, characterized
by the randomness associated with connecting these vehicles
to the grid in both charging and discharging scenarios. This
unpredictability arises from several factors. Firstly, in the
charging context, EV owners exhibit varying behaviors and
preferences in terms of when and how they charge their vehi-
cles. Some may opt for overnight charging, taking advantage
of off-peak electricity rates, while others might choose to
charge during the day or at public charging stations. Addition-
ally, the availability of charging infrastructure can impact the
timing and frequency of EV connections, with factors such
as home charging stations, workplace chargers, and public
charging networks all contributing to this variability. Further-
more, the introduction of V2G technology adds another layer
of complexity to this randomness.

In the discharging context, EVs have the potential to act
as mobile energy storage units, capable of injecting electric-
ity back into the grid. However, the decision to discharge
power is contingent on a multitude of factors, including grid
demand, grid stability, and the financial incentives offered to
EV owners. This introduces an element of unpredictability,
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as the decision to discharge power is influenced by real-
time conditions and market dynamics. Moreover, factors such
as individual driving patterns, trip schedules, and user pref-
erences further contribute to the stochastic nature of EV
grid connections. For example, some users may return home
from work with a significant amount of charge remaining
in their vehicle, presenting an opportunity for grid discharg-
ing. Others may arrive home with a lower state of charge,
prioritizing the need to charge their vehicle for upcoming
trips. This variability in user behavior introduces an element
of randomness, making it challenging to precisely predict
when and how EVs will be connected to the grid. Overall,
the randomness associated with connecting EVs to the grid
underscores the need for advanced grid management strate-
gies and technologies. These may include demand forecasting
models, smart charging algorithms, and real-time commu-
nication systems between vehicles and the grid. Effectively
harnessing the potential of EVs in grid operations requires a
nuanced understanding of this inherent randomness and the
development of adaptive solutions to ensure a reliable and
stable energy ecosystem. Give subheadings for charging and
discharging [108], [109].

VI. DETAILED REVIEW OF EVCS ALLOCATION
Numerous pieces of research within existing literature have
delved into the allocation of energy sources in distribution
systems that lack EVCS. These studies have employed a vari-
ety of objective functions and optimization methodologies.
However, there is a noticeable dearth of literature concerning
the allocation of EVCS, as the research in this particular
area is still in its preliminary stages. Only a limited num-
ber of investigations have tackled the challenge of EVCS
allocation while considering energy sources. Furthermore,
a significant body of scholarly work exists that pertains
to the simultaneous installation of EVCS alongside DGs
and devices like DSTATCOM/capacitors. A comprehensive
overview of recent contributions in the realm of EVCS plan-
ning is presented in Table 1 to 6 [43], [44], [45], [110],
[111], [112], [113], [114], [115], [116], [117], [118], [119],
[120], [121], [122], [123], [124], [125], [126], [127], [128],
[129], [130], [131], [132], [133], [134], [135], [136], [137],
[138], [139], [140], [141], [142], [143], [144], [145], [146],
[147], [148], [149], [150], [151], [152], [153], [154], [155],
[156], [157], [158], [159], [160], [161], [162], [163], [164],
[165], [166], [167], [168], [169], [170], [171], [172], [173],
[174], [175], [176], [1771, [178], [179], [180], [181], [182],
[183], [184], [185], [186], [187], [188], [189], [190], [191],
[192], [193], [194], [195], [196], [197], [198], [199], [200],
[201], [202], [203], [204], [205], [206], [207]. This review
encompasses diverse aspects such as the incorporation of
DG, Capacitors, Network Reconfiguration (NR), BESS, pro-
tective devices, and DSTATCOM across various types of
distribution systems. The review also encompasses a wide
array of optimization techniques and objective functions.
Numerous strategies have been employed to deter-
mine the optimal solution for sizing and locating EVCS.
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A comparative analysis, presented in Table 1-6, highlights
various optimization methods used in addressing the chal-
lenges of EVCS siting and sizing. Furthermore, several
studies have explored diverse approaches to effectively place
EVCS. These methodologies hinge on the choice of objective
functions, utilization of solution techniques, consideration
of experimental setups and constraints, as well as integra-
tion of energy sources. Further, this comprehensive research
article provides an in-depth visual representation of EVCS
allocation strategies, meticulously examined across Figures 8
to 13. These figures encapsulate insights gleaned from a
diverse array of sources, encompassing the electrical grid
(Figure 8) [110], [111], [112], [113], [114], [115], [116],
[117], [118], [119], [120], [121], [122], [123], [124], [125],
[126], [127], [128], [129], [130], [131], [132], [133], [134],
[135], [136], [137], [138], [139], [140], DG (Figure 9)
[43], [44], [45], [141], [142], [143], [144], [145], [146],
[147], [148], [149], [150], [151], [152], [153], [154], [155],
[156], [157], [158], [159], [160], [161], [162], [163], [164],
[165], [166], [167], [168], [169], [170], [171], [172], [173],
[174], DG coupled with ESS (Figure 10) [175], [176], [177],
[178], [179], [180], [181], [182], [183], [184], [185], [186],
[187], [188], [189], [190], [191], as well as capacitors and
DG (Figure 11) [192], [193], [194], [195], [196], [197],
[198]. Additionally, the analysis extends to DFACTS and
DG (Figure 12) [199], [200], [201], [202], and delves into
protective devices alongside supplementary energy sources,
in tandem with NR (Figure 13) [203], [204], [205], [206],
[207], all meticulously cited within a range of recent publi-
cations. Within this comprehensive overview, several salient
observations emerge. A primary emphasis lies in the lever-
aging of DG and the electrical grid to seamlessly integrate
EVCS, thereby minimizing its impact on the distribution
system. Conversely, there exists a discernible gap in the
exploration of alternative energy sources, indicating a poten-
tial avenue for further investigation. A notable temporal trend
reveals that the publications analyzed primarily originate
from the recent past, attesting to the burgeoning interest in
EVCS allocation strategies. Further scrutiny unveils a preva-
lent reliance on evolutionary algorithms, underscoring their
efficacy as optimization tools in this domain. In terms of
experimental setups, standardized test systems take prece-
dence over real-time counterparts, a phenomenon attributed
to their widespread availability and ease of implementation.
Moreover, a recurring theme emerges in the form of a stead-
fast commitment to power loss mitigation as the paramount
objective function. Notably, the chosen forums for dissem-
ination predominantly include distinguished platforms such
as IEEE and Elsevier, attesting to the rigorous peer-review
process undergone by these contributions. Surprisingly, envi-
ronmental and reliability objectives, while crucial in the
broader context, receive relatively scant attention within
the reviewed literature. Overall, this article constitutes an
invaluable resource, offering a nuanced and comprehensive
understanding of the dynamic landscape of EVCS allocation
research, replete with trends, methodologies, and areas ripe
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for future exploration. It serves as an indispensable com-
pass for researchers and industry practitioners navigating this
evolving terrain.

Upon a comprehensive review of optimization research
endeavors in this domain, certain gaps emerge in the current
body of work.

e Most studies investigated one or two techniques for
placing EVCSs in areas where it is not recommended
for real-world situations. The framing of problems for
appropriate CS placements is equally significant for CS
owners, DS operators, and EV consumers.

e EV load modelling does not account for fluctuations in
EVCS load on the DS caused by unpredictability in EV
user behavior.

e Demand-side management (DSM) and V2G schemes
have been ignored in determining suitable EVCS place-
ments.

e The integration of RES is not included in formulating
the EVCS placement problem.

e The authors do not incorporate charging schedules with
problem formulation of EVCS ideal placement.

e Most authors positioned the charging station (high-
speed charging) based on cost functions while neglect-
ing the charging station’s impact.

e Variations in daylight load, as well as changes in envi-
ronmental factors such as temperature, irradiance, and
wind speed, which may impact DGs like as solar PV and
wind turbines, are not taken into account.

e Frequent charging and draining might shorten the life
of an EV battery. As a result, using BESS as an energy
storage backup and then selling electricity to the build-
ing instead of continually draining the EV battery will
enhance battery longevity.

e Uncoordinated EV charging might result in a peak load
on a DS.

e The conventional PSO method used for optimal sizing
has various issues, such as looking for the ideal value,
particles becoming caught in local minima, and increas-
ing the number of iterations required.

e The suggested eco-charging systems (which include PV,
ESS, and the electrical grid) make the environment less
durable and sustainable. They can exacerbate the inter-
mittent issue produced by PV and wind.

e Performing energy trading between Vehicle-to-Vehicle
(V2V) and V2G can help to prevent peak demand on the
grid and encourage depot owners to participate in the
energy reserve market.

e EV loads located further away from the service trans-
former experience more voltage dips than those closer
to the service transformer.

e A more systematic approach to charging station location
difficulties, considering EV users’ activity-based behav-
ior, has yet to be examined.

e The reliance on CO; emissions and the protection and
security of power system components are not considered
when evaluating system reliability.
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VII. CASE STUDY

The proposed methodology is used to a typical IEEE 33-bus
RDS for the optimization of the placement and sizing of vari-
ous DERs to demonstrate its effectiveness. These resources
include RDGs like solar and wind, as well as capacitors,
DSTATCOM, BESS, and EVCS. The usual challenge of allo-
cating EVCS throughout the distribution network is depicted
in Figure 14 utilizing a combination of distribution load
flow analysis and optimization approaches. A nature-inspired
algorithms known as the bald eagle search algorithm (BESA)
[208] and cuckoo search algorithm [209] are used for allocat-
ing energy sources in the RDS optimally. The BESA and the
CSA offer distinct advantages over traditional methods like
PSO in the context of EVCS allocation. BESA excels at han-
dling complex and nonlinear optimization challenges, thanks
to its intelligent balance of exploration and exploitation. This
makes it highly suitable for optimizing EVCS placement
within extensive solution spaces. CSA, inspired by the breed-
ing behavior of cuckoos, demonstrates a remarkable ability to
combine global exploration and local exploitation. It proves
effective in identifying optimal charging station locations,
particularly in scenarios with diverse constraints and objec-
tives. Both BESA and CSA exhibit robustness when dealing
with intricate allocation tasks, showcasing their potential to
surpass PSO and other algorithms for EVCS planning. This
method helps to determine the best locations and capacity for
various energy sources. The computational framework makes
use of MATLAB to create a power flow algorithm tailored
to the distribution system. This makes it easier to evaluate
the RDS’s base case power losses and bus voltage profiles.
The research takes into account three various types of EVs,
each with a different battery capacity ranging from 20 to
16 kWh. These EVs’ charging behaviour includes both G2V
and V2G operations. Furthermore, the EVs expected to arrive
at the charging station would have various SOC levels. The
charging station is intended to accommodate up to 100 EVs,
adding 966 kW to the system’s power consumption. To meet
distribution system limits, the best configuration contains a
maximum of two EVCS units, each with multiple charging
ports. The primary goal is to incorporate the EVCS units into
the current distribution infrastructure in a way that improves
both operational efficiency and system stability.

A. FORMULATION OF THE RESEARCH PROBLEM
The Backward/Forward Sweep (BFS) technique has gained
popularity for its effectiveness in conducting power flow
analysis in RDS, as stated in reference [210]. The simplicity,
speed, and less memory requirement for processing, as well
as the computational and robust convergence in the RDS
solution, are the essential features of this power flow analysis.
Figure 15 demonstrates the single line diagram of RDS with
energy sources and EVCS.
The calculation for the bus voltage at t+1 is determined by
the equation:
Vit = Vi —I(Ris1 +jX1i41) 21
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TABLE 1. Review of the literature for efficient EVCS allocation in the distribution system.

RNe:. Year Technique/Method Objective Function S(})Zul:'ec:gsyof Test Systems Outcomes/Findings/Future Scope
Future research might
. . .. systematically investigate related
111 2012 .Mofhﬁed P rimal dpal To mitigate th_e total cost Grid IEEE 123-bus issues such as EV fleet dispersion,
interior point algorithm associated with EVCS DS : .
traffic scenarios, and charging
demand patterns.
It has been noticed that V2G
12 2013 Fuzzy control-based Enhancement of voltage Grid Practical installation has enhanced the node's
optimization technique profile Guwabhati DS voltage profile and aided in peak
shaving and valley filling.
The study found that the suggested
IEEE 33-bus strategy successfully achieved
. Reducing power losses and . RDS & 25-bus appropriate EVCS development
13 2013 Cross entropy algorithm voltage deviations Grid traffic network plans while enhancing power
system system operating economics and
voltage profiles.
As battery technology continues to
improve and governments
. implement additional stimulus
. . Maximization of economic . Modified IEEE measures, the cost of batteries and
114 2013 Evolutionary algorithm Grid 15-bus . .
profit and 43-bus RDS other necessary equipment is
expected to decrease. This would
make battery stations a more viable
option for energy storage.
By comparing the mode with V2G
. L s characteristics of EV and that
115 | 2014 |  Ordinal optimization Minimization of the fixed Grid | IEEES4-busDS | without V2G, V2G features may
algorithm investment cost of EVCS : ,
effectively lower the DS's
operational expenses.
In the coming years, a computer-
s . . based application system could be
Optimizing environmental Practical developed by researchers to
116 2015 Fuzzy TOPSIS method criteria, economic criteria & Grid Changping, veloped by .
cocietal criteria Beijing DS expedite the implementation of the
fuzzy TOPSIS approach for
selecting suitable sites for EVCS.
Hybrid genetic algorithm Optimizing the real power COitngfr;zV:iog?én:h:;Her
and particle swarm loss reduction index & . Practical S g
117 2017 L . Grid functionality and the long-term
optimization-based voltage profile improvement Allahabad DS - ,
algorithm index smart design of Allahabad's fast
charging infrastructure.
With this method, high EV
Grey wolf optimization Optimization of load . . 38'—bu§ pen.etrano.n may be accompllls'hed
118 2018 : . Grid distribution while maintaining a competitive
algorithm variance and total cost . L
network advantage in load variation and
charging costs.
Numerical investigations have
shown that the suggested method
. . . e . Coupled traffic may give a global optimum
119 2018 Mlxii—l?;i%;;:llnear Mmlmlzatlc;r:)scg mvestment Grid electric planning solution for connected
prog & network Traffic electric networks while
using only a small amount of
computational effort.
Additional sparsification of the
. L communication structure will be
120 2018 A mod.lﬁed convex Minimizing the total system Grid IEEE 15-bus DS | required in future work, which may
relaxation technique energy cost o
be performed utilizing the alternate
direction multiplier approach.
Double-layered intelligent Minimization of the daily The S}lggestefi DI.EM sqlutlon for
. . IEEE 33-bus PEV integration in DS is also not
121 2019 energy management total cost incurred for PEV & Grid
“pproach svstem power loss RDS an unpalatable prospect for PEV
PP 4 p owners.
Practical The proper placement of EVCSs is
. L critical to the development of EVs.
122 2019 Genetic algorithm Mlmmlsz(a)t‘t:li(;?:(fstthe total Grid it:gg?ﬁlg? It will not only lower building costs
Naniing. China but will also optimize the EV
Jine industry's operation mode.
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TABLE 1. (Continued.) Review of the literature for efficient EVCS allocation in the distribution system.

Optimal scheduling of EV charging
and discharging, reactive

. . Minimization of power loss . IEEE 33-bus compensation, active power loss,
123 2020 Genetic algorithm and node voltage excursion Grid RDS and the danger of node voltage
exceeding limits are all addressed
simultaneously.
Grey wolf optimizer, In the future, improved competition
N . over resources (COR) via the
whale optimization Enhancing the network . 9-bus, 33-bus & . . .
124 2020 . S Grid disruptive operator idea may be
algorithm and water cycle reliability 69-bus RDSs .
. advocated to improve and
algorithm
accelerate approach performance.
Real power loss and average Thzg}};t{/rzeg;irr;?;cs?argi}?cga i‘:la ture
Teaching Learning Based voltage deviation index are . IEEE 33-bus and . sn Y
125 2020 T Lo . Grid increase system performance,
Optimization minimized, while voltage 69-bus RDSs RS
S . . which is being researched as a
stability index is maximized. .
future scope of this study.
Differential Minimization of the energy IEEE 33-bus This study did not take into account
126 2021 Evolution and HHO loss, voltage deviation, and Grid traffic congestion, which has an
. RDS . .
techniques. land cost impact on the vehicle's SOC.
More progress might be made by
Grey wolf optimization Enhancing the net profit Washington D.C. talt(1ngslzgod?ig(e):%tf?}?a\rla;ous
127 2021 y P under both budget and Grid transportation yp . sing
algorithm routing constraints network stations, charging rates for each
& ’ type, and the unpredictable SOC
level.
Future work should focus on
Chicken Swarm Mitigation of overall optimizing the p}ace_ment O.f EV
L . R . IEEE 33-bus charging and switching stations,
128 2021 Optimization and TLBO cost associated with the Grid . .
. . RDS building V2G enabled charging
algorithms establishment of EVCS . . .
stations, and running the planning
system in real time.
EVs are garnering the attention of
Controlling the government organizations and the
Grey wolf optimization oring . IEEE 34-bus automotive industry because to
129 2021 : Transportation Energy Loss Grid K L .
algorithm RDS their lower CO, emissions, simple
Cost & Power Loss Cost . .
maintenance, and low operating
costs.
When the number of EVCSs is
Non-dominated Minimization gf r}etvyork and - IEEE 33-bus extendeq beyond two fpr user
130 2021 sorting eenctic aleorithm loss & Maximization of Grid RDS convenience, the maximum
g8 & utilization factor utilization of any EVCS is found to
be relatively low.
Because of the great demand for
Grey wolf optimization . S . IEEE 69-bus electrical energy, modelling and
131 2022 algorithm Enhancing the reliability Grid RDS distributing EVCS in the DS is
difficult.
It is preferable to analyze the
. i appropriate allocation of Energy
132 2022 Partlc.:le. Swgnn Mitigation of power loss Grid IEEE 33-bus management techniques in the
Optimization RDS -
system for the grid's dependable
functioning during peak demands.
Max1m12}ng the captured Further study subjects include
charging demands, .
LS cooperative control of many
. minimization of the total cost : . .
Particle Swarm . X . IEEE 33-bus vehicles using multi-agent systems
133 2022 N of electricity and the time Grid Lo .
Optimization . RDS and the optimization problem using
consumed for charging and - .
. the weighted modularity
load variance of the power Lo hni
grid optimizations technique.
The research is critical in reducing
Particle Swarm Mitigation of cost incurred . IEEE 37-bus the overhead costs caused by the
134 2022 S Grid e .
Optimization due to energy losses RDS rise in power consumption caused
by EV.
Future research should focus on
. I analyzing EV charging and
135 2022 Pamchzle. Sw.arm Reduction of load fluctuation Grid [EEE 34-bus discharging procedures, as well as
Optimization RDS

the proportion of various EV user
types.
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TABLE 1. (Continued.) Review of the literature for efficient EVCS allocation in the distribution system.

These countries will take longer to
Minimization of the The practical DS electrify their automobiles. As a
136 2022 Genetic algorithm construction cost of charging Grid P result, the government must raise
. in Ireland . .
stations investment to meet the desired
target within a realistic time frame.
Future research may be conducted
Optimization of voltage . IEEE 34-bus utilizing direct current networks
137 2022 Newton Raphson method imbalance and power losses Grid RDS and RES and then evaluated on
various distribution test systems.
. . . Minimizing the total . This study will be enhanced in the
138 | 2022 |  Mixed-integer lincar number of EVCSs in the Grid The prac“kcal DS future by inclading DSO and
programming system in Turkey EVCS interactions.
Increasing profit from The usage of PV resources with
139 2023 Non-dominated parking lot construction Grid IEEE 69-bus EVCS at the same time can
sorting genetic algorithm while reducing energy RDS increase network utilization and
consumption save costs.
In the future, the researcher might
140 2023 Particle Swarm Reduction of power loss and Grid IEEE 33-bus examine the system for different
Optimization voltage deviations RDS EV models and more excellent
charger ratings.
The data indicate that charging
stations are suitably distributed
Mitigation the cost of EVCS IEEE 37-bus across the city, allowing EVs to
141 2023 Pareto method construction and active Grid RDS & 25-node | approach the nearest station in their
power losses. transport system position with a minimal amount of
charge remaining and undertake
successful excursions.

The magnitudes of the bus voltages for nodes r+/ and ¢ are
denoted by V,1 and V;, respectively. The link between nodes
t and 47 has aresistance and reactance represented by R; ;41
and X, t,1+1-

The division current / is determined using equation (22).

I = [BIBC][i] (22)

The term ‘BIBC’ refers to a matrix that describes how inject-
ing current into a particular bus affects the current flow in the
branches connected to it.

_ (Peg1 +jQer)”
= v,
The third equation expresses the actual and imaginary power
consumption at node 741, labeled as Qiy; and Py corre-
spondingly, along with the electrical current injected at node
t+1, represented as i .

Equations are employed to determine the actual and reac-
tive power losses in a system, as given below.

2 2
Pt,t+1 + Qt,t+1

i1 (23)

Ploss(ta t+ ]-) = |V |2 Rt,t+1 (24)
t
P2 + Q2
Qoss (8,1 +1) = t’t+|lV |2 —— Xt t+1 (25)
t

Equations (24) and (25) describe the transfer of actual power
and reactive power, respectively, between nodes at t and t+1.
These power flows are denoted by the variables P;sy1&

Ot i11-
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Therefore, the sum of branch power losses provides a
comprehensive measure of the total losses of the system.

nb
Prios =,  Pros(t.t+1) (26)

The number of branches is denoted by nb in the above
equation.

B. DISTRIBUTION SYSTEM LOAD MODELING WITH EVCS
EVCSs impose an extra burden on the distribution grid.
Equation (27) can be employed for computing the cumulative
demand on the distribution system following the incorpora-
tion of EVCSs.

nb

_, Pwvitable,t+1 + PEves(i+1)) 27

Proad =
In the context provided, Pr,.q signifies the collective load
within the system. Pgyiiapier+1 indicates to the existing
load available at the bus during the +1, while Prycs+1)
represents the load from EVCS connected to the same
bus. The data essential for determining the energy demand
of EVCS load during the charging process is sourced
from reference [211]. The calculation of energy required
for battery charging is conducted utilizing (28) and (29).
The subsequent paragraphs present the various models
for EVCS:

PEVCS(t+1) =nx Bc % SL- (28)
S¢ = 100 — SOC current status 29)
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TABLE 2. Review of the literature for efficient EVCS and DG allocation in the distribution system.

RNe(:'. Year Technique/Method Objective Function S‘;Eu;::gsy‘)f Test Systems Outcomes/Findings/Future Scope
- .
Monte Carlo simulation Daﬁ(sj g;iig;:zz’eoc% Csrt:tlzsg, The proper placement and sizing of
142 2011 embedded with genetic g RDG IEEE 37-bus DS DGs might have a significant
. well as network loss costs, Lo
algorithm positive impact on the DS.
must be reduced.
Particle Swarm Improvising the voltage PV integration in a DS can enable
143 2015 S P o g RDG IEEE 30-bus DS more many EV integrations with
Optimization stability .
fewer grid effects.
The coordinated scheduling of EVs
144 2015 | Multi-period optimization Minimization of operating DG 84-bus DS and RDGs helps offset the negative
cost consequences of renewable
generation unpredictability.
. According to the findings of this
. . . Reduction of power . .
Hybrid genetic algorithm . study, combining EVs as active
and particle swarm losses, vgltage fluctuations, power sources with RDG in DS can
145 2017 o charging and demand RDG IEEE 33-bus RDS .
optimization-based . reduce losses, voltage variations,
. supplying costs, and EV .
algorithm and system operator and subscriber
battery cost
costs.
Hybrid genetic algorithm Althqugh RDG.S can improve DS
and particle swarm Mitigation of system power operation, unanticipated large RDG
146 2017 L RDG Roy Billinton DS and EV parking lot penetration in
optimization-based loss f
. uture power systems may cause
algorithm Lo .
technical issues such as loss rise.
Accuracy in energy management
Hybrid genetic algorithm Minimizing the voltage improves safe and predictable
and particle swarm fluctuations, load power scheduling, accelerates
147 2018 optimization-based fluctuations & capacity of RDG IEEE 33-bus RDS renewable integration, and
algorithm the ESS in EVCS maximizes EV emission reduction
impacts.
In addition to the good and
negative effects of EVs on system
. s dependability, EV owners are
148 2018 Expected Energy Not Improving the reliability of RDG 11kV practical DS | affected by system breakdowns and
Charged technique the system . .
unscheduled discharge. It is
entirely sensible to consider EV
dependability.
Future research will fully reflect
Practical urban the uncertainties in EV owners'
Mixed integer second- Optimization of extra . decision-making, and the joint
149 2019 . s DG area coupled with .
order cone programming traffic cost in dispatches planning model of DGs and EVCSs
the 33-bus RDS X .
will be broadened to achieve better
practical value.
Optimizing the deployment The combined planning approach
150 2019 Joint planning algorithm & operation costs and DG 38-bus distribution meets the te_chnologlcal restrictions
associated greenhouse gas network of microgrids for electricity flow,
emissions sustainability, and dependability.
The proposed optimization model
. . of collaborative control of power
151 2020 Stocha§t1c Fuzzy Chan‘c ¢ Controlling the power loss RDG IEEE 33-bus RDS | loss and voltage variation improves
Constrained Programming and voltage
the efficacy and speed of problem-
solving in optimization.
1EEE 33-bus & This approach can lead to an
152 2020 Bi-level programming To maximize its overall DG 69-bus RDSs and increase in the capacity of DG and
model financial performance. an actual regional EVCSs beyond what the
30-bus DS dependable system can offer.
The connection of a substantial
Harries Hawk To minimize actual power amount of EVCSs to the grid can
153 2020 Optimization and losses. the voal ispto DG IEEE 33-bus lead to higher power losses and
Teaching-Learning Based >es, the g and 69-bus RDSs voltage fluctuations at buses
Lo . optimize the system
Optimization algorithms located far away from power
sources within the system.
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TABLE 2. (Continued.) Review of the literature for efficient EVCS and DG allocation in the distribution system.

Particle Swarm imizine th Most practical optimization issues
Optimization and Optimizing the power loss are multi-objective, making them
154 2020 P L reduction and voltage DG IEEE 33-bus RDS . -
Butterfly Optimization . challenging to solve using standard
b improvement .
algorithms methodologies.
I Ut | 1T e v
155 | 2020 PSO tion of the DG 19-bus and IEEE y be expanded by recontiguring
branch/line losses 25-bus DS the imbalanced system in
conjunction with EVCS and DGs.
Practical DS The analysis of the effect of PV on
Keeping installation costs, National voltage profile revealed that
156 2020 PSO losses, and dlstn‘butlon RDG Unhlversny of distributed PV generatlon may be
transformer loading to a Sciences and able to maintain voltage profile
minimum. Technology in despite the presence of EVCSs on
Pakistan DS commercial feeders.
The collected findings clearly show
that smart charging paired with
157 2021 Loss sensitivity factor and Minimizing the power loss DG IEEE 69-bus RDS LSF and G_OA delivers superior
GOA outcomes in terms of power loss
and significantly enhances system
performance.
The findings showed that
increasing RDG investments
Mixed-integer linear Reduction of investment 24-bus distribution reduces- CO, CIISSIONS. Howlever,
158 2021 rogramming model and operational costs RDG system lowering CO, emissions raises
prog & p 4 costs, demonstrating the tradeoff
between cost and emission
reduction.
To reduce Athe amount of To evaluate the reliability of the
power lost in the network,
. ensure that the voltage power system, factors S u(;h as the
Hybrid of GWO and PSO - P IEEE-33 bus and impact of CO2 emissions,
159 2021 . profile remains within the DG .
algorithms S IEEE-69 RDS safeguarding measures for system
necessary limits, and .
. components, and overall security
improve the voltage can be considered
stability index. )
Improved chicken To optimize the voltage The increasing number of on-road
160 2021 swalim optimization profile, minimize power RDG IEEE 33-bus RDS EVs has prompted severe worries
P loss, and decrease costs for the DS's voltage stability.
Harris Hawk Optimization Minimization of the energy BESS can be linked in the future to
161 2021 -P loss and enhancing the RDG IEEE 33-bus RDS schedule the electricity generated
Algorithm
voltage profile by solar DGs.
If EV owners plan their vehicles in
162 | 2021 | FEnhanced grasshopper Reducing the power loss DG IEEE 33-bus RDS accordance with the system
optimization algorithm consumption pattern, they can earn
money through V2G mode.
The simultaneous allocation of
Political Optimization Reduction of power loss RDGs and EVCS enhanced the
163 2022 P! and enhancement of voltage RDG Indian 28-bus DS voltage profile and reduced
Algorithm it
profile uncertainty in DS when compared
to a single allocation technique.
The reported study contributed to
resolving uncertainty problems in
Stochastic second-order Minimizing the losses and Modified IEEE ADN planning, resulting in
164 2022 . . o RDG . :
conic programming voltage deviation 15-bus DS advances in the design of future
cheap and dependable energy
systems.
Using various types of DGs and
EVCSs in a grid reduces power
165 2022 Particle Swarm Mitigation of the power DG IEEE 15, 33, 69, losses and improves the voltage
Optimization losses and 85- bus RDSs profile. When EVCS additionally
serves as a DG source, the loss
reduction increases.
Future research might continue the
166 2022 Harris Hawk Optimization Minimizing the power RDG IEEE 25-bus optimization problem for a hybrid
Algorithm losses Unbalanced RDS DG system with several DG units
and battery storage.
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TABLE 2. (Continued.) Review of the literature for efficient EVCS and DG allocation in the distribution system.

NV This research will help the grid
Minimizing the land cost .
A hybrid of GWO and and maximizing the EVs integrate EVs, boost the EV
167 2022 . . DG IEEE 34-bus RDS population, minimize carbon
PSO algorithms flow for fast-charging i .
stations placement emissions, and encourage investors
to build FCS.
Future studies might incorporate
The improved bald cagle Optimizing the actual alternative power management
168 2022 sea};ch aleorithm g power loss, reactive power RDG IEEE 34-bus RDS | techniques, including EVs into the
& loss, and investment cost grid and V2H EVCS features to
improve DS performance.
Mitigation the active and In the future, the EVs' driving
Particle Swarm reactive power losses & distance and the EV batteries'
169 2022 Optimization Reducing the average RDG IEEE 33-bus RDS charge level will be considered
voltage deviation while allocating EVCSs.
The future scope is broadened by
. considering the same EV as a load
Arithmetic Optimization . Lesser'ung the losses & and DG, with charging and
170 2022 - improving the bus voltage DG IEEE 33-bus RDS . . . )
Algorithm level discharging behavior determined
by the systems off and peak load
times.
EVs are charged using smart
charging technologies during off-
Reducing power loss and peak hours. The findings indicate
171 2022 Firefly algorithm maintaining a good voltage RDG IEEE 69-bus RDS | that utilizing an intelligent charging
profile at each bus strategy and integrating DGs with
EVs minimized power losses more
efficiently.
Obtaining the lowest line The DS model with new energy
172 2022 Multiple optlmlzatlon loss, V_oltage dev1at19q, and RDG IEEE 33-bus RDS and EV§ is }ntended to Qemonstrgte
algorithms static voltage stability the possibility of managing reactive
margin possible power in various types of DS.
Minimization of voltage Depending on how much reactive
. deviations, energy losses, power is injected or absorbed
173 2022 Dragonfly algorithm and EVs owners’ RDG IEEE 69-bus RDS into/from the DS, the power factor
dissatisfaction may be leading or trailing.
Future research areas include
analysing the effects of the
Monte Carlo Simulation Reducing the losses and association between various
174 2023 Method voltage deviation DG IEEE 33-bus RDS sources of uncertainty and the
possibility of unanticipated
overloading of the system.
THD was shown to be lower during
Particle Swarm Minimization of voltage peak hours and greater during off-
175 2023 Optimization drop and THD DG [EEE 33-bus RDS peak hours after evaluating EV
charging times.
This study is being expanded with
. . s S power management and EV
176 2023 Arlthmfei;wo;)i}z}tllrrnnlzatlon Mlmmlzatll(:sls()f network DG IEEE 33-bus RDS patterns for 24hr horizons such as
g G2V and V2G by merging RDGs
and EVCS in the same node.
Optimization of Loss
Differential Evolution and de\rl?ililgrog’vvglllt;g?n This work may be expanded to
177 2023 Harris Hawks ation, BV charging RDG IEEE 33-bus RDS include a reliability analysis and
L services maximization, .
Optimization . network expansion needs.
Overall cost investment
reduction
- S There are various opportunities to
Modified teaching- Voltage stablhty? reliability, do more research by completing a
. the power loss index, and IEEE 33-bus and . .
178 2023 learning-based RDG techno-economic appraisal of DC-
L2 cost are all factors to 123-bus RDSs
optimization . MG-based EVCSs when connected
consider. o .
to the utility grid.

In the given context, the symbol B, corresponds to the energy
capacity of the battery in kWh, while S, pertains to the
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requisite charging quantity as a SOC value. Furthermore, n
symbolizes the count of EVs under consideration.
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TABLE 3. Review of the literature for efficient EVCS, DG and ESS allocation in the distribution system.

l;e:' Year Technique/Method Objective Function S(])Eunrec:gsyof Test Systems Outcomes/Findings/Future Scope
The implementation of a storage
Novel optimization Minimization of energy cost Definite chargin, system in an EVCS can not only
179 2016 P £y ESS CHArEINg | reduce station costs but also restrict
algorithm and the storage cost station . .
the increase in network peak
demand.
Minimization of Alibeykoy and Load flexibility via demand
Comprehensive losses and maximization of RDG & DeYXOy anc Y
180 2017 R . . Hadimkoy DS in response techniques may be
optimization model DG, EV charging station & ESS . .
. Istanbul, Turkey considered in the future.
ESS capacity
The cost of EVCS operation is
131 2017 Self-adaptive hybrid Minimizing RDG & Practical DS in decreased based on load dispersion
optimization algorithm the operating cost of EVCS ESS Singapore throughout the day and energy
market volatility.
The presented approach may be
Whale optimiser M1n1mlzgt10n of energy losses IEEE 33-bus & expgnded to account for CO,
182 2018 alorithm and improvement of DG & ESS 69-bus RDS emissions and energy costs
& voltage profile of the grid associated with renewable RDG-
based electricity generation.
With the fast growth of information
. . technology, additional battery
Multi-agent particle Minimizing the cost of RDG & Industrial park in charging solutions, such as Wi-Fi
183 2019 swarm Lo . . . .
L . electricity index ESS Shanghai, China and pBeam over the air charging,
optimization algorithm : . . .
will be investigated in future
studies.
In the future, researchers may
investigate the potential benefits of
employing multi-objective
Particle Swarm Minimization of distribution RDG & Standard SOk.ir PV- functions to optlmlge power ﬂqw,
184 2020 S powered micro- as well as performing sensitivity
Optimization losses ESS . .
grid network analysis to assess the robustness of
the solutions to significant
variations in the aggregate capacity
of EV battery storage.
Harris Hawks Reduction of energy loss, The t_e chnique crea}ted 15
Optimization and Gre voltage deviation index, and RDG & generalized and applied to an
185 2021 P N and Lrey ged ? IEEE 33-bus RDS overlaid network. This, however,
Wolf Optimization investment ESS .
. applies to every network and
algorithms L
realistic circumstance.
Hybrid The locations and sizes of ESSs are
soccer ]_eague Redycmg t.he power RDG & IEEE 33-bus and alsq studlgd ina tlme-cha_ngmg
186 2021 competition and loss and increasing the voltage simulation for each period,
ESS 85-bus RDSs . b
pattern search level covering both charging and
algorithm discharging operations.
Because EV load penetrations and
PV system generations are often
187 2021 Coyote optimization Mitigation of rea} power loss RDG & IEEE 33-bus RDS stochastlc, precise ESS sizing is
algorithm and voltage deviation index ESS required, considering its transient
behavior during charging and
discharging times.
RDG equipment efficiently
S IEEE 33-bus RDS increases voltage level, while ESS
. Minimization of the total . .
188 2022 Flow capturing annual operating cost of the RDG & and 25-bus equipment has the impact of peak-
location model ESS transportation load reduction and valley filling,
system .
system which enhances system voltage
stability.
Hybrid crow search Maximum net profit is realized
algorithm, along with Maximizing the profit of the RDG & o . with extensive modeling of EVCSs
189 2022 the particle swarm EVCS ESS Utility grid supplied by hybrid grid-RDGs (PV,
optimization mini-hydro, and wind).
Reinorsement | and mimmise xpennes The presen planning procedures in
. . ¢ eXp RDG & IEEE 33-bus and planning frameworks did not
190 2022 Learning based associated with voltage . .
- o LS ESS 118-bus RDSs consider the proportional effect of
algorithm stability, voltage variation, - .
> different allotted units.
setup, and running costs, as
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TABLE 3. (Continued.) Review of the literature for efficient EVCS, DG and ESS allocation in the distribution system.

well as discharge expenses, it
is essential to optimize power
loss.
108-bus EVCSs are evaluated based on
Gorilla Troop Minimization of power loss RDG & o their daily profile, which is
191 2022 . . . distribution R ,
Optimizer algorithm and total voltage deviation ESS determined by the owner's
system .
behavior.
. Future study is required to
Total net present cost The practical ,
192 2022 Salp swarm algorithm (TNPC), levelized cost of RDG & northwest region under;tand t he effe‘cts ofa batter-y s
N ESS . . charging/discharging cycles on its
energy (LCOE), and reliability of Delhi, India . .
longevity and energy consumption.
. . Future work will focus on pricing,
Multi-course teaching Optimizing the voltage, power RDG & economic analysis, and optimal
193 | 2022 | learning-based multi- P g the voltage, pov IEEE 69-bus RDS { YSIS, P
o L loss, and loading capabilities ESS operational management for 'cloud
objective optimization .
storage services.
The necessity for optimum EVCS
. . allocation, replacing traditional
194 2023 . ‘Tw'o-stage . ImprOV}ng t.he power quality RDG & IEEE 33-bus RDS transport systems with electric
optimization technique and optimizing the net power ESS L
ones, and the modernization of
power infrastructure.
This technique is being
Controlling the active power investigated for future scope for the
Chaotic student loss, voltage profile, RDG & IEEE 33-bus and simultaneous allocation of real
195 2023 psychology-based total voltage deviation, cost of ESS practical Brazil power DGs, shunt capacitors, and
optimization algorithm energy loss, and total 136-bus RDS EVCS/EVBSS(s) in the RDS for
operating cost CP, IL, RES, and COM load
models.

C. FORMULATION OF INNOVATIVE CHARGING AND
DISCHARGING STRATEGY FOR EVS

Generally, EV users will charge their vehicles immediately
after they return home. This method is termed as traditional
charging technique (TCT) in this article. The TCT may not
be beneficial as it leads to a high power loss, dip in voltage
profile, low stability and may possible to maloperation in
the network due to congestion. So, the proposed method
should be beneficial to charge the EVs (V2G) during oft-
peak hours and supply power to the grid (G2V) during peak
hours. Therefore, the EVs scheduling strategy is formulated
in such a way to ensure the priority-based demand-sensitive
charging and discharging of EVs. This method is called as
innovative charging technique (ICT). This model ensures
effective load management in such a way that a stable voltage
profile and minimal power loss are achieved. In this method,
the utility and EV users will have a mutual interaction about
the system demand, and further strategy on improving the
system performance is implemented.

Traditionally, EV owners tend to charge their vehicles
immediately upon returning home, a practice referred to
as the Traditional Charging Technique (TCT) in this dis-
course. However, this conventional approach may prove to
be less advantageous, giving rise to issues such as substan-
tial power wastage, voltage profile disturbances, reduced
overall grid stability, and even the potential for operational
glitches within the network due to congestion problems.
To address these challenges, a fresh methodology is pro-
posed, focusing on the charging and discharging sequence
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for EVs, known as the Innovative Charging Technique (ICT).
The core concept behind ICT involves orchestrating the
EVs’ energy replenishment (V2G) during periods of lower
demand and subsequently channeling power back to the
grid (Grid-to-Vehicle or G2V) during peak load hours. This
revamped EV scheduling strategy is meticulously designed
to prioritize demand-responsive charging and discharging of
EVs, thus ensuring an optimized energy flow. By adopt-
ing this innovative approach, effective load management is
achieved, resulting in a consistently stable voltage profile,
and a marked reduction in power losses. A key feature of
this strategy entails a collaborative engagement between the
utility provider and EV users to align with the system’s energy
requirements. Moreover, continuous feedback and enhance-
ments to the system’s performance are integral components
of this model. A visual representation of the envisaged inno-
vative charging and discharging strategy for EVs is depicted
in Figure 16.

The methodology for scheduling considers Peak Envelope-
to-Average Power Ratio (PEPAR) of the system load demand.
PEPAR is defined as the ratio of the peak power (the highest
instantaneous power level) to the average power (the mean
power level over time) of a signal. The main objective for
scheduling EVs is to minimize the PEPAR, which is repre-
sented as follows:

Peak
PEPAR = Pp"* / i (30)

The terms Pge“k and P?)Vg refer to the peak demand and aver-
age demand of the system, respectively. The determination

VOLUME 12, 2024



T. Yuvaraj et al.: Comprehensive Review and Analysis of the Allocation of EVCSs

IEEE Access

TABLE 4. Review of the literature for efficient EVCS and capacitor allocation in the distribution system.

];ei' Year Technique/Method Objective Function S‘;;:::gsy()f Test Systems Outcomes/Findings/Future Scope
Charging stations may experience
Enhance the power factor fluctuations in node voltages due to
of the substation, . 51-bus DS & 69- the impact of transient battery
Grasshopper oL Capacitor & S . .
196 2020 optimization aleorithm minimize real power DG bus distribution charging loads. However, during
P g loss, and improve the networks steady-state charging, DGs and
voltage profile. capacitors can help regulate node
voltages to appropriate levels.
Reducine the power loss Capacitors are used closer to the
197 2021 A hybrid of GWO and and en}%ancirf) the net Capacitor IEEE-33 bus and EVCS and at the ends of feeds to
PSO algorithms rofi tg P 34-bus RDSs improve voltage profile and loss by
p supplying some reactive power.
The influence of EV
Improved mixed real unpredictability was mitigated by
and binary Minimizing the operation . IEEE 69-bus and regulated loads, resulting in a
198 2022 vector-based swarm cost Capacitor 119-bus RDSs considerable reduction in
optimization algorithm transformer tap altering and shunt
switching activities.
Controlling the power As the complexity of optimization
Bear smell search factor, re-generation, Capacitor & 51-bus distribution | issues grows, this technique suffers
199 2022 . B .
algorithm power losses, and DG network from slow convergence, increasing
voltage specifications computing time.
Optimization of voltage Power losses and overall energy
200 2022 Partl(.:le. Sw.arm profile, lessen active Capacitor & IEEE 34-bus RDS costs are redl.}ced when EVCS, DG,
Optimization power loss reduces cost DG and capacitors are effectively
associated arranged.
Minimization of the The optimal mix of DGs and EYS
. . . in the DS enhances the system's
Marine Predator power loss and Capacitor & Practical 83-bus .
201 2022 . L . overall performance by reducing
Algorithm maximization of the DG Taiwan DS . .
voltage profile loss and improving the voltage
profile and VSI.
Minimizing the active The suggested solution
power loss costs, voltage outperforms stage-wise component
202 2022 The hybrid of GWO and deviations, FCE Capacitor & IEEE 118-bus placement in terms of lower active
PSO algorithms development costs, EV DG RDS power loss and EV user costs while
energy consumption maintaining a superior voltage
costs, and DG costs profile.

of whether to charge or discharge is predicated on the ampli-
tude of the power ratio (Prqp), Which can be expressed
as:

Prato = PD(U) /pve (31)
Taking into account two limitations is highly crucial. First,
it is imperative to ensure that the scheduled EVs never take
on negative values. Second, the allocation of EVs in the new
time step must not exceed the quantity of EVs present at the
initial step.
n

Zi:l EVpp(i—j) = nev (32)
In this context, the label “DP” signifies various commut-
ing behaviors associated with the EVs. The term EV pp(;—j
denotes the count of EVs categorized as “DP” designated
for transfer from the i/ hour to the j hour. Meanwhile,
EVppi—j) stands for the overall tally of accessible EVs

VOLUME 12, 2024

intended for time allocation. Steps to be followed for inno-
vative charging algorithm.

> The innovative charging algorithm initiates by gathering
data such as vehicle type, quantity of vehicles slated for
charging, SoC for each vehicle, and the projected system
demand until the subsequent journeys.

> Subsequently, the system calculates PEPAR and P,
both with and without integration of EVs for every
hour. If the P, for a specific hour falls below
the mean power demand (ngg), the V2G mode is
activated.

> Conversely, if the P,y surpasses the average
power demand, EVs are permitted to inject power
back into the grid, considering their available
SoC.

> These hourly insights are then fed into the CSA
algorithm, which determines the optimal sizing of
energy sources.
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TABLE 5. Review of the literature for efficient EVCS and DFACTS allocation in the distribution system.

RNe(f. Year Technique/Method Objective Function S(;Zur:*ec:gsyof Test Systems Outcomes/Findings/Future Scope
Many users prefer to charge their
Minimization of the PEVs right away after arriving
Flower pollination power loss and DG & home. In such instances,
203 2019 algorithm improvising the DSTATCOM IEEE 69-bus RDS DSTATCOM plays a vital role
voltage profile since it considerably reduces the
cost of wasted electricity.
The transient battery charging load
Reduction of real effects the EVCS node voltages,
Fuzzy-Based optimization power loss, DG & and with the help of DG and
204 2022 algorithm enhancement of power DSTATCOM [EEE 69-bus RDS DSTATCOM, the node voltage
factor and bus voltage maintains tolerable values during
steady-state charging.
. Optimizing th'e actual The integration of EVCSs on the
African Vulture power loss index, .S . )
S L. DG & IEEE 33-bus and electric grid necessitates extra grid
205 2022 Optimization voltage deviation AR
} . DSTATCOM 69-bus RDSs power, resulting in increased power
Algorithm index, and .
S losses and voltage variation.
voltage stability index
Minimizing the losses, It is possible that the introduction
206 2023 Two-stage GA-PSO ImproYlng VSI & RDG, ESS & IEEE 33-bus RDS of E'VS anq the constru'ctlon. of
Increasing network SvC charging stations would impair the
load network's technical characteristics.

TABLE 6. Review of the literature for efficient EVCS, protective devices and other energy sources allocation along with NR in the distribution system.

l;ej' Year Technique/Method Objective Function S‘E:::gsy()f Test Systems Outcomes/Findings/Future Scope
The test findings demonstrated that

. the distribution of protective
Hierarchical optimization Imprpylng the RDG & IEEE 33-bus & devices has a more }s)igniﬁcant

207 2019 reliability of the Protective . -
method system devices 69-bus RDS impact on system dependability

than DG or charging station

allocation.
The authors are currently

attempting to expand on the
. . Minimization of IEEE 69-bus & technique given in this research
208 2019 Genetic algorithm real power loss NR 118-bus RDSs and to solve the problem of EVs
scheduling and DFR as a multi-
objective optimization problem.
Reduction of power Future work will concentrate on
loss, enhancement of 15-bus, IEEE reducing the complexity of the
209 2022 Adaptive dynamic voltage stability RDG, NR & 69-bus and 118- planning mechanism while also
planning mechanism improvement, and ESS bus distribution adding additional unit types and

voltage deviation networks constraints to monitor the
reduction complexity's increase.

Future research will include

modelling and developing a

dynamic and multi-objective
stochastic model to deal with the

Minimization of active NR, DG & IEEE 33-bus RDS uncertainties of RES and load in

210 2022 Binary Bat Algorithm

power loss DSTATCOM simultaneous NR and DG
allocation difficulties while taking
the geographical location of the
real DS into account.
Future studies may include further
At various load factors, case studies using smart grid
L minimizing E technology for optimal sizing and
211 2022 Flov;/\elr };:iltl}?l:mn investment, peak loss, NR ;%?bblslst]l;(si allocation of commercial charging
g and annual energy loss u stations with the assistance of ESS,
costs. RDGs, and demand response
approaches.
> Upon reaching the desired SoC for the EVs and confirm- D. OBJECTIVE FUNCTION
ing their readiness for the upcoming trips, the process In the proposed method, we have primarily focused on a
concludes. single objective function, which centers on the reduction of
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FIGURE 14. General EVCS allocation problem.
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FIGURE 15. Single line diagram of RDS with energy sources and EVCS.

power losses within the RDS. While this concentration on
power loss reduction is expected to yield cascading benefits
across a range of interconnected objectives, we acknowledge
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FIGURE 16. Proposed innovative charging and discharging strategy for
EVs.

that a multi-objective approach could offer a more compre-
hensive optimization strategy. It is important to note that
our emphasis on minimizing power losses inherently encom-
passes a synergy of multiple aspects, including improved
voltage profiles, enhanced system stability, optimized oper-
ating costs, increased power factor, and elevated power
quality. Although these dimensions have not been explic-
itly treated as separate objectives in our current study, they
are poised to be positively influenced as natural outcomes
of our primary goal. Nonetheless, we recognize the poten-
tial of multi-objective optimization as an avenue for further
exploration. By delving into the intricate interplay between
power loss reduction and the aforementioned objectives,
future researchers have the opportunity to uncover nuanced
trade-offs, synergies, and compromises. A multi-objective
framework has the potential to provide a more holistic under-
standing of the complex dynamics at play and can lead to a
more nuanced and comprehensive optimization methodology.
In addition, we acknowledge that our research, while laying
a foundational groundwork, has identified certain gaps and
unexplored areas within the existing literature. We invite and
encourage future scholars to venture into these uncharted
territories. By addressing these unexplored aspects, future
researchers can contribute to the advancement of knowledge
in this field, enriching our collective understanding and push-
ing the boundaries of research in exciting new directions.

The primary goal of this case study is to illustrate the
integration of EVCS with commonly utilized energy sources
in the RDS. When EVCS is used in the power network,
it causes more significant power loss and a poor voltage
profile. As a result, energy sources are strategically located
at appropriate distribution nodes to offset higher losses. The
energy sources allocation method ensures that proper voltage
ranges are maintained for each bus. As a result, the goal
function is designed to reduce power loss, which reduces total
annual energy loss costs, optimizes net savings, and improves
the voltage profile of the RDS while remaining within the
subject restrictions. The objective function’s mathematical
formulation is provided by,

Minimize(F) = Min(Pr Loss) (33)

where P 15 is the total power loss of the RDS.

The following ten scenarios have been considered for [IEEE
33-bus RDS.

Scenario-I: Without Compensation

Scenario-1I: With EVCS (G2V-Mode)
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Scenario-III: With EVCS (V2G-Mode)

Scenario-IV: With EVCS & Capacitor

Scenario-V: With EVCS & DSTATCOM

Scenario-VI: With EVCS & RDG (Only Solar)

Scenario-VII: With EVCS & RDG (Only Wind)

Scenario-VIII: With EVCS, RDGs (Both Solar & Wind)

Scenario-I1X: With EVCS, RDG & BESS

Scenario-X: With EVCS, Capacitor, DSTATCOM, RDG &
BESS

E. NUMERICAL RESULTS

The load and line data are sourced from reference [212] for
the considered test system IEEE 33-bus system. For this par-
ticular system, the active and reactive power demands stand
at 3.72 MW and 2.3 MVAr, respectively, while the line volt-
age measures 12.66 kV. The original power loss within the
system, without any compensation, amounts to 210.98 kW as
calculated within the RDS. To establish the base bus voltages
and power distribution across the lines within the test system,
we employ the direct approach distribution load flow method
described in reference [213]. In this configuration, a single
energy source is utilized in conjunction with the EVCS to
minimize its impact on the overall RDS. For a visual repre-
sentation of the IEEE 33-bus RDS, refer to Figure 17.

(S

FIGURE 17. IEEE 33-bus test system.

1) SCENARIO-I: WITHOUT COMPENSATION

There is no deployment of energy sources, such as capacitors,
DGs, or DSTATCOMs, along the feeder in this scenario to
manage voltage levels. As a result of power losses, voltage
levels might decrease dramatically near the end of the feeder,
resulting in lower voltage levels for consumers further away
from the substation. This can lead to operational, financial,
stability, and power quality issues in DS. To address these
concerns, utilities may consider integrating RES into the
RDS.

A distribution load flow analysis was conducted on a RDS
under the condition of existing loads and the absence of
any energy sources. The power flow algorithm was applied
within this framework. The study revealed that the bus with
the lowest voltage registered at 0.9037p.u. In this setup,
no energy sources were integrated, and the real power loss
amounted to 210.98 kW, accompanied by a reactive power
loss of 143.13 kVAr. Additionally, the minimum VSI value
observed was 0.6610 p.u. Table 7 presents the outcomes of
a performance evaluation carried out on an IEEE 33-bus sys-
tem. Various energy sources were considered, and allocations
for EVCS were investigated to gauge their impact.
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2) SCENARIO-II: WITH EVCS (G2V-MODE)

When an EV is linked to a charging station in G2V mode,
it receives power from the grid to charge its battery. This
mode is also known as ‘‘charging mode” or “‘grid mode.”
The charging station works as a bridge between the electrical
grid and the EV in this mode. The station is linked to the grid
and receives power, which is then converted to the voltage and
current levels required by the vehicle’s battery. The charging
station also connects to the vehicle, guaranteeing a safe and
efficient charging procedure.

Operating EVCSs in G2V mode leads to an increase in
power losses, particularly if their placement within the sys-
tem is not optimized. The introduction of an additional load
of 1932 kW from two EVCSs, each with a capacity of
966 kW, contributes to this effect. Strategic installation of
these EVCSs at the 2" and 19™ buses of the RDS utilizes
the G2V capability. Consequently, power losses elevate from
an initial value of 210.98 kW to 224.18 kW. Moreover, the
influence extends to the voltage profiles of the buses. The sys-
tem’s lowest voltage experiences a reduction from 0.9037 p.u.
to 0.9025 p.u. Importantly, positioning the EVCSs within
the RDS has an adverse impact on voltage stability, further
emphasizing the significance of optimal placement.

3) SCENARIO-III: WITH EVCS (V2G-MODE)

The proposed ICT is implemented in this scenario-III. A V2G
mode charging station allows the EV’s battery to discharge
energy back to the grid during times of high demand or to
offer backup power during power outages. This is known as
bi-directional charging. This is also known as “discharging
mode” or “vehicle mode.” Overall, V2G charging stations
can potentially increase grid efficiency by lowering peak
demand, boosting the usage of RES, and providing a stable
backup power supply. Using the ICT in V2G facility, two
EVCSs are advantageously situated in the RDS (2™ and 19t
buses). The EV (V2G mode) injects energy into the system to
restore the system after it has failed. Power loss was reduced
from 210.98kW to 204.11kW after installing EVs in RDS
in V2G mode. As a result, the bus voltage magnitudes and
overall system stability are enhanced. The system’s Vyip is
raised from 0.9037p.u to 0.9050p.u. Using EVCSs as load
in ICT in V2G mode reduces power losses significantly
and helps the RDS during system breakdowns. Furthermore,
putting the EVCS in the RDS reduces the voltage stability
of the system. However, V2G technology is still in its early
phases and requires further study and testing.

Figures 18 and 19 compare the base case actual power
loss and bus voltage magnitudes of the IEEE 33-bus with
two EVCS modes (V2G & G2V) using proposed innovative
charging technique. G2V mode increases RDS demand and
can result in power loss if the EVCS cannot handle the
increased load and is not installed correctly. After installing
EVCS in G2V mode on RDS, the power loss rose from
210.98kW to 224.18kW. Additionally, the voltage profile of
each bus is changed. V2G mode, on the other hand, can

VOLUME 12, 2024



T. Yuvaraj et al.: Comprehensive Review and Analysis of the Allocation of EVCSs I E E E ACC@SS

TABLE 7. Performance of IEEE 33-bus system under different scenarios.

Scenarios Items BESA CSA
Ploss (kW) 210.98 210.98
. . . Quoss (KVAI) 143.13 143.13
Scenario-I Without Compensation Vo (00) 0.9037 0.0037
VSInin(p-u) 0.6610 0.6610
. . 966 (2) 966 (2)
EVCS size in kW (Location) 966 (19) 966 (19)
. . Pioss (kW) 224.18 224.18
Scenario-II With EVCS (G2V-Mode) Que (KVAD) 150.79 150.79
Vin (p-1) 0.9025 0.9025
VSnin(p.u) 0.6573 0.6573
. . 966 (2) 966 (2)
EVCS size in kW (Location) 966 (19) 966 (19)
. . Pioss (kW) 204.11 204.11
Scenario-111 With EVCS (V2G-Mode) Que (KVAD) 13958 139,58
Vinin (p-1) 0.905 0.905
VSLuin(p-w) 0.6647 0.6647
. . 966 (2) 966 (2)
EVCS size in kW (Location) 966 (19) 966 (19)
Capacitor size in kVAr (Location) 720 (13) 1020 (18)
Scenario-IV With EVCS & Capacitor Pioss (kW) 194.74 216.50
% Py.ss Reduction 13.13 342
Quoss (KVAr) 131.46 162.54
Vinin (p.1) 0.9222 0.9202
VSLnin(p.u) 0.7152 0.7075
. . 966 (2) 966 (2)
EVCS size in kW (Location) 966 (19) 966 (19)
DSTATCOM size in kVAr (Location) 1250 (30) 1720 (26)
) . Ploss (kW) 164.25 174.38
Scenario-V With EVCS & DSTATCOM %% Pr. Reduction 2673 2791
Quoss (KVAr) 111.34 119.74
Vinin (p-1) 0.9148 0.9108
VSLuin(p-u) 0.6943 0.6838
. . 966 (2) 966 (2)
EVCS size in kW (Location) 966 (19) 966 (19)
RDG (Solar) size in kW (Location) 1200 (13) 850 (18)
S i0-VI With EVCS & RDG (Only Pioss (kW) 139.58 156.67
cenario- Solar) % Piss Reduction 37.74 30.11
Quoss (KVAI) 93.45 107.28
Voin (p-1) 0.9334 0.9282
VSLin(p-) 0.7508 0.7341
L . 966 (2) 966 (2)
EVCS size in kW (Location) 966 (19) 966 (19)
RDG (Wind) size in kW (Location) 1500 (30) 2400 (26)
S i0-VII With EVCS & RDG (Only Pioss (kW) 80.49 86.13
cenario- Wind) % Pjoss Reduction 64.09 61.58
Quoss (KVAr) 60.73 68.67
Vinin (p-1) 0.9409 0.9382
VSnin(p.u) 0.7777 0.7652
. . 966 (2) 966 (2)
EVCS size in kW (Location) 966 (19) 966 (19)
RDG (Solar) size in kW (Location) 840 (13) 510 (18)
. RDG (Wind) size in kW (Location) 1140 (30) 1930 (26)
Scenario-VIIT With g;{;s&}%)if;)mmh Pioe (kW) 43.87 58.64
% P1,ss Reduction 80.43 73.84
Quoss (KVAr) 31.09 45.35
Vinin (p-1) 0.9781 0.9706
VSlnin(p-) 0.9089 0.8794
. . 966 (2) 966 (2)
EVCS size in kW (Location) 966 (19) 966 (19)
RDG (Solar) size in kW (Location) 780 (13) 510 (18)
. . RDG (Wind) size in kW (Location) 1040 (30) 1020 (26)
Scenario-IX With EVCS, RDG & BESS BESS size in kW (Location) 1070 (24) 910 (27)
Ploss (kW) 28.05 57.17
% P05 Reduction 87.49 74.51
Quoss (KVAr) 21.26 44.58
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TABLE 7. (Continued.) Performance of IEEE 33-bus system under different scenarios.

. . 966 (2) 966 (2)
EVCS size in kW (Location) 966 (19) 966 (19)
Capacitor size in kVAr (Location) 400 (13) 240 (18)
DSTATCOM size in kVAr (Location) 930 (30) 280 (26)
. . RDG (Solar) size in kW (Location) 780 (13) 500 (18)
With EVCS, Capacitor. - P -
. > > RDG (Wind) size in kW (Location) 1040 (30) 1090 (26)
Scenario-X DSTAT%(E)Z[S’ RDG & BESS size in kW (Location) 1070 (24) 810 (27)
Pioss (kW) 20.61 53.69
% Pioss Reduction 90.81 76.05
Qloss (KVAT) 15.53 41.64
Vinin (p-1) 0.9908 0.9713
VSInin(p.u) 0.9595 0.8821
TABLE 8. Effect on real power loss due to EVCS under different scenarios (IV to X).
Scenarios
Items v \% VI il VIII IX X
BESA CSA BESA CSA BESA CSA BESA | CSA | BESA | CSA BESA | CSA BESA CSA
Pioss (kW) 194.74 | 216.50 164.25 174.38 | 139.58 | 156.67 | 80.49 | 86.13 | 43.87 58.64 | 28.05 57.17 | 20.61 53.69
0/ POSS
o Hos 13.13 342 26.73 22.21 37.74 30.11 64.09 | 61.58 80.43 73.84 87.49 | 74.51 90.81 76.05
Reduction
lesseg the requirement for extra power prod}lctlon and aid in @— Wihodl EVCS
reducing system power loss. According to Figures 18 and 19, With EVCS (G2V Mode)
V2G mode using proposed ICT on IEEE 33-bus RDS pro- " With EVCS (V2G Mode
vides higher power loss mitigation and bus voltage magnitude ]
enrichment than G2V mode. o 0.98
5
E 0.96
=@ Without EVCS o
e With EVCS (G2V Mode) 20944
60 < == With EVCS (V2G Mode %
> 0924
§ 0.9 5
s 3
8 40
—! 2 30
g 20
2 10
o EVCS Modes 10 Bus number
FIGURE 19. Comparison of voltage profile values with different EVCS

EVCS Modes 10

Bus number

FIGURE 18. Comparison of real power loss with different EVCS modes
using proposed innovative charging technique.

4) SCENARIO-IV: WITH EVCS & CAPACITOR

The integration of capacitors into the RDS presents an
effective solution for mitigating power loss and voltage
fluctuations stemming from EVCS. This strategic deploy-
ment of capacitors not only enhances the stability and
reliability of the electrical grid, especially during periods of
high EV charging demand, but also yields tangible benefits.
By incorporating capacitors to counterbalance the impact of
EVCSs on the RDS, significant reductions in power loss are

5450

modes using proposed innovative charging technique.

achieved, decreasing from 224.18kW to 194.74kW. Further-
more, this approach yields an increase in VSI from 0.6573p.u
to 0.7152p.u, along with a noteworthy elevation in the mini-
mum bus voltage, rising from 0.9025p.u to 0.9222p.u.

5) SCENARIO-V: WITH EVCS & DSTATCOM

The installation of EVCS in conjunction with DSTATCOMs
in the RDS can provide substantial benefits such as enhanced
power quality, decreased power losses, and higher voltage
profile. When two EVCSs are concurrently integrated into
IEEE 33-bus RDS in collaboration with DSTATCOM, actual
power loss is reduced from 224.18kW to 164.25kW, VSI
is increased to 0.6943p.u from 0.6573p.u, and the minimal
bus voltage is increased to 0.9148p.u from 0.9025p.u. This
contributes to voltage stability and lowers power losses in the
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RDS. Furthermore, providing reactive power assistance to the
grid during periods of low output helps offset the impact of
intermittent RES like wind and solar power.

6) SCENARIO-VI: WITH EVCS & RDG (ONLY SOLAR)
Integrating EVCSs and solar-powered DG systems into RDS
can benefit the grid and the users. Customers can utilize solar
panels to generate their electricity, lessening their reliance on
the grid and potentially saving money on their energy costs.
Overall, including EVCS and solar-powered DG systems in
DS may assist in minimizing power losses, boosting effi-
ciency, and promoting the use of clean energy. At the 131
slot, a solar-based renewable DG is appropriately positioned
and scaled using BESA. The power loss is reduced from
224.18kW to 139.58kW as a consequence. It also improves
voltage profiles and voltage stability on DS.

7) SCENARIO-VII: WITH EVCS & RDG (ONLY WIND)

When EVs are charged using RDGs such as wind power,
the demand for fossil fuels is reduced, as are greenhouse gas
emissions. This also promotes sustainability and reduces our
dependency on non-RES. Power losses in the RDS can be
reduced by combining wind-based RDG with EVCS. In this
scenario, one wind-based DG is appropriately positioned and
scaled at the 30" position using BESA. The power loss is
reduced from 224.18kW to 80.49kW as a consequence.

8) SCENARIO-VIII: WITH EVCS, RDG (BOTH SOLAR & WIND)
Renewable DG systems based on solar and wind can be
deployed at various places in the DS to generate electricity
locally. This can aid in lowering power losses by supplying
electricity directly to local loads and minimizing the amount
of power that must be transported over long distances. The
extra electricity produced by these devices may also be uti-
lized to charge EVs at charging stations. In the scenario,
solar and wind-powered DGs are optimally positioned on the
13% and 30™ sites to maximize the advantages of EVCS on
RDS. According to the simulation findings, power loss is
reduced from 224.18kW to 43.87kW, which is minimal when
compared to placing the solar and wind-based DGs separately
using EVCS. Furthermore, the minimal bus voltage is raised
from 0.9025p.u to 0.9781p.u. Multiple RDGs appropriate
location and sizing, such as bus voltage, also boost VSI.
As a result, when EVCS is integrated into an RDS with
solar and wind-based RDGs, the system’s performance is less
influenced by EV charging.

9) SCENARIO-IX: WITH EVCS, RDGS & BESS

An EVCS powered by RDG, such as solar and wind, in con-
junction with a BESS, can efficiently reduce power loss in
the RDS. A BESS can be utilized to store excess power
generated by RDGs during low-demand periods and then
release it during high-demand periods. This helps to bal-
ance power supply and demand, reducing pressure on the
RDS. To mitigate the charging impact of EVCSs, solar and
wind-based RDGs, and BESSs are connected with EVCSs
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at ideal spots on the RDS. Consequently, the power loss is
reduced from 224.18kW to 28.05kW, the VSI is increased to
0.9071p.u from 0.6573p.u, and the minimum voltage is raised
t0 0.9775p.u from 0.9025p.u. Furthermore, the voltage profile
of each bus is kept within the permissible range of voltage
stability.

10) SCENARIO-X: WITH EVCS, CAPACITOR, DSTATCOM, RDG
& BESS

The EVCS is equipped with Capacitor, DSTATCOM, RDG,
and BESS to maximize the benefits of energy sources on
DS. To mitigate the charging impact of EVs, two RDGs
(Solar-> 13" & Wind->30" buses), a capacitor (13" bus),
DSTATCOM (30" bus), and BESS (24™ bus) are collabo-
ratively incorporated on the RDS at ideal places and sizes.
Consequently, the power loss is reduced from 224.18kW to
20.61kW, the VSI is raised from 0.6573p.u to 0.9595p.u,
and the minimum voltage is increased from 0.9025p.u to
0.9908p.u. Furthermore, the voltage profile of each bus is
kept within the permissible range of voltage stability. As seen
in Tables 7, this scenario has the most significant decrease in
power loss and voltage deviation, as well as the maximum
improvement in VSI.

F. EFFECT OF EVCS ON SYSTEM LOSS

Power loss difficulties arise due to the installation of EVCS
to the 33-bus RDS. In the 33-bus system, the base case active
and reactive power losses are determined to be 210.98kW
and 143.13kVAr, respectively. When two EVCS are optimally
put at the bus’s second and nineteenth places, the power loss
increases by 224.18kW. It is advised that EV users install
many EVCS on their journey to boost the widespread adop-
tion of EVs. It is recognized that the inclusion of EVCS is
necessary for the survival of EVs but harms the health of the
power RDS. As a result, a trade-off must be made between
power system health and charging infrastructure. To lessen
the charging impact of EVs, energy sources are incorporated.
On the other hand, the usage of energy sources on optimum
buses compensates for the power loss difficulties.

In this situation, the ideal placement of a 720kW capacitor
at bus 13 resulted in an actual power loss of 194.74kW.
When DSTATCOM is positioned on bus 30, it has a capacity
of 1250kW and a decreased loss of 164.25kW. Also, when
solar and wind-powered DGs with capacities of 840kW and
1140kW are put at bus numbers 13 and 30, respectively, the
loss is decreased to 43.87 kW. The power loss values are
reduced to 30.16kW from 224.18kW when EVCS and all
energy sources (Scenario-X) are arranged sequentially in a
33-bus RDS, as shown in Table 7 and 8. Figure 20 depicts the
actual and reactive power loss figures for all cases. Figure 20
illustrates the real power loss of an IEEE 33-bus system in
all scenarios evaluated for each bus. According to Table 7
and Figures 20 and 21, Scenario-X provides significant real
and reactive power loss mitigation and bus voltage magnitude
augmentation in 33-bus RDS compared to other scenarios.
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FIGURE 20. Comparison of real & reactive power loss values with
different scenarios.

The influence of EV charging load on RDS performance is
investigated using a capacitor, RDG, DSTATCOM, and BESS
integration. According to Tables 7 and Figure 21, the highest
power loss reduction in the RDS may be accomplished when
all compensators are ideally located (Scenario-X). Table 8
also demonstrates the effect of EVCS on real power loss in
different scenarios (IV to X) for an IEEE 33-bus system.
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FIGURE 21. Real power loss of IEEE 33-bus system.

G. EFFECT OF EVCS ON SYSTEM VOLTAGE PROFILE

Incorporating EVCS into the network introduces challenges
such as system losses, which have a negative impact on both
voltage profiles and VSI. The voltage stability and profile of
the system experience degradation with the rise in EV loads.
To counter these disruptions, it is essential to strategically
integrate pertinent energy sources at specific nodes within
the RDS. The 33-bus system’s voltage profile under differ-
ent scenarios, involving the installation of multiple EVCS
units and energy sources, is illustrated in Figure 16. Similar
to the findings depicted, it is evident that as the charging
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FIGURE 22. Voltage profile of IEEE 33-bus system.

load increases, the voltage at individual buses continues to
decrease. An interesting observation arises from the optimal
placement of a 1932kW EVCS on buses 2 and 19, which leads
to a collective reduction in the voltage profile of the entire
system.

Furthermore, as the number of EVCS grows, the volt-
age profile degrades. To guarantee that the system operates
properly, energy sources and EVCS are integrated into the
RDS. The integration of energy source units has a favorable
influence on the system’s voltage profile. Figure 22 depicts
the improvement in voltage profile after combining all energy
sources using EVCS. Voltages on all buses fluctuate due to
real and reactive power losses in the RDS. As a result, real
power assistance is necessary to reduce real power losses,
which improves voltage levels by reducing I2R losses. It has
also been noted that bus voltages improve when multiple
energy sources are positioned together. Furthermore, the
kind, size, and placement of energy sources influence voltage
profile improvement. Table 7 shows that when all energy
sources are combined on a 33-bus system, the minimum volt-
age rises to 0.9908p.u from 0.9025p.u, as seen in Figure 22.

H. EFFECT OF EVCS ON SYSTEM STABILITY

Adding EVCS and energy sources to the RDS affects both
the voltage stability index and the voltage profile. Figure 23
depicts the VSI findings for the 33-bus system achieved for all
situations. VSI is 0.6610p.u., in the base case (before adding
EVCSs and energy sources). When two EVCS of capacity
1932kW are ideally put at bus numbers 2 and 19, it falls to
0.6573p.u. The incorporation of RES into RDS improves the
VSI. As shown in Figure 23, VSl increases when more energy
sources are optimally located in the RDS. When all energy
sources are used, the VSI rises to 0.9595p.u from 0.6573p.u.

I. COMPARATIVE ANALYSIS

Further, to demonstrate the effectiveness of the proposed
approach, the authors constructed the objective function using

VOLUME 12, 2024



T. Yuvaraj et al.: Comprehensive Review and Analysis of the Allocation of EVCSs

IEEE Access

=@ Scenario-|
== Scenario-ll
=i Scenario-Il
Scenario-IV
= Scenario-V
== Scenario-V|
Scenario-VII
==t Scenario-VIIl
------- Scenario-1X
=== Scenario-X

Voltage Stability of IEEE 33-bus

Scenarios 1 0 Bus number
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FIGURE 24. Comparison of real power loss under various scenarios using
BESA and CSA.

two algorithms: proposed BESA and CSA. Since there is no
literature on distribution systems using proposed considered
cases for IEEE 33-bus RDS, the authors used the above
algorithms to construct the same objective function. They
compared the results of CSA to the proposed BESA. Tables 7
compares various parameters for IEEE 33-bus RDS using
presented and existing approaches. To validate the supremacy
of the proposed method objective, the performance of sys-
tem under different scenarios with objective function as real
power loss is compared with CSA and tabulated in Table 8
for both IEEE 33 bus RDS. Figure 24 shows the comparison
of real power loss under various scenarios using BESA and
CSA. From the Figure 24, Tables 7 and 8, the proposed
BESA has provided a significant decrease in power loss com-
pared to CSA in all scenarios. The BESA-based optimization
strategy is found to be more effective than CSA technique
in improving voltage profiles. Furthermore, VSIyi, values
were improved in all scenarios compared to CSA based
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approach. The findings suggest that the BESA is capable
of solving complex and real time power system problems.
Future researchers are recommended to use the BESA as a
robust optimization tools for resolving intricate engineering
real time problems. The problem of combined allocation of
all the energy sources in the RDS, with EVCS, has been
effectively addressed through the proposed BESA and CSA
optimizations. This solution ensures the RDS operates reli-
ably and efficiently.

VIil. CONCLUSION

Finally, as EV usage grows, EVCS allocation in distribution
networks is a crucial issue that must be addressed. Various
approaches for allocating EVCSs in DS have been proposed,
including optimization models, heuristic algorithms, and
machine learning techniques. The objective of this article was
to provide a complete assessment of the kinds, technologies,
energy sources, test methods, problems, difficulties, issues,
and possibilities encountered in the optimal installation and
sizing of EVCS in DS. For this case study, an IEEE 33-bus
RDS was used. Various scenarios with various energy sources
have been evaluated to minimize DS power loss. The simu-
lation findings showed that combining energy sources with
EVCS resulted in more significant power loss reduction and
voltage profile enhancement than combining energy sources
independently on the DS.

Finally, the approach will be determined by the DS’s partic-
ular characteristics and the allocation process’s aims. Factors
like as the quantity and placement of EVCSs, the capacity
of the DS, EV charging trends, and the availability of RES
must all be considered. Overall, good EVCS placement in
DS may aid in expanding the EV industry and contribute to
a more sustainable future. Overall, the influence of EVCSs
on the DS is determined by various factors, including the
system’s unique features, charging method, and manage-
ment measures. EVCSs may be incorporated into the grid to
maximize their advantages while minimizing their negative
consequences with proper design and management. The G2V
and V2G modes of EVCSs have the potential to play an
essential role in the future of the electrical grid and the
transition to a more sustainable energy system. Further, it can
also be understood that the EV owners may generate revenues
by V2G mode if they can schedule their vehicles as per the
system using proposed innovative charging technique.

IX. FUTURE SCOPE/DIRECTION/RECOMMENDATIONS
Electric vehicles are becoming increasingly popular as the
world progresses towards a more sustainable and environ-
mentally friendly future. As EVs become more popular
worldwide, so does the need for EVCSs. According to the
International Energy Agency, over 145 million EVs will be
on the road worldwide by 2030. This implies that EVCS will
be in high demand in the following years. As a result, the need
for EVCS is rapidly increasing.

The future of EVCS allocation in DS looks bright.
The responsibility of DNO is to ensure enough energy
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infrastructure to accommodate the rising demand for EVCS.

This involves providing enough capacity is available in the

DS to enable the installation and operation of EVCS. Further-

more, DSOs must guarantee that EVCS are situated in areas

where EV customers may readily reach them.
Future research can concentrate on the scope and recom-
mendations for allocating EVCSs in DS listed below:

v Optimal location allocation: The arrangement of EVCSs
in DS should be optimized to reduce the cost of charging
infrastructure while ensuring that EV owners have acces-
sible charging facilities. Researchers in the future can
utilize optimization techniques to find the best position
and size of charging stations. The optimization method
may consider parameters such as the quantity of EVs
in a given region, EV charging habits, and DS capacity.
This research will assist utilities in determining the most
cost-effective sites for charging station installation and the
ideal number and EVCSs to deploy.

v Smart charging: Smart charging technology can optimize
the charging process while reducing the strain on the DS.
Smart charging technology may modify the charging rate
of EVCS based on renewable energy supply, grid load, and
other factors. Researchers in the future might look at the
possible benefits of adopting smart charging technologies
to allocate EVCSs in DS.

v' Mullti-objective optimization of EVCS allocation: Future
studies should concentrate on establishing a multi-
objective optimization strategy that considers multiple
criteria such as EVCS location, capacity, cost, and envi-
ronmental effect. This will aid in optimizing EVCS
allocation in DS while balancing numerous objectives.

v' Dynamic allocation of EVCSs: As EVs become more
popular, the demand for EVCSs will change throughout
the day. Researchers should concentrate on creating a
dynamic allocation system that can adapt EVCS alloca-
tion in real-time to account for variations in demand.

v' Dynamic pricing: Dynamic pricing techniques can be
implemented by DSOs to encourage EV owners to charge
their vehicles during off-peak hours. This can assist in
balancing the DS’s load and preventing the need for costly
modifications.

V' Load management: L.oad management strategies can also
be used by researchers to control the power demand from
EVCS. They can, for example, limit the number of vehi-
cles charging at any given moment or lower the charging
fee during busy hours.

v' Collaborative planning: Future academics can provide
recommendations to DSOs, who can then collaborate with
other stakeholders, such as towns and companies, to deter-
mine the best areas for EVCS. This can aid in ensuring that
EVCS are placed in areas where they are most required
and are conveniently accessible to EV users.

v' Demand forecasting: Future studies should focus on
establishing realistic forecasting models to estimate
EVCS demand in various places. These models can con-
sider aspects like the quantity of EVs in the region, the
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rate of EV adoption growth, and the availability of charg-
ing infrastructure. This can assist utilities in planning for
essential infrastructure modifications and ensuring that
the grid can manage the increased demand.

Renewable energy integration: As the utilization of RES
grows, future researchers may look into integrating EVCS
with RES like solar and wind power. Future researchers
can concentrate on creating models and algorithms that
optimize the integration of RES into EVCSs. Integrating
RES into EV charging infrastructure can help to lower the
transportation sector’s carbon footprint.

Interoperability and standardization: Interoperability
and standardization are critical for creating a dependable
and efficient EV charging infrastructure. Future research
might examine the influence of various charging tech-
niques and standards on EVCS allocation in DS.

v’ Distribution system planning: Future scholars might

examine how EVCS affects DS planning. This involves
assessing the best sites for EVCS based on DS capacity
and load demand, both present and anticipated.
Charging behavior analysis: Researchers can examine
EV users’ charging habits, such as setting patterns, sites,
and preferred charging periods. This can influence EVCS
design and implementation, ensuring that they fulfill the
demands of EV owners.

Energy management systems: Future studies might con-
sider using energy management systems (EMS) to opti-
mize EV charging. An EMS can assist in balancing the
DS’s load and reducing the impact of EV charging on the
grid.

v’ Advanced Charging Technologies: Advanced charging

technologies, such as wireless charging, rapid charging,
and V2G charging, can be developed by researchers.
These innovations will improve the user experience of
EVs while reducing grid load. Wireless charging tech-
nology will allow EVs to charge without cords while
fast-charging technology will minimize charging time.
The V2G technology will enable EVs to discharge energy
back to the grid as needed, assisting in grid stabilization.
EV Infrastructure Planning: Researchers may use data-
driven methodologies to analyze EV adoption patterns and
forecast future demand for charging infrastructure. This
research will assist utilities in planning and deploying EV
charging infrastructure to meet expected demand. This
planning approach will limit the danger of overbuilding or
underbuilding charging infrastructure, hence optimizing
charging infrastructure investment.

Smart grid integration: Researchers can look at integrat-
ing EVCSs with smart grids to optimize their functioning
and reduce their effect on the grid. This may include
employing advanced control systems, such as demand
response, to manage the charging load and guarantee that
it is in sync with the grid’s capacity.

Energy storage integration: Integrating energy storage
systems with EVCSs can supply backup power during
high-demand hours or a power outage. Researchers may
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look at the best scale and positioning of energy stor-
age systems about EVCSs to guarantee they can supply
dependable and efficient backup power.

v Environmental Sustainability in EVCS Allocation: Envi-
ronmental considerations play a pivotal role in the allo-
cation of EVCS, ensuring a sustainable and eco-friendly
charging infrastructure. This involves integrating renew-
able energy sources like solar or wind power through
eco-charging systems (which include PV, ESS, and the
electrical grid), strategically placing charging stations to
prevent grid overload, and prioritizing high-efficiency
charging equipment to minimize energy wastage. Addi-
tionally, it entails avoiding sensitive environmental areas,
adhering to urban planning regulations, and conduct-
ing comprehensive life cycle assessments of EVCS
installations. Proper waste management and community
engagement further contribute to environmental sustain-
ability. Moreover, long-term scalability and adaptability
to evolving environmental standards are crucial factors in
ensuring the lasting eco-friendliness of EVCS infrastruc-
ture. By addressing these considerations, stakeholders can
contribute to a greener and more sustainable transporta-
tion ecosystem.

The future scope of EVCS allocation in DS is promising.
DSOs will play a critical role in ensuring adequate infrastruc-
ture to serve the rising demand for EVs. DSOs may optimize
the use of existing infrastructure and reduce the need for
costly upgrades by implementing smart charging, dynamic
pricing, load control, and collaborative planning initiatives.
Future research can concentrate on creating creative strate-
gies to efficiently allocate EVCSs in DS while guaranteeing
grid dependability and stability. This study is critical for the
effective integration of EVs into the transportation system and
the transition to a more sustainable future. Researchers should
also concentrate on developing methodologies for integrating
EVCSs into DS, optimizing their allocation, evaluating their
impact on DS, integrating RES, and standardizing EVCSs to
ensure interoperability and compatibility.
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