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ABSTRACT Image restoration is a crucial task in computer vision, aiming to fill in missing areas within
an image to restore its integrity. Traditional methods fall short when dealing with intricate facial image
restoration, often failing to produce high-quality results. Denoising Diffusion Probabilistic Models(DDPM),
characterized by its diversity and stability, plays a significant role in the domain of facial image restoration.
This study aims to explore a facial image restoration method based on DDPM, utilizing a pre-trained
unconditional DDPM model to achieve more flexible facial image restoration. At the same time, this study
found that when the total number of iterations in the resampling process is relatively low, the quality of the
restored image is poor. Therefore, we propose a method to optimize the inversion process by combining
progressive sampling with sample scheduling to improve the quality of the restored images, and conduct
extensive experiments on the CelebA-HQ and FFHQ datasets. Comparisons with other methods demonstrate
that our approach yields higher-quality results in facial image restoration. Our method achieved the best
results in terms of PSNR and LPIPS metrics. For random masks, the accuracy of face recognition increased
by 15.7% after the restoration of facial images. For central masks, the accuracy improved by 26%.

INDEX TERMS Face image restoration, DDPM, progressive sampling, sampling scheduling.

I. INTRODUCTION
Image restoration, also known as image inpainting, aims to
fill in missing regions within an image. Early tasks in facial
image restoration relied predominantly on mathematical
methods and patch-based approaches. For mathematical
methods, the majority are based on partial differential
equation (PDE) [1], [2] and interpolation-based approaches
for image restoration [3].
For facial image restoration, mathematical methods

often struggle to achieve high-quality results. Patch-based
approaches [4], [5], fundamentally entail choosing suitable
blocks (patches) from different areas of the image and
copying or transforming them to fill in the missing regions.
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These methods can achieve partial restoration of facial
images in simple cases. For extensive missing or damaged
areas, we typically employ deep learning-based facial image
restoration techniques. Leveraging deep neural networks
allows automatic learning of facial image features, leading
to higher-quality restoration results.

Generative Adversarial Networks (GANs) [6], as a pow-
erful model in the field of deep learning, exert significant
influence through their unique adversarial training approach.
Not only do they play a crucial role in various domains such as
image generation [7], [8], [9], [10], [11], video synthesis [12],
[13], and natural language generation [14], [15], but they also
drive advancements in the field of image restoration.

The generative capabilities of GANs extend beyond gen-
erating realistic images and exhibit excellent performance in
face image restoration tasks. GANs can produce high-quality
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restored images while effectively preserving the structure and
semantic information of the images. This characteristic is
particularly crucial for face images with high-dimensional
attributes and complex textures.

Despite the enormous potential of GANs in image
restoration tasks, their training process poses challenges in
terms of stability. Common issues such as mode collapse
[16] and mode oscillation can lead to a lack of diversity
in generated samples. Face images generated by GANs
may sometimes exhibit instability, artifacts, or distortion
issues. Additionally, when dealingwith largemissing regions,
generators in GANs often struggle to acquire sufficient global
information, making it difficult to accurately restore the
content of the missing areas. Overcoming these challenges
requires further research and improvement in the field [17].

Compared to GANs, DDPM [18] has certain advantages
in several aspects. Firstly, DDPM is capable of generating
diverse and higher-quality samples, indicating that the
generated images are closer to real data and less prone
to issues like artifacts or distortion. Secondly, the training
process of DDPM is generally more stable, and it is less
susceptible to problems such as mode collapse or mode
oscillation. This stability makes DDPM a reliable choice for
handling complex image data [19], [20], [21], [22], [23], [24],
[25].

Additionally, DDPM adopts a progressive generation
approach, allowing it to bettermaintain the global consistency
and structure of images. Existing studies have confirmed
that DDPM exhibits stronger capabilities compared to
GANs [26], [27]. Therefore, applying DDPM to face image
restoration tasks holds immense potential and promising
prospects [28], [29], [30], [31].
As a generative model, DDPM’s reverse sampling strategy

often generates images with matching textures, but these
textures may not align with the semantic information of the
image. Therefore, directly applying DDPM to facial image
restoration tasks is not feasible. Maintaining image consis-
tency after DDPM-based restoration becomes a challenge in
facial image restoration tasks.

RePaint [28] proposed a method called Resample to
enhance the reverse sampling strategy of DDPM, aiming to
generate more semantically aligned image restoration results.
Although this new sampling method significantly improves
the quality of restored images, it introduces a potential
issue by increasing the number of iterations. The increased
number of iterations results in higher computational resource
requirements, thereby escalating the computational cost.

It is worth noting that our study also identified a limitation
in RePaint’s resampling strategy when there are fewer
sampling steps and smaller jump lengths, corresponding to
a lower number of iterations. In such cases, the quality of the
restored images is compromised.

We propose an improved face image restoration method
based onDDPM, aiming to utilize a pre-trained unconditional
DDPM model for facial image restoration. In contrast to
traditional training with specific masks, we opt not to train

DDPM with specific masks. The advantage of this decision
lies in the adaptability of our network during the reverse
sampling process to various mask inputs, enhancing its
flexibility. In response to the issue of poorer image quality
in the restoration process with fewer iterations in RePaint,
we propose a method that combines progressive sampling
with sampling scheduling to optimize the reverse sampling
strategy based on Resample. The aim is to enhance the quality
of restored images with a reduced number of iterations.
Through this improvement, we aim to offer a more effective
solution for facial image restoration tasks.

We conducted experiments on the CelebA-HQ [32] and
FFHQ [9] datasets, comparing our method with other
approaches. Through qualitative and quantitative analyses,
we compared the face restoration images using SSIM [33],
PSNR [34], and LPIPS [35] metrics. The research results
indicate that our proposed method exhibits superior general-
ization capabilities and achieves significant improvements in
both PSNR and LPIPSmetrics. The generated images possess
richer semantic information. Additionally, we conducted an
application analysis, and the results demonstrate a significant
improvement in face recognition accuracy after face image
restoration.

In the second section, we will conduct an in-depth review
of pertinent literature, examining prior works relevant to
our study to establish a comprehensive background and
theoretical framework. The third section will meticulously
detail our research methodologies, encompassing progressive
sampling and sampling scheduling strategies. The fourth
section will undertake a rigorous analysis of experimental
results, drawing comparisons with alternative methods and
incorporating insightful ablation experiments. The fifth
section will delve into a comprehensive discussion of the
experimental outcomes. Finally, the sixth section will encap-
sulate our conclusions, summarizing the pivotal findings of
our study and accentuating its contributions.

II. RELATED WORK
A. DDPM
This paper employs DDPM [18] as the generative method.
DDPM, a probabilistic distribution-based generative model,
refines the process of sample generation by progressively
handling noise, aiming to closely match the probability
distribution of the training data. The DDPMmodel comprises
two key processes: the forward process (also known as the
diffusion process) and the reverse process.

The forward process (1) of DDPM involves gradually
introducing Gaussian noise ε ∼ N (0, I) to the initial data
x0 ∼ q(x0), transforming the original data progressively
into random noise. This process establishes a Markov
chain (2). The diffusion process of DDPM possesses a
crucial characteristic: through the use of reparameterization
techniques, it allows for the direct generation of data xt at
any time step t based on the initial data x0 (3). Through this
reparameterization technique, xt can be regarded as the linear
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combination of the initial data x0 and random noise ε.

q (xt | xt−1) = N
(
xt ;

√
1 − βtxt−1, βtI

)
(1)

The sample xt is obtained by adding i.i.d . Gaussian noise with
variance βt at timestep t and scaling the previous sample xt−1
with

√
1 − βt according to a variance schedule.

q (x1:T | x0) =

T∏
t=1

q (xt | xt−1) (2)

Xt =

√
ᾱtx0 +

√
1 − ᾱtϵ (3)

where ϵ ∼ N (0, I). Here, 1 − ᾱt tells us the variance of the
noise for an arbitrary timestep, and we could equivalently use
this to define the noise schedule instead of βt .
The primary objective of the forward process is to

gradually introduce noise to the original data, while the
reverse process aims to achieve the opposite goal: step-by-
step denoising to generate a real sample. In the reverse
process (4), we start with an initial random noise sample
xt ∼ N (0, I). By progressively reducing the level of noise,
we gradually restore a sample that closely resembles real data.
Similar to the forward process, the reverse process is defined
as aMarkov chain (5) to ensure the continuity and consistency
of the denoising process.

pθ (xt−1 | xt) = N
(
xt−1; µθ (xt , t) , 6θ (xt , t)

)
(4)

pθ (x0:T ) = p (xT )

T∏
t=1

pθ (xt−1 | xt) (5)

If we consider the intermediate generated variables as
latent variables, then DDPM can be categorized as a type
of latent variable model. This categorization allows us to
leverage variational inference to maximize the optimization
objective (6). By introducing the framework of this latent
variable model, we can more effectively learn and infer
model parameters, thereby enhancing the performance and
data generation capability of the model.

L = −LVLB = Eq(x1:T |x0)

[
− log

pθ (x0:T )

q (x1:T | x0)

]
= Eq(x1:T |x0)

[
log

q (x1:T | x0)
pθ (x0:T )

]
(6)

Through a thorough analysis and decomposition by Ho et
al [18], we further derive (7).

Eq[DKL (q (xT | x0) ∥p (xT ))︸ ︷︷ ︸
LT

+

∑
t>1

DKL (q (xt−1 | xt , x0) ∥pθ (xt−1 | xt))︸ ︷︷ ︸
Lt−1

− log pθ (x0 | x1)︸ ︷︷ ︸
L0

] (7)

Finally, DDPM simplified the aforementioned objectives,
removing weighting coefficients in the derivation process,

resulting in a more straightforward training objective (8).

Lsimple = Et,x0,ϵ
[
∥ϵ − ϵθ (xt , t)∥2

]
) (8)

This objective can be seen as a reweighted form of LVLB
(without the terms affecting 6θ ). The authors found that
optimizing this reweighted objective resulted in much better
sample quality than optimizing LVLB directly. They explain
this improvement by drawing a connection to generative score
matching.

B. REPAINT
RePaint [28] applies DDPM to image restoration tasks, with
its core idea being to utilize the model’s predicted results at
each step of the sampling process to handle regions within
the mask, while areas outside the mask use a noisy version
of the real image. However, this straightforward approach
has a significant drawback: the information within the mask
is nearly entirely lost, making it challenging for the content
inside and outside the mask to semantically match.

While the model attempts to coordinate the results from
the previous steps at each iteration, this often introduces new
disharmonies, making the problem challenging to resolve
entirely. Additionally, as the reverse process progresses, the
variance gradually decreases, making it more difficult to
maintain image consistency. This is particularly crucial in
tasks like facial image restoration, where more steps are
needed to preserve image consistency.

To address the issue of semantic inconsistency mentioned
above, as shown in Fig 1, RePaint introduces the Resample
technique to optimize the DDPM reverse process. The key
to this technique is to rediffuse the generated image xt−1
back to xt (1), achieving a ‘‘repeated hopping’’ effect on
the Markov chain. This process aims to assist the model in
mitigating inconsistencies in the restored images. Through
the Resample technique, RePaint can better address semantic
inconsistencies, thereby enhancing the effectiveness of face
image restoration. This innovative approach opens up new
possibilities for face image restoration tasks.

The Resample technique proposed by the RePaint network
plays a crucial role in enhancing the sampling strategy
of the DDPM reverse process, successfully overcoming
issues related to poor semantic information. Furthermore,
subsequent research [36] provides a detailed theoretical
explanation of the Resample technique in the RePaint
algorithm, demonstrating its correctness and effectiveness
from a rigorous theoretical perspective.

The Resample technique introduces two key hyperpa-
rameters: i and j, representing the number of sampling
steps and the jump lengths, respectively. The selection of
these parameters influences the total number of iterations,
depending on different the number of sampling steps and
jump lengths. Table 1 illustrates the total number of iterations
corresponding to various combinations of sampling steps and
jump lengths.
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FIGURE 1. Iterations during inference. The diffusion time T that a sample
xt undergoes in the inference process with a jump length j = 5 and
resampling i = 5.

However, it is important to note that through experimen-
tation, we have observed that with small values of i and j,
the image quality of RePaint-restored images tends to be
lower. Additionally, the Resample technique significantly
increases the total number of iterations, leading to increased
computation time and costs. Therefore, when employing
the Resample technique, a balance between image quality
and computational cost needs to be struck, and appropriate
hyperparameter values should be chosen to meet the specific
requirements of the task.

TABLE 1. Total number of iterations corresponding to different
resampling counts and jump lengths.

C. IMAGE RESTORATION WITH DDPM
Many researchers believe that diffusion models have the
potential to represent the next generation of image generation
models. In the closely related field of image inpainting, some
studies [19], [20], [21], [22], [23], [24], [25], [26], [28], [31],
[37], [38], [39], [40], [41] have begun to explore the use of
diffusion models for image inpainting.

Kawar et al. [38] employed unsupervised posterior esti-
mation, demonstrating the potential of diffusion models for
image inpainting. Theis et al. [39] utilized an unconditional
generation method, encoding images to be restored with
diffusion models and showcasing their potential in lossy
image compression. Dhariwal and Nichol [26] verified
that the performance of diffusion models surpassed that
of GANs and further refined image inpainting based
on diffusion models. Lugmayr et al. [28] sampled from
undamaged areas of an image to replace the reverse
diffusion process in the diffusion model. This model can
handle irregular and free-form damage, representing a
relatively successful modification of the diffusion model
used in image inpainting tasks, outperforming both GANs
and VAEs.

III. METHOD
In this chapter, we first introduce, in Section III-A, a method
using progressive sampling in the reverse process of uncon-
ditional DDPM to generate the regions to be restored.
Subsequently, in Section III-B, we present an improved
Resample method, employing a sampling scheduling strategy
to enhance the quality of facial image restoration. Our overall
approach is illustrated in Figure 2.

At the beginning, our inputs include damaged images and
a mask. The known regions, after undergoing the forward
noisy process of DDPM (1), are element-wise multiplied by
the mask (top). The initial input xt for the unknown regions
is random noise. Before I × 0.9 (I : Iterations), the standard
DDPM reverse sampling strategy is applied (4), followed
by element-wise multiplication with (1-mask). When λ is
less than 1, a progressive sampling strategy (Section III-A)
is employed to correct the noise, then entering the next
iterations. When λ equals 1, the known regions are directly
added to the unknown regions for the next iterations (11).
After I ×0.9, the reverse process adopts a sampling schedule
strategy (Section III-B) for optimization (13) (bottom).

A. PROGRESSIVE SAMPLING
In this paper, we first train an unconditional DDPM. In this
model, we define the original image as x0, the known
region as mask ⊙ x0, and the unknown region as (1 −

mask) ⊙ x0. Since the forward process of DDPM forms a
Markov chain (2), we can sample an image xt at any time t
based on x0 (3). This allows us to sample the known region
mask ⊙ x0 at any time t .
In the reverse process of DDPM, the generated image

depends solely on xt (4). Therefore, in the reverse process,
we can also sample the unknown region (1 − mask) ⊙ xt .
Thus, we can express this as follows:

xknownt−1 ∼ N
(√

ᾱtx0,
√
1 − ᾱtI

)
(9)

xunknownt−1 ∼ N (µθ (xt , t) , 6θ (xt , t)) (10)

xt−1 = mask ⊙ xknownt−1 + (1 − mask) ⊙ xunknownt−1

(11)

This expression delineates the approach we employ in
the DDPM model to generate unknown regions utilizing
known regions and a reverse process. Through this method,
we enhance our ability to address image restoration problems,
achieving restoration of the unknown regions more effec-
tively.
As the noise in DDPM’s reverse sampling is randomly

generated, its probability distribution also follows a random
pattern. Correcting this initial noise from the outset con-
tributes to a more effective achievement of restoration results.
Experimental evidence demonstrates that, at the initiation
of reverse sampling, gradually reducing the weight of the
unknown region xunknownt−1 , as opposed to the standard DDPM
sampling steps, results in better overall coherence in our
outcomes.
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FIGURE 2. Overview of our approach. In each step, we sample the known region (top) from the input and the inpainted part from the DDPM output
(bottom).

In specific terms, the initial xt in the reverse process
of DDPM is a random Gaussian noise with a stochastic
probability distribution, which is inconsistent with the
content of the region we intend to restore. Therefore, at the
initiation of the reverse process in DDPM, we initially
introduce a randomly generated Gaussian noise of the same
size as the image to be restored. Subsequently, we gradually
decrease the weight of the unknown region xunknownt−1 . The
purpose of this approach is to continuously refine the initial xt
at the early stages of the reverse process, thereby enhancing
the overall quality of the restored image.

We employed a simple mathematical formula to gradually
reduce theweight of the unknown region (12). In this formula,
λ is a variable with an initial value of 0.0, increasing by 1/δ
at each iteration but not exceeding 1.0. This ensures that the
value of λ remains within the [0, 1] range. Thus, we obtain
the complete expression for xt−1:

λ = min
(

λ +
1
δ
, 1.0

)
(12)

xt−1 =


mask ⊙ xknownt−1 +(1 − mask)⊙ (1 − λ)⊙ xunknownt−1 ,

if λ < 1
mask ⊙ xknownt−1 + (1 − mask) ⊙ xunknownt−1 ,

if λ = 1

(13)

Through this progressive sampling strategy, our aim is to
continuously refine the probability distribution of the initial
xt , thereby enhancing the overall quality of the restored

image. The effects of the progressive sampling are detailed
in Section IV-D1.

B. SAMPLING SCHEDULING
Sampling scheduling [42] is a widely used training strategy in
machine learning and deep learning. Its purpose is to optimize
the training process of a model to enhance performance,
generalization ability, and robustness. We expect the model
to have the capability to learn and self-adjust its sampling
strategy. In the reverse process of DDPM, the model con-
tinuously seeks the probability distribution, i.e., calculating
the predicted mean and variance. In this scenario, we can
schedule the handling of the model output.

The sampling scheduling we employ involves gradually
reducing the model output based on the current sampling
iteration count. The idea behind this setup is that DDPM
may require a larger exploration space in the early stages
of sampling, so we provide a wider sampling range. As the
iterations progress, DDPM may have learned more useful
information. Therefore, we limit the model output by
reducing the sampling range, allowing it to focus more on
the restoration of critical regions.

Through this sampling scheduling strategy, we can
enhance the model’s learning capability and predictive
performance. It not only allows the model to focus more
on crucial regions but also helps prevent the model from
getting stuck in local optima prematurely, leading to better
restoration results.

The key aspects of the sampling scheduling strategy
include three components: the choice of the sampling stage,

VOLUME 12, 2024 3585



Y. Pang et al.: Improved Face Image Restoration Method Based on DDPMs

the selection of the lower bound for sampling scheduling,
and the choice of the decay rate for sampling scheduling. For
the first question (Q1), we conducted a series of experiments
exploring the effects of different sampling stages under the
same lower bound and decay rate conditions and conducted a
detailed analysis of the results.

From the results in Figure 3, it can be observed that
the restoration performance is not ideal when sampling
scheduling is performed in the first 80% of the total iterations.
This is because the early selection of sampling scheduling
significantly reduces the model output in the early sampling
iterations, making denoising ineffective. Based on empirical
evidence, it has been shown that the sampling scheduling
strategy is most effective when applied after 90% of the total
iterations.

For the second question (Q2), we conducted a series of
experiments based on 0.9 Iterations, exploring the impact
of different lower bound selections under the same decay
rate conditions, and analyzed the results. From the results in
Figure 4, it can be seen that when the lower bound is below
0.85, the noise is not completely removed. This is because
the model output is too small, making the denoising process
ineffective. Through comparative experiments, we ultimately
chose to set the scheduling lower bound to 0.9 to achieve
better restoration results.

For the third question (Q3), we analyzed that the decay
rate of sampling scheduling should start relatively small and
gradually increase to ensure the quality of the restoration
results. To address this, we employed a specific decay
function described by (14) to depict the variation of the decay
rate. The form of this decay function is shown in Figure 5.

f (t) = min_sch + (initial_sch − min_sch) · e−γ ·t (14)

In this function, we set initial_schedule to 1, the
min_schedule to 0.9, and experimented with three different
decay rates (γ ): 0.005, 0.01, and 0.02. The specific decay
functions are illustrated in Figure 5. We conducted experi-
ments with each decay rate, and detailed results can be found
in Section IV-D2.

IV. EXPERIMENT
We conducted extensive experiments on the CelebA-HQ
[32] and FFHQ [9] test sets. The CelebA-HQ dataset is an
extension of the CelebA [43] dataset, containing high-quality
facial images with higher resolution. Similarly, the FFHQ
dataset is a collection of high-quality facial images sourced
from users on Flickr, known for its high image quality.
Both datasets are suitable for deep learning tasks related to
facial analysis. Image preprocessing includes cropping, face
alignment, denoising, and other techniques. In Section IV-C,
we analyze the restoration results of our network and compare
them with other methods. In Section IV-D1, we provide
a detailed analysis of our progressive sampling, and in
Section IV-D2, we conduct a thorough analysis of the
sampling schedule decay rate.

A. IMPLEMENTATION DETAILS
We validated our method using the RTX 4090 on the
CelebA-HQ and FFHQ datasets. We set T = 250 timesteps.
We conducted experiments for four types of resampling cases
in RePaint: i = 2, j = 2, iterations = 746, i = 3, j = 3,
iterations = 1246, i = 5, j = 5, iterations = 2210,
and i = 10, j = 10, iterations = 4570. Two types of
masks, random masks, and central masks, were selected. For
random masks, we used different proportions (30%-40%,
40%-50%, 50%-60%, 60%-70%, 70%-80%) and irregular-
shaped masks. We used 256x256 crops in three batches on
the RTX 4090 GPU each. The CelebA-HQ model is only
trained for 250,000 iterations during roughly nine days. All
our qualitative and quantitative results are based on images
with a resolution of 256 × 256. The experimental process
in this paper is implemented under the PyTorch framework.
For the experiment, 80% of the images from the CelebA-HQ
dataset are selected as the training set, and the remaining 20%
are designated as the test set.We randomly selected 50 images
from the CelebA-HQ 20% test set and another 50 images
from the FFHQ dataset, making a total of 100 test images
for the experiment.

B. EVALUATION METRICS
We utilized 100 images from the CelebA-HQ and FFHQ test
sets, each with a size of 256×256. We calculated the SSIM
[33], PSNR [34], and LPIPS [35] metrics.

SSIMmeasures the similarity between images, with higher
values indicating greater similarity. PSNR evaluates the
level of distortion in images, where higher values signify
less distortion. LPIPS integrates deep learning and human
perceptual aspects, considering factors like image structure,
color, and texture. Smaller LPIPS values are preferable.

This comprehensive evaluation with various metrics pro-
vides insights into the performance of different methods in
facial image restoration tasks, guiding further optimization
efforts.

C. COMPREHENSIVE EXPERIMENTS AND COMPARATIVE
ANALYSIS
When adjusting the parameter γ (Section IV-D2), we observed
generally poor image restoration results when γ = 0.02.
Therefore, we further conducted a detailed analysis with
randommasks and central masks at γ = 0.005 and γ = 0.01,
respectively, considering different values of δ.

For γ = 0.005, we performed a quantitative analysis,
and the results are shown in Table 3. From the table, it can
be observed that for scenarios like 746RAND (i=2, j=2,
iteration=746, random mask; the same applies below) and
746CENT (i=2, j=2, iteration=746, central mask; the same
applies below), the restoration quality is optimal at δ = 20,
while it degrades at δ = 40 and 50. For 1246RAND and
1246CENT, good restoration quality is achieved at δ =

20 and 30. In the case of 2210RAND and 2210CENT, good
restoration quality is observed at δ = 35 and 40. For
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FIGURE 3. Comparison of restoration effects at different sampling stages.

FIGURE 4. Impact of different lower bound selections on restoration
effects.

FIGURE 5. Impact of different lower bound selections on restoration
effects.

4570RAND and 4570CENT, optimal restoration quality is
achieved at δ = 70 and 80.
At γ = 0.001, we observed a restoration quality trend

similar to that at γ = 0.005. The specific quantitative
analysis results are presented in Table 4. Additionally,
we compared the best results of our method with RePaint
under different tasks, and the relevant results are shown in
Figure 7. For detailed conclusions and analysis, please refer
to Section IV-D1 and Section IV-D2.
We compared our proposed improved face image restora-

tion method based on DDPM with other types of face
restoration methods, including GAN-based EC [44], CTSDG
[45], DeepFill v2 [46], Yohan et al. [47], Transformer-
based ICT [48], and DDPM-based RePaint [28]. Qualitative

analysis is shown in Figure 6. We observed that, compared
to other methods, our restoration results are more natural and
closer to the ground truth.

For example, in the first image restoration, we found that
the restoration quality of EC and CTSDG is poor. In contrast,
our method is closer to the ground truth, and it outperforms
DeepFill v2, ICT, Yohan et al., and RePaint. In the third
image restoration, EC, CTSDG, Yohan et al., and DeepFill
v2 exhibit poor restoration quality, while ICT has defects in
the left hair restoration. Our restoration results, especially
in the right eyeglass hair region, are more natural compared
to RePaint. In the fifth image restoration, EC, CTSDG, and
DeepFill v2 still show poor restoration quality, and RePaint
performs poorly in the restoration of the right eye. Our
restoration results, on the other hand, are relatively more
natural compared to ICT. In the seventh image restoration,
EC and CTSDG show poor restoration quality, DeepFill v2
produces inconsistent eyebrow restoration, ICT’s restoration
results are semantically inconsistent, while our restoration
results aremore natural compared to Yohan et al. and Repaint.

The quantitative analysis results are presented in Table 2.
From the table, it can be observed that our method has slightly
lower SSIM compared to Yohan et al. but achieves the best
results in terms of PSNR and LPIPS indicators.

TABLE 2. Quantitative Analysis Comparison. We compared our proposed
method with EC [44], CTSDG [45], DeepFill v2 [46], ICT [48], RePaint [28]
and Yohan et al. [47] using SSIM, PSNR, and LPIPS metrics.

D. ABLATION EXPERIMENT
1) PROGRESSIVE SAMPLING
In this section, we will conduct a detailed study on the
impact of progressive sampling on restoration results.Wewill
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FIGURE 6. Qualitative Results: Comparison with other types of facial image restoration methods. In the figures, (a) represents
EC [44], (b) represents CTSDG [45], (c) represents DeepFill v2 [46], (d) represents ICT [48], (e) represents RePaint [28], and
(f) represents Yohan et al. [47].

analyze the effects of progressive sampling under different
restoration tasks and conditions using visual qualitative
results in Figure 8 and quantitative data in Table 5.

From the qualitative results, it becomes evident that not
all parameter selections contribute to enhancing the final
restoration quality. For example, for 746RAND, the overall
restoration results of RePaint are relatively poor. Our method
outperforms RePaint for δ values of 10, 20, and 30, while our
network’s restoration results are worse for δ values of 40 and
50.

In the case of 746CENT, the visual consistency of our
restoration results is superior to RePaint for δ values of 10,
20, and 30. However, for δ = 50, our network’s restoration
results do not align with the semantic content.

For 1246CENT, the eyes restored by RePaint are clearly
inconsistent with semantic information. Our network per-
forms well in restoration results for δ values of 20, 30, and

40, but for δ = 10, the restored right cheek does not align
with semantic information.

Concerning 2210RAND, RePaint does not align with
semantic information when restoring hair on the forehead.
Our network achieves good restoration results for δ values
of 20, 35, 40, and 50, but the restoration of hair becomes less
effective for δ = 70.

In the case of 2210CENT, the pupils restored by RePaint
are inconsistent. Our network produces good restoration
results for δ values of 35, 40, 50, and 70, but for δ = 20, the
right bangs are somewhat blurry.

For 4570RAND, RePaint introduces a discontinuity in the
left hair and yellow spots on the right hair. Our network
performs well in restoration results for δ values of 60, 70,
and 80, but for δ = 40, there is a discontinuity in the left hair.
For δ = 100, the left hair clearly does not align with semantic
information.
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FIGURE 7. We employed three commonly used image restoration evaluation metrics, including Structural Similarity Index (SSIM), Peak
Signal-to-Noise Ratio (PSNR), and Perceptual Loss Index (LPIPS), to assess our restoration results. We compared the optimal restoration
outcomes under different δ values with the results of the RePaint model. The following figures illustrate the comparisons: (a) Compares the best
SSIM results under different tasks with RePaint at γ = 0.005; (b) Compares the best PSNR results under different tasks with RePaint at
γ = 0.005; (c) Compares the best LPIPS results under different tasks with RePaint at γ = 0.005; (d) Compares the best SSIM results under
different tasks with RePaint at γ = 0.01; (e) Compares the best PSNR results under different tasks with RePaint at γ = 0.01; (f) Compares the
best LPIPS results under different tasks with RePaint at γ = 0.01.

TABLE 3. The quantitative analysis results for various restoration tasks under different δ values are presented when γ is set to 0.005, including SSIM,
PSNR, and LPIPS. These findings contribute to a comprehensive understanding of the impact of different δ values on restoration outcomes, aiding in the
selection of the most suitable δ value for task requirements.

In the case of 4570CENT, the restoration results of
RePaint do not align with semantic information. Our network

performs well in semantic aspects for δ values of 60, 70, and
80, but for δ = 40 and 100, the semantic effect decreases.
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TABLE 4. The quantitative analysis results for various restoration tasks under different δ values are presented when γ is set to 0.01, including SSIM,
PSNR, and LPIPS. These findings contribute to a comprehensive understanding of the impact of different δ values on restoration outcomes, aiding in the
selection of the most suitable δ value for task requirements.

TABLE 5. The quantitative analysis results for different restoration tasks under various δ values are presented. These results contribute to a
comprehensive understanding of the impact of different δ values on restoration outcomes, aiding in the selection of the most suitable δ value for task
requirements.

We employed three evaluation metrics (SSIM, PSNR,
LPIPS) to comprehensively assess our restoration results,
comparing them with those of RePaint, as shown in Table 5.

Additionally, we compared the best results with RePaint,
as illustrated in Figure 9. Analysis of the data in Table 5
reveals the following observations and conclusions:
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FIGURE 8. The qualitative analysis of the impact on different image restoration tasks under different δ values is presented for images (a), (b), (c),
(e), (f) with respect to 746CENT(RAND) and 1246CENT(RAND) at δ = 10, δ = 20, δ = 30, δ = 40, δ = 50. For 2210CENT(RAND), the analysis is
provided for δ = 20, δ = 35, δ = 40, δ = 50, δ = 70. Similarly, for 4570CENT(RAND), the analysis covers δ = 40, δ = 60, δ = 70, δ = 80, δ = 100.

In some cases, when the total number of itera-
tions is relatively small, such as for 746CENT(RAND),
1246CENT(RAND), and 2210CENT(RAND), our restora-
tion performance improved in terms of SSIM, PSNR, and
LPIPS by choosing smaller δ values. However, as we selected
larger δ values, the restoration performance began to decline.
For the case of 4570CENT(RAND), when δ is 40 and 100, our
restoration results show a decreasing trend, consistent with
our qualitative analysis. Across the three evaluation metrics,
our restoration method outperforms RePaint, indicating that
our approach provides higher restoration quality and better
performance in image restoration tasks. These results further
validate the effectiveness and superiority of the proposed
restoration strategy.

Overall, these data suggest that when selecting δ values,
there is a need to balance the relationship between the total
number of iterations and the restoration results. Smaller δ

values may contribute to improving the quality of restoration
results for tasks with fewer total iterations, while larger δ

values may decrease restoration quality. Therefore, choosing
the appropriate δ values requires careful optimization and
adjustment for specific tasks to achieve the best restoration
results.

We further analyzed the reasons mentioned above. If the
value of δ is too small, there are fewer steps to correct
xt . If the value of δ is too large, there are more steps to
correct xt . Through qualitative and quantitative analysis of
δ, we found that a larger δ value is not necessarily better.
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FIGURE 9. We used three commonly used image restoration evaluation metrics, including SSIM, PSNR, and LPIPS, to assess our restoration results. The
optimal restoration results under different δ values were compared with the results of the RePaint model. The figures below show the comparisons:
(a) compares the best SSIM results under different tasks with RePaint; (b) compares the best PSNR results under different tasks with RePaint;
(c) compares the best LPIPS results under different tasks with RePaint.

For 746CENT(RAND) and 1246CENT(RAND), we found
that a δ value of 20 produces better restoration results.
For 2210CENT(RAND), a δ value of 35 leads to improved
restoration results. For 4570CENT, a δ value of 70 yields
better restoration results. Lastly, for 4570RAND, a δ value
of 80 produces better restoration results.

2) SAMPLING SCHEDULING
In Section III-B, we conducted a detailed analysis of the
choice of sampling stages and the selection of the sampling
schedule lower bound. In this subsection, we delve into the
impact of the sampling schedule decay rate on the restoration
results, providing a comprehensive display of the influence of
the decay rate γ on the restoration results through qualitative
and quantitative results. Qualitative results are shown in
Figure 10, while quantitative results are presented in Table 6.

From the qualitative results, we observe an improvement
in restoration quality when γ is set to 0.005 and 0.01.
However, the restoration quality degrades when γ is set to
0.02. For 746RAND, RePaint’s attempt to restore glasses is
semantically incorrect, but when the decay rate γ is 0.005, the
glasses are successfully restored; when γ is 0.01, the repaired
glasses still have defects; and when γ is 0.02, the hair on the
right side is semantically incorrect. For 746CENT, the results
repaired by RePaint are semantically incorrect, but with γ set
to 0.005 and 0.01, the restoration results of our network are
good; when γ is 0.02, the hair restored on the right side is
semantically incorrect.

For 1246RAND, RePaint’s attempt to restore teeth is
unsuccessful, while our network performs well with γ set to
0.005, but when γ is 0.01, there are some flaws in the upper
lip; when γ is 0.02, the restoration results are poor for the
upper lip, right hair, and earring. For 1246CENT, RePaint’s
attempt to restore glasses is semantically incorrect, but our
network performs well with γ set to 0.005; when γ is 0.01,
the results show aging and wrinkles; when γ is 0.02, semantic
quality decreases.

For 2210RAND, the background restored by RePaint is
semantically incorrect, and our network performs well with
γ set to 0.005 and 0.01, but when γ is 0.02, the restoration

of the hair on the right side fails. For 2210CENT, RePaint’s
attempt to restore pupils is inconsistent, while our network
performs well with γ set to 0.005 and 0.01; when γ is 0.02,
the facial restoration quality decreases.

For 4570RAND, RePaint’s attempt to restore hair is
semantically incorrect, but our network performs well with
γ set to 0.005 and 0.01, while the restoration fails when γ

is 0.02. For 4570CENT, our network performs better than
RePaint in terms of image consistency with γ set to 0.005 and
0.01, but the restoration is poor when γ is 0.02.
We employed three evaluation metrics (SSIM, PSNR,

LPIPS) to assess our restoration results, comparing our best
outcomes with those of RePaint, as depicted in Figure 11.
Across the three evaluation metrics, our restoration method
exhibits higher performance compared to RePaint. This
suggests that our approach offers superior restoration quality
and better overall performance in image restoration tasks.
These results further validate the effectiveness and superiority
of the proposed restoration strategy.

Our analysis indicates that as the value of γ increases, i.e.,
a larger decay rate, the model’s output sharply decreases,
leading to a decline in the restoration capability of our
network. As shown in Table 6, for the 8 RAND/CENT
scenarios, γ = 0.005 generally achieves the most significant
improvement. However, when γ is set to 0.02, the metrics
almost universally decline. This aligns with our qualitative
analysis, suggesting that the restoration quality tends to be
poorer when γ is set to 0.02.
In summary, in this section, we delved into the impact of

the decay rate γ in the sampling schedule strategy on image
restoration effects. Through qualitative and quantitative
results, we have clarified the following three key points:

Firstly, different image restoration tasks exhibit varying
sensitivities to the decay rate γ , necessitating a task-
specific selection. For instance, in the 2210RAND task, γ =

0.005 consistently yielded the best improvement.
Secondly, the choice of the decay rate γ directly influences

the model’s output, with larger γ values causing a sharp
reduction in output and, consequently, a decrease in restora-
tion capability. Therefore, adjusting γ requires a balance
between restoration effectiveness and output stability.
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FIGURE 10. These visual analyses illustrate the qualitative results for different γ values across various image restoration tasks. The aim is to
showcase the impact of the decay rate γ on different image restoration tasks. Through these visual examples, one can clearly observe the visual
characteristics and differences in the restoration results under different γ values. These visual illustrations provide an intuitive understanding,
aiding in a more comprehensive evaluation and comparison of the restoration effects under different γ values.

Lastly, the concordance between qualitative observations
and quantitative evaluations underscores the critical role of

γ selection in image restoration tasks. Considering these
factors collectively allows for a more precise adjustment of
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FIGURE 11. We utilized three common image restoration evaluation metrics, including SSIM, PSNR, and LPIPS, to assess our restoration
results. The best restoration outcomes under different γ values were compared with the results from the RePaint model, as illustrated
in Figure 8. Subfigures (a), (b), and (c) present the best SSIM, PSNR, and LPIPS comparisons with RePaint across various restoration
tasks, respectively. The results consistently demonstrate that our restoration method outperforms RePaint in terms of these evaluation
metrics, emphasizing the effectiveness of our proposed restoration strategy.

TABLE 6. We presented a detailed quantitative analysis of the impact of different decay rates (γ ) on restoration results. We utilized three common image
quality assessment metrics: SSIM, PSNR, and LPIPS. These metrics allowed us to objectively evaluate the quality of restoration results under different γ

values. The data in the tables clearly demonstrate how the choice of γ influences the restoration outcomes. It is evident that different γ values lead to
distinct restoration effects in various tasks. Through careful experimentation and analysis, we ultimately selected the optimal γ values to achieve the best
restoration performance.

TABLE 7. Comparison of Face Recognition Accuracy Before and After Face
Image Restoration.

γ , achieving optimal restoration results and enhancing the
successful application of deep learning in image restoration
tasks.

E. APPLICATION ANALYSIS
We conducted facial recognition on images before and after
restoration, calculating accuracy as presented in Table 7. It is
evident from the table that the post-restoration facial images
exhibit a higher recognition accuracy, indicating a significant
improvement.

V. DISCUSSION
Through the exploration of face image restoration methods
based on diffusion models, our study contributes novel
insights to the field of image restoration. Experimental
results demonstrate the excellent performance of DDPM in
facial image restoration, particularly in effectively addressing
extensive missing areas. By enhancing the sampling strategy
through the optimized reverse process of progressive sam-
pling and sampling scheduling, we have improved the quality
of image restoration using DDPM.

However, the study has its limitations. Our method
still requires considerable computational resources, poten-
tially limiting its practical application. Future research
could explore more efficient computing methods [49],
[50]. Future research directions include optimizing the
decay rate (γ ) to enhance image restoration quality and
computational efficiency. Additionally, further investiga-
tion is needed on adapting to diverse facial features
and scenarios, aiming for more intelligent facial image
restoration.
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VI. CONCLUSION
We propose an enhanced facial image restoration method
based on DDPM. This approach introduces the Resample
sampling strategy, combining progressive sampling with
sampling scheduling to optimize the reverse process of
DDPM and improve the quality of restored images. Addition-
ally, our method is not specifically trained for a particular
mask, making it adaptable to any mask, thereby enhancing
the flexibility of facial image restoration methods. The
results show improvements in both PSNR and LPIPS
metrics. Furthermore, an application analysis indicates a
significant enhancement in face recognition accuracy after
the restoration of facial images.
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