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ABSTRACT Safety helmet plays a major role in protecting the safety of operators in industry, and several
helmetless detection methods have been developed based on artificial intelligence. However, existing detec-
tion methods cannot work well for machinery operators in specific scenarios, such as factory environments,
in which low accuracy and efficiency for small helmet targets could happen occasionally. Aiming to
comprehensively handle these issues, this paper proposes a real-time helmetless detection method for lift
truck operators based on improved YOLOv5s. Firstly, the lightweight multiscale attention EfficientViT is
added to improve the detection accuracy for small-sized helmets. Secondly, the detector C2 F-Net from
Transformer structure is added to improve the predictability of challenging occurrences. In addition, the
loss function is changed to Alpha-IoU, which further enhances the detection ability of small-sized targets.
Finally, a real-time helmetless detection system is built with a set of well-designed detecting logic. The
system effectively implements the proposed method and provides real-time monitoring and detection of
helmetless lift truck operators. By conducting experiments on a self-created dataset derived from factory
surveillance videos, this paper successfully validated the effectiveness of the proposed method. Specifically,
the results showed that the proposed method increases the mAP (0.5) of the original algorithm in abnormal
class by 6.7%, reaching 98.7%, and themAP (0.5:0.95) is improved by 6.5%, indicating the proposedmethod
shows significant improvement in real-time detection performance for operators not wearing safety helmets
in specific scenarios.

INDEX TERMS YOLOv5, helmetless detection, EfficientViT, C2F-Net, Alpha-IoU.

I. INTRODUCTION
Safety is a paramount concern in all industries, especially
in factory environments with intricate machinery. Among
the myriad risks confronted by machinery operators, head
injuries stand out as a significant threat, primarily due to
non-compliance with safety helmet usage protocols. Stud-
ies have shown that a substantial percentage of production
accidents, approximately 67.95% of total incidents, can be
attributed to the lack of proper safety helmet usage [1]. This
compelling statistic highlights the urgent necessity to address
the problem of non-compliancewith safety regulations within
factory settings.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sangsoon Lim .

Lift truck drivers, also known as lift truck operators,
occupy pivotal roles in production operations, maneuver-
ing heavy loads and assisting in various lifting tasks. Their
involvement in these activities exposes them to substan-
tial risks, particularly concerning head injuries. Wearing
safety helmets stands as a fundamental requirement to
mitigate the inherent dangers of head injuries for lift
truck operators. However, insufficient safety awareness and
non-compliance with safety helmet regulations persist as
common challenges among construction operators, substan-
tially elevating the likelihood of injuries. Consequently,
there is immense practical value in implementing rigor-
ous supervision of safety helmet usage among lift truck
operators, facilitated by advanced safety helmet detection
algorithms.
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With the development of artificial intelligence, deep
learning-based object detection technology has made signif-
icant progress in various fields such as safety production
supervision. Now, the field of object detection has seen
an increasing research focus, with deep learning algorithms
playing a crucial role. Two main types of computer vision
algorithms, namely single-stage and two-stage detection,
have been applied in this domain. Single-stage detection
algorithms, including the YOLO series (such as YOLOv1 [2],
YOLO9000 [3], YOLOv3 [4], YOLOv4 [5], YOLOv5 [6]),
the SSD series (such as SSD [7],R-SSD [8], FSSD [9], and
DSSD [10]), and EfficientDet [11], have been representative
choices. On the other hand, two-stage detection algorithms,
such as R-CNN [12], Fast R-CNN [13], Faster R-CNN [14]
and Mask R-CNN [15], have also played dominant roles in
this field.

However, both single-stage and two-stage detection algo-
rithms may face challenges in capturing shallow features,
which can result in the loss of semantic information, espe-
cially for small targets. To address this issue, researchers have
proposed various approaches to combine shallow and deep
features. In the year of 2017, Lin et al. conducted a seminal
endeavor, unveiling the notion of feature pyramid network
(FPN) [16] while providing an elaborate exposition of its
network architecture and training methodology.

To enhance the inference speed and detection performance
of YOLOv5s, and to achieve efficient and accurate object
detection in resource-constrained environments, Han et al.
introduced YOLOv5s GhostNet [17] in 2019. Howard et
al. proposed in 2019 that MobileNetV3 [18] can be read-
ily expanded and enhanced in the network architecture to
accommodate various task and scenario demands. In pursuit
of further improving model performance, attention mecha-
nisms, like convolutional block attention module (CBAM)
[19] and path aggregation network (PANet) [20], have also
been utilized to enhance model performance by focusing on
essential information, which have extensively optimized the
YOLOv5’s performance. In addition, Dillon Reis and col-
leagues proposed YOLOv8 [21] in 2023, which builds upon
the YOLO algorithm. YOLOv8 enhances the feature expres-
sion in detecting small targets, employing a multiscale fusion
approach and incorporating data augmentation strategies.

At the same time, many scholars have made efforts in
the field of safety helmet detection. Jun et al. [22] mod-
ified the output dimension of the classifier in the YOLO
based helmet detection algorithm to reduce the number of
parameters. This algorithm has good real-time performance,
but its accuracy is relatively low. Han et al. [23]currently
use multi-scale detection methods to identify safety helmets
and effectively improve recognition accuracy by adding a
fourth dimension to predict a large number of small targets.
However, their dataset only covers relatively standardized
construction site environments, which may lead to perfor-
mance degradation of the model when facing other types of
construction sites or complex scenes. Wu et al. [24] have suc-
cessfully addressed the challenges of helmet staining, partial

FIGURE 1. Typical scenes of helmetless detection on the lift truck in
factory environment.

occlusion, and multiple targets in low-resolution images by
switching the backbone feature extraction network. Nev-
ertheless, the algorithm imposes significant computational
resource requirements. Tai et al. [25] aim to enhance the
helmet recognition task by introducing a spatial attention
module. This module aims to amplify the saliency of the
spatial region where the target object is located, thereby
capturing the helmet features more effectively. However, this
approach may encounter certain constraints when dealing
with small-sized or large-sized targets. Benjumea et al. [26]
improved the YOLOv5 model to enhance its performance
in detecting small targets, which is crucial for safety hel-
met wearing detection. They modified the model structure,
creating a series of models called YOLO-Z, that exhibited
impressive performance in detecting small targets. However,
this improvement in mean average precision (mAP) came at
the expense of a slower inference speed. Jin et al. [27] opti-
mized the YOLOv5 algorithm for helmet-wearing detection,
addressing issues that could affect detection accuracy. They
used the k-means++ algorithm to improve the matching
accuracy of prior anchor boxes, and added the depth wise
coordinate attention mechanism to the backbone network,
resulting in improved information dissemination between
features. These enhancements resulted in higher detection
accuracy, but increased computation complexity, poten-
tially leading to longer training times or higher hardware
requirements.
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However, as depicted in FIGURE 1, the current methods
for helmetless detection face the following challenges on
specific machinery such as lift trucks:

(1) Lift truck scale variations: Small targets on lift trucks
can exhibit scale variations due to changes in distance and
angle. At different distances and angles, small targets may
appear on different scales, posing a challenge for detection
algorithms.

(2) Complex environments: Due to the complex working
environment in the factory workshop. The identification of
personnel on lift trucks is challenged by obstacles, lighting
conditions, similarities, and limitations in visibility. These
factors can impact the accuracy and acquisition of compre-
hensive target information.

(3) Real-time requirements: Real-time performance is
crucial during lift truck operations. Small target detection
methods need to operate under real-time constraints to
promptly identify and address potential safety hazards.

In order to address the mentioned issues, the main contri-
butions of this paper include the following:

(1) To the best of our knowledge, we are the first
researchers to detect helmetless people on specific machin-
ery, especially on lift truck in factory environments. Due to
the lack of public dataset for lift truck and operators, we have
constructed a new dataset that includes three categories: lift
trucks, operators wearing safety helmets, and operators not
wearing safety helmets.

(2) By integrating EfficientViT’s [28] into the backbone of
YOLOv5s, not only can the detection accuracy for small hel-
mets be significantly enhanced, but its impact extends to the
field of detection system for lift truck operator. The efficient
and powerful attention-based feature extraction capabilities
of EfficientViT play a crucial role in improving the model’s
ability to capture fine-grained details, not only in the con-
text of safety helmet detection but also in the detection
system for lift truck operators. This integration allows the
model to allocate computational resources more effectively,
thereby enhancing the accuracy of detecting small and intri-
cate details, including safety helmets in lift truck operator
scenarios. As a result, the overall performance and reliabil-
ity of the detection system for lift truck operators can be
improved, ensuring a safer working environment and reduc-
ing the risk of accidents.

(3) By replacing the C3 module with the C2F [29] module
in the YOLOv5s model, the predictive capability improves
while extending its impact on the detection system for lift
truck operators. TheC2Fmodule enhances themodel’s under-
standing of complex scenes by integrating information from
low-level feature maps. This integration enables the model to
accurately predict challenging events like partially obscured
objects or objects with complex backgrounds commonly
found in lift truck operator scenarios. The integration of
the C2F module makes the YOLOv5 model more effective
in demanding real-world situations for lift truck operators.
It improves object detection and prediction, providing valu-
able insights and enhancing situational awareness. Accurate

detection of challenging events helps prevent accidents and
ensures a safer working environment.

(4) By applying theAlpha-IoULoss function, the YOLOv5
model’s detection capability is enhanced for small targets
relevant to the detection system for lift truck operators. This
specific loss function assigns varying weights to the loss
terms based on target size or difficulty, ensuring that smaller
targets receive more attention during training. Consequently,
the model becomes more proficient at detecting and pre-
dicting small objects or obstacles encountered in lift truck
operator scenarios.

(5) We have developed an intelligent software system to
implement helmetless detection, which has been applied in
actual production environments. In the detection system, a set
of well-designed warning logic was applied to detect helmet-
less operators on lift truck more accurately.

The rest of this paper is organized as follows. Section II
introduces the original YOLOv5s network structure and
its improvements and enhancements based on YOLOv5s.
Section III introduces the experiment preparation and setup,
and analyses the results of the experiment. Finally, the main
conclusions are drawn in Section IV.

II. PRINCIPLES AND ENHANCEMENTS
A. YOLOv5 NETWORK STRUCTURE
YOLOv5 is a state-of-the-art object detection framework
that builds upon the foundations of YOLOv3 and YOLOv4.
It introduces continuous integration and innovation to
enhance performance and accuracy. YOLOv5 comprises four
different network models: YOLOv5s, YOLOv5m, YOLOv5l
and YOLOv5x. This paper will focus on the YOLOv5s net-
work model, which is the smallest in terms of network width
and depth. The YOLOv5s network model consists of four
main components: input, backbone, neck and output. Input is
the initial stage where the input image is fed into the model.
The backbone forms the core of the architecture and extracts
hierarchical features from the input image. The neck com-
ponent connects the backbone and output layers, performing
further fusion and feature refinement. Lastly, the output mod-
ule generates predictions by processing the refined features
from the neck.

YOLOv5s is designed to balance speed and accuracy,
making it useful for real-time applications with limited com-
putational resources. It leverages advanced techniques such
as anchor-free detection and focal loss to improve object
detection performance.

1) INPUT
The image input serves as the starting point of the YOLOv5
network. During this stage, the input image undergoesMosaic
data augmentation, where four images are randomly com-
bined through scaling, cropping, and arrangement. This
technique increases dataset diversity and improves the net-
work’s robustness. The input image is then adaptively scaled
to a fixed size, and the adaptive anchor box calculation is
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performed. Adaptive image scaling reduces the addition of
black edges, improving the inference speed. Adaptive anchor
box calculation enables the network to learn the optimal
anchor box values based on the training data.

2) BACKBONE
The backbone network is responsible for extracting features
from the input images. YOLOv5 offers flexibility in selecting
different backbone network structures, such as Darknet [30],
CSPDarknet [31] or EfficientNet [32]. Typically, the back-
bone network consists of convolutional layers and pooling
layers, gradually capturing features at different scales, which
are later used for object detection tasks.

Darknet is a classic backbone network structure that uses
multiple convolutional layers and spatial sampling operations
to effectively capture features at different levels. CSPDarknet
introduces the cross-stage partial connections (CSP) module
to further enhance feature representation. EfficientNet is a
backbone network based on automated network structure
search, achieving better performance with relatively small
computational resources through optimizing network struc-
ture and depth scaling coefficients.

The backbone network gradually extracts features from
images by stacking convolutional layers and reduces the spa-
tial resolution of features using pooling layers. This is done to
capture feature information at different scales, enabling effec-
tive detection of objects of different sizes during the object
detection process. By utilizing different backbone network
structures, YOLOv5 can adapt to different application sce-
narios and computational resources, providing more flexible
and efficient feature extraction capabilities.

3) NECK
The integration and enhancement of the neck module further
strengthen the capacity of feature representation. Common
neck modules, such as the feature pyramid network (FPN)
and the path aggregation network (PAN), utilize multiple
convolutional layers, up sampling, and down sampling oper-
ations to fuse and connect feature maps from different levels
of the backbone network. This facilitates the generation of
feature maps with increased semantic information and mul-
tiscale feature representation. By merging and connecting
feature maps from different levels of the backbone network,
the neck module is able to synergize low-level and high-
level feature information, thereby improving the capability of
feature representation.

4) OUTPUT
The output detection head is responsible for object detec-
tion and prediction on the feature maps. YOLOv5 adopts an
anchor-based approach to predict object bounding box posi-
tions and categories across different scales of feature maps.
This is achieved through the utilization of convolutional
and fully connected layers. These components collaborate in
YOLOv5 to enable robust object detection. The incorporation

of data augmentation, adaptive image scaling, and adaptive
anchor box calculation enhances the network’s performance
and adaptability to different hardware and scenarios. the
loss function CIoU_Loss of the anchor box is replaced
with GIoU_Loss [33]. Weighted non-maximum suppression
(NMS) [34] operation is adopted to filter target anchor boxes
to improve the accuracy of target detection.

B. IMPROVED YOLOV5S DETECTION ALGORITHM
The original YOLOv5s algorithm utilizes a significant num-
ber of convolutional structures of Conv and Conv 3 × 3 in
its backbone network and feature pyramids. As a conse-
quence, it results in a high parameter count and slower
detection speed. However, in regard to practical applications
like mobile or embedded devices, it becomes challenging to
implement large and intricate models. To meet the require-
ment of fast detection of whether the personnel operating on a
lift truck are wearing safety helmets, the improved YOLOv5s
method has made the following improvements to YOLOv5:

Backbone Replacement: In order to enhance the preci-
sion of small-sized helmet detection, we have implemented
the EfficientViT methodology for refinement. This attention
mechanism pays more attention to smaller helmet regions,
improving themodel’s ability to accurately detect and classify
helmets worn by operators.

C3 Module Replacement: In the neck of the original
YOLOv5s model, the C3 module was replaced with the
C2F module. This replacement was made to improve the
predictability of challenging events. The C2F module incor-
porates advanced feature fusion techniques, enabling the
model to capture more fine-grained details and effectively
handle complex and demanding detection scenarios.

Alpha-IoU [35]Loss Function: To further enhance the
detection ability of the original YOLOv5 model for small
targets like safety helmets, we utilized the Alpha-IoU loss
function. This loss function specifically addresses the chal-
lenges faced when detecting small objects. It encourages the
model to prioritize accurate localization and classification
of smaller targets, resulting in improved performance for
detecting safety helmet usage.

Overall, the proposed method combines dataset construc-
tion, model architecture modification, loss function optimiza-
tion, and alert mechanisms to enhance the detection of safety
helmet usage by operators on lift trucks.

1) LIGHTWEIGHT MULTISCALE EFFICIENTVIT
Cai et al. proposed EfficientViT, which is an efficient vision
transformer (ViT)architecture for high-resolution low com-
putational visual recognition. As shown in FIGURE 2,
EfficientViT replaces softmax attention with linear attention,
and enhances its local feature extraction ability through deep
convolution. EfficientViT maintains global and local feature
extraction capabilities while enjoying linear computational
complexity.
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FIGURE 2. The structure diagram of efficientViT.

FIGURE 3. Illustration of efficientvit’s building block.

Cai et al. build a new family of models based on the
proposed lightweight multiscale attention (MSA) module.
The core building block (denoted as ‘EfficientViT Module’)
is illustrated in FIGURE 3. Specifically, an EfficientViT
module comprises a lightweight MSA [36] module and an
MBConv [37]. The lightweight MSA module is for context
information extraction, while the MBConv is for local infor-
mation extraction.

As depicted in FIGURE 4, MSA employs a method of pro-
cessing input tokens. MSA initially acquires Q/K/V tokens
through a linear projection layer. Subsequently, adjacent
tokens are aggregated using lightweight small kernel convo-
lution, resulting in multiscale tokens. These multiscale tokens
are processed through global attention with ReLU activation,
and the output is cascaded and passed to the final linear
projection layer for feature fusion.

In order to enhance themultiscale learning capability of the
ReLU-based global attention, the EfficientViT module pro-
poses a method of aggregating information from neighboring
Q/K/V tokens to obtain multiscale tokens. This informa-
tion aggregation process is independent for each Q, K, and
V in each head. EfficientViT solely utilizes small kernel
convolution for information aggregation to avoid compro-
mising hardware efficiency. Nevertheless, executing these
aggregation operations independently proves to be less effi-
cient on GPUs during practical implementation. Therefore,

FIGURE 4. The proposed lightweight MSA.

FIGURE 5. ACFM network (upper left), MSCA network (upper right) and
dgcn network (below).

EfficientViT leverages the group convolution infrastructure
in modern deep learning frameworks to consolidate all
depth-wise convolutions (DWConv) into a singular DWConv
and merge all 1× 1 convolutions into a single 1× 1 grouped
convolution, where the number of groups is 3 × # heads and
the channel count within each group is d.

Upon obtaining the multiscale tokens, they undergo a
global attention operation to extract multiscale global fea-
tures. Finally, the features from different scales are concate-
nated along the head dimension and passed to the final linear
projection layer for feature fusion.

2) CONTEXT-AWARE CROSS-LEVEL FUSION NETWORK
(C2F-NET)
Due to the low boundary contrast between objects and
their surrounding environment in the production workshop
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FIGURE 6. Real time photo of C2F module inspection.

of the factory, false detection may occur when detecting
whether operators are wearing safety helmets on lift trucks.
Sun et al. [29] proposed C2F-Net to solve challenging COD
tasks.

C2F-Net is a method used to improve the detection per-
formance of disguised objects, which combines cross-level
features with context awareness. As shown in FIGURE 5,
the detailed introduction of C2F-Net’s key components and
operational processes are as follows:

1. Feature extraction: Use the Res2Net-50 model to extract
the features of the input image and obtain five different levels
of feature representation, represented as fi (i=1, 2. . . , 5).
These features represent information of different granularity,
from lower-level details to higher level abstract semantic
information.

2. Receiving domain block (RFB): For each feature layer
fi, we use an RFB module to expand its receptive field in
order to capture richer feature information. The RFB module
consists of five branches bk (k=1, 2, . . . , 5), with the first
branch passing through 1 × 1 convolutional layer, reducing
the number of channels to 64, and then passes through the
(2k-(1)× (2k-(1) convolutional layer and 3× 3 convolutional
layers are used to process features and a specific expansion
rate (2k-(1) is used when k>2.
3. Feature fusion: The features of the first four branches are

concatenated and passed through 1×1 convolution operation,
reducing the size of channels to 64. Then, the features of the
fifth branch are added to it to obtain the final fusion feature.
This can fuse features with different receptive fields and
representation capabilities together, improving the detection
performance of camouflaged objects.

FIGURE 7. Correlation between IoU and Lα-IoU.

4. Attention guided cross-level fusion module (ACFM),
as shown in the upper left image of FIGURE 5. In order to
further integrate features from different levels, we introduced
the ACFM module. The ACFM module utilizes attention
mechanisms to dynamically adjust the weights of features
at different levels, in order to better fuse and utilize their
information.

5. Dual branch global context module (DGCM), as shown
in FIGURE 5. In order tominemultiscale context information
in fused features, we use the DGCM module. The DGCM
module obtains more global and rich contextual information
through two parallel branches, each branch has an MSCA
module (upper right in FIGURE 5) utilizing global contextual
information and convolution operations with different recep-
tive fields.

Finally, the features obtained by combining ACFM and
DGCM modules are used for detecting camouflaged objects.
Through effective feature extraction, cross-level fusion,
and the utilization of contextual information, C2F-Net can
improve the performance of camouflage object detection and
achieve more accurate results. The input real-time photo and
the output image detected by the C2F module are shown in
FIGURE 6.

3) ALPHA-IOU LOSS FUNCTION
YOLOv5, in its original implementation, utilizes the general-
ized intersection over union (GIoU) [33] to handle prediction
boundary boxes. This approach effectively handles cases
where there is no intersection between the predicted bounding
box and the actual bounding box. However, GIoU suffers
from fairness issues when dealing with bounding boxes of
different scales and aspect ratios.

The Alpha-IoU loss function balances the impact of pre-
diction errors on objects of different scales by introducing
an adjustable parameter α. This enables the model to more
accurately regress bounding boxes when dealing with multi-
scale targets. The Alpha-IoU loss function can be defined as
follows:

The ordinary IoU loss, defined as Lα−IoU = 1 − IoU ,
can be derived from the expression of the α-IoU loss function
through the application of Box-Cox transformation:

Lα−IoU =
1 − IoUα

α
, α > 0. (1)
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FIGURE 8. The improved YOLOv5s structure.

Utilizing the condition α > 0 and simplifying the expression
of the loss function α → 0, as in this case, the denominator
α in equation (1) is just a positive constant in the objective.
This gives us two cases of the α-IoU loss for α → 0 and α0,
respectively:

Lα − IoU =

{
− log(IoU ), α → 0,
1 − IoUα, α ↛ 0.

(2)

Then, the α-IoU loss is extended for α ↛ 0 to a more
general form by introducing a power regularization term into
the formula:

Lα-IoU = 1 − IoUα1 + Pα2 (B,Bgt) (3)

In the formula: α1 > 0, α2 > 0, Pα2 (B,Bgt) indicates
that based on B and Bgt, this extension directly summarizes
the existing IoU base loss to its α-IoU version. According to
equation (4), the commonly used IoU losses can be included.
LIoU, LGIoU, LDIoU and LCIoU use the same parameter α for
IoU and penalty terms:

LIoU = 1 − IoU ⇒ Lα−IoU = 1 − IoUα,

LGIoU = 1 − IoU +
|C\(B ∪ Bgt )|

|C|
⇒ Lα−GIoU

= 1 − IoUα
+ (

|C\(B ∪ Bgt )|
|C|

)α,

LDIoU = 1 − IoU +
ρ2(b, bgt )

c2
⇒ Lα-DIoU

= 1 − IoUα
+

ρ2α(b,bgt )
c2α

,

LCIoU = 1 − IoU +
ρ2(b, bgt )

c2
+ βν ⇒ Lα−CIou

= 1 − IoUα
+

ρ2α(b,bgt )
c2α

+ (βν)α, (4)

where C in LGIoU denotes the smallest convex shape enclos-
ing B and Bgt;b and bgt in LDIoU denote central points of B
and Bgt with ρ(·) being the Euclidean distance and c being
the diagonal length of the smallest enclosing box; and in
LCIoU, ν =

4
π2 (arctan

wgt
hgt −arctanwh )

2, β =
ν

(1−IoU )+ν
. When

α =1, the transformation form of LIoU, LGIoU, LDIoU and
LCIoU becomes the prototype.

As shown in FIGURE 7, when α > 1, learn easy examples
first; when IoU =1, the difficult examples will gradually
begin to learn; when 0 < α < 1, it tends to decrease the
final performance, reducing the loss and gradient of high
IoU objects will lead to worse localization of the object. The
different forms of Lα-IoU are adapted to the IoU value of
the target, which provides greater flexibility for model train-
ing and can achieve different levels of target box regression
accuracy.

4) THE IMPROVED YOLOV5s
The structure of the improved YOLOv5s method is shown in
FIGURE 8. Firstly, we substitute the backbone of YOLOv5s
with the EfficientViT network architecture. Once the image is
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FIGURE 9. Image pre-processing and annotation.

FIGURE 10. Sample images extracted from surveillance videos.

fed into the model, multiple layers of convolutional networks
will be utilized for feature extraction and image classification.
As for the neck section0, the C3 structure is replaced by C2F.
In the output phase, we replace GIoU with Alpha-IoU.

III. EXPERIMENTS AND DISCUSSION
The experimental procedure can be mainly categorized into
three phases: dataset generation, model training, and object
detection. In the initial stages, we employed image pre-
processing techniques to construct a comprehensive dataset
by gathering images. Subsequently, by fine-tuning the

parameters and training the models, we obtained the model
weights for our algorithm. Finally, utilizing the meticu-
lously trained weights, we conducted helmetless detection
and conducted a comparative analysis of detection results
from various methodologies.

A. DATASET AND PRE-PROCESSING
Due to the unavailability of publicly accessible dataset, the
experimental dataset was sourced from internal shots. The
location of the shots is a workshop scene within a spe-
cific enterprise factory. After processing, a grand total of
3507 images were acquired. The distribution of these images
for training, validation, and testing was performed in a ran-
dom manner, maintaining a ratio of 7:2:1. Some sample
images are shown in FIGURE 10.

To tackle the problem of uneven sample distribution and
ensure dataset alignment with real-world situations, we have
employed four image preprocessing methods for each data
group. These methods include image enhancing, mirroring,
noising and filtering. Following the image preprocessing
stage, we have curated a custom dataset comprising a total of
17535 images, consisting of both original and preprocessed
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FIGURE 11. The precision-confidence curve and precision-recall curve.

images. The annotation of the dataset was carried out using
the LabelImg software. As shown in FIGURE 9, to enhance
the evaluation of object detection performance in complex
environments, the dataset was annotated into three categories:
person, hat and car, which respectively represent operator,
helmet and lift truck. The annotation information of the
dataset is saved in XML files adhering to the PASCAL VOC
format.

B. NETWORK TRAINING
In the realm of network training, a sophisticated experi-
mentation and development platform is established utilizing
Windows 10 (64-bit). The central processing unit (CPU)
is configured with the cutting-edge 11th generation Intel
(R) Core (TM) i7-13900K CPU, operating at a remark-
able 5.40 GHz. Additionally, the graphics processing unit
(GPU) boasts the commendable NVIDIA GeForce RTX
3080, endowed with a substantial 10GB of memory. The
CUDA framework employed in this endeavor operates under
the prestigious 11.3 version. Python, a prominent program-
ming language, stands at version 3.8. The deep learning
framework harnessing the power of artificial intelligence in
these experiments is none other than PyTorch.

Before the network training, it is essential to fine-tune the
hyperparameters to achieve the best model performance and
avoid overfitting. The chosen batch size is 32, and a learning

FIGURE 12. The loss curve of the training results.

rate of 0.001 is assigned. The optimizer selected is Adam, and
150 iterations are performed. The precision-confidence curve
and precision-recall curve are shown in FIGURE 11.

FIGURE 12 illustrates a rapid decrease in the loss function
value from 0 to 50 iterations, followed by a gradual decline
from 50 to 150 iterations. After 150 iterations, the loss value
stabilizes, indicating that the model has reached its optimal
state.

C. EVALUATION INDICATORS
The evaluation metrics utilized in this paper comprise pre-
cision, recall, average precision (AP), and mean average
precision (mAP). Precision refers to the likelihood that all
positively predicted samples by the model are indeed positive
samples. Recall represents the probability of the model cor-
rectly identifying positive samples among the total number
of actual positive samples. Equations (5) and (6) respectively
express precision and recall.

Precision =
Tp

TP + FP
(5)

Recall =
Tp

TP + FN
(6)

where TP (True Positives) represents the accurate prediction
of positive samples by the model. Similarly, FP (False Posi-
tives) represents the incorrect prediction of positive samples,
while FN (False Negatives) represents the incorrect predic-
tion of negative samples. AP is a crucial performance metric
that aims to eliminate the dependency on a single confidence
threshold. It is calculated as the average precision under the
precision-recall curve, as indicated by Equation (7). On the
other hand, mAP is commonly utilized to assess the combined
precision and recall results. It is computed by averaging
the AP values across all the considered classes, and can be
represented by Equation (8).

AP =

1∫
0

Pr ecision (t) dt (7)

mAP =
1
N

N∑
i=1

APi (8)

4362 VOLUME 12, 2024



Y. Zheng et al.: Real-Time Helmetless Detection System for Lift Truck Operators

TABLE 1. Ablation experiments.

TABLE 2. The mAP (0.5) comparison of different methods through different epochs.

Furthermore, experiments often utilize mAP (0.5) and
mAP (0.5:0.95) as evaluation metrics. mAP (0.5) refers to
the mean average precision with the Intersection over Union
(IoU) threshold set to 0.5. On the other hand, mAP (0.5:0.95)
represents the mAP calculated across a range of IoU thresh-
olds from 0.5 to 0.95.

D. ABLATION EXPERIMENT
We conducted five sets of ablation experiments using the
same environment and parameter settings, aiming to accu-
rately evaluate the impact of each enhanced component
on helmet detection. In these experiments, we used the
YOLOv5s model as the baseline and evaluated it by com-
paring the experimental results. The experimental results are
shown in TABLE 1.
Compared with the original YOLOv5s, when only intro-

ducing EfficientVit, the Precision increased by 5.5%, Recall
increased by 7.7%, mAP (0.5) increased by 2.5%, mAP
(0.5:0.95) increased by 5%.

Compared with the original YOLOv5s, when only intro-
ducing C2F, the Precision increased by 4.7%, Recall
increased by 8.3%, mAP (0.5) increased by 2.1%, mAP
(0.5:0.95) increased by 3.9%.

Compared with the original YOLOv5s, when only intro-
ducing Alpha-IoU, the Precision increased by 2.3%, Recall
increased by 7.9%, mAP (0.5) increased by 2.4%, mAP
(0.5:0.95) increased by 4.1%.

Compared with the original YOLOv5s, when adding Effi-
cientVit and C2F modules, the Precision increased by 6.7%,
Recall increased by 12.2%, mAP (0.5) increased by 4.3%,
mAP (0.5:0.95) increased by 4.5%.

FIGURE 13. Comparison of detection results between the original
YOLOv5s and our method.

When all the enhancement strategies are implemented
in combination, compared to YOLOv5s, the mAP (0.5)
increases by 6.7%, the mAP (0.5:0.95) increases by 6.5%,
the Precision increases by 12.2%, and the Recall increases by
12%. Although the improvement in recall was not as high as
when only EfficientVit and C2F modules were added, there
were significant improvements in Precision, mAP (0.5), and
mAP (0.5:0.95).

In conclusion, the results of the ablation experiments
demonstrate the superiority of our method.
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FIGURE 14. The mAP (0.5), Precision and Recall of different methods.

FIGURE 15. The Person-AP, Hat-AP and Car-AP of different methods.

TABLE 3. Comparison results of different methods.
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FIGURE 16. The mAP (0.5) of related algorithms in the training process.

In order to visually evaluate the detection performance
of our approach, a comparison was conducted between the
original YOLOv5s and our method. For evaluation, a subset
of images from the dataset was randomly chosen, as shown
in FIGURE 13. Under complex background conditions, the
YOLOv5s model occasionally results in missed detection.
For instance, in FIGURE 13(a) on the left, when an oper-
ator is working on a lift truck in a complex environment,
the YOLOv5s fails to detect the operator wearing a safety
helmet, leading to an undetected instance. In contrast, the pro-
posed method successfully detects objects that the YOLOv5s
model missed, as shown in FIGURE 13(b), proving the pro-
posed algorithm effectively addresses the challenges of object
detection in complex backgrounds.

E. COMPARATIVE EXPERIMENTS
To further validate the detection performance of the pro-
posed method, our method was contrasted with multi-
ple one-stage object detection algorithms, including SSD
and YOLOv5s, alongside well-regarded approaches like
YOLOv8, YOLOv5sGhostNet andYOLOv5sMobileNetV3.

During the training process, we compared the mean Aver-
age Precision (mAP) at an Intersection over Union (IoU)
threshold of 0.5 between our method and other approaches
for approximately 150 epochs.

FIGURE 16 and TABLE 1 demonstrate that the mAP (0.5)
for each method exhibits a significant increase in the initial
30 epochs and stabilizes as the epoch count reaches 120.
However, the mAP (0.5) of our method rises faster and finally
stabilizes at the maximum value of 0.98, which is higher than
other methods.

In the detection process, we also conducted comparative
experiments using ourmethod and the above-mentioned algo-
rithms. In the same experimental environment, the weight
file with the most optimal training performance is saved.
The evaluation metrics used for comparative experiments
encompass AP, mAP (0.5), model size, precision, and recall.

In addition, Person-AP, Hat-AP and Car-AP respectively rep-
resent the AP of operator, helmet and lift truck.

As shown in Table 2, FIGURE 14 and FIGURE 15, our
algorithm has been optimized in terms of detection accuracy
and model size.

Compared to SSD, the Precision and Recall have improved
by 16.8% and 10.8%, the mAP (0.5) has improved by 8.4%,
the Person-AP, Hat-AP and Car-AP increase significantly,
and the model size decreases by 93.5%.

Compared to the original YOLOv5s, the Precision and
Recall have improved by12.2% and 12.0%, the mAP (0.5)
has improved by 6.7%, the Person-AP, Hat-AP and Car-AP
increase by 8.5%, 9.3% and 8.5%, resulting in a substantial
decrease in the model size by 53.3%.

Compared to YOLOv5s GhostNet, the Precision and
Recall have improved by 5.1% and 3.2%, the mAP (0.5)
has improved by 2.0%, the Person-AP, Hat-AP and Car-AP
increase by 3.0%, 1.5% and 2.1%, resulting in a substantial
decrease in the model size by 22.6%.

Compared to YOLOv5s MobileNetV3, the Precision and
Recall have improved by 8.6% and 6.8%, the mAP (0.5)
has improved by 4.6%, the Person-AP, Hat-AP and Car-AP
increase by 5.2%, 2.3% and 2.7%.

Compared to YOLOv8, the Precision and Recall have
improved by 4.7% and 3.3%, the mAP (0.5) has improved by
2.4%, the Person-AP, Hat-AP and Car-AP increase by 3.2%,
1.7% and 1.6%, the model size decreases by 73.2%.

Taking into account the complexity of each model and the
actual outcomes of detection, it can be generally inferred that
our proposed method outperforms other approaches in terms
of helmetless detection.

In order to compare the detection effects of different meth-
ods more visually, we performed multiple sets of comparison
experiments for different scenarios.

According to Close-up scene 1 in FIGURE 17, when
detecting the helmetless operator at close range, there are
certain differences in the performance of each algorithm
in identifying helmets and lift trucks. In terms of confi-
dence in detecting safety helmets and lift trucks, both SSD
and YOLOv5s exhibit lower confidence, indicating relatively
poor accuracy in identifying these two objects. In contrast,
YOLOv5s Ghost, YOLOv5s MobileNetV3 and YOLOv8
demonstrate some advancements in the detection of helmets
and lift trucks compared to the original SSD and YOLOv5s.
As a comparison, our method outperforms the other five
algorithms, achieving a confidence level of 0.99.

According to the Vast-Extent scene 2 in FIGURE 17, SSD,
YOLOv5s, YOLOv5s Ghost and YOLOv5s MobileNetV3
fail to detect the person at the edges of the image, resulting in
missed detection. OnlyYOLOv8 and ourmethod do not expe-
rience any missed detections. However, the confidence score
for person detection by YOLOv8 is only 0.31, relatively low.
On the other hand, our method achieved a confidence score
of 0.77 for person detection at the image edges. Furthermore,
when detecting lift truck, safety helmets, and persons in the
image, our method demonstrated higher confidence scores
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FIGURE 17. The detection comparison in multiple scenarios.

FIGURE 18. The detecting and warning logic.

compared to the other five algorithms. Clearly, our method
exhibits superior performance in regard to detecting persons
at a distance compared to the other five algorithms.

According to the Vast-Extent scene 3 and Vast-Extent
scene 4 in FIGURE 17, our method shows significant
improvement in detecting the operator, helmet, and lift truck
from the perspective comparison to the other methods.

In conclusion, as shown in FIGURE 17, in different scenar-
ios, our method can achieve the best detection performance
in both close range and long-range scenarios. It effectively
reduces instances of missed detections and minimizes errors,
thereby producing detection outcomes that are more precise
and dependable.

F. REAL-TIME HELMETLESS DETECTION SYSTEM
1) REAL-TIME HELMETLESS DETECTION LOGIC
As depicted in FIGURE 18, in the initial phase of the detec-
tion system, real-time video undergoes a series of meticulous
pre-processing steps. These encompass cleansing, noise fil-
tering, frame rate adjustment, image enhancement, as well
as alignment and stabilization of the video. Subsequently,
the detection process initiates by identifying the presence
of a lift truck. If no lift truck is detected, the current cycle
terminates. Otherwise, if a lift truck is present, the system fur-
ther scrutinizes whether there is an operator on the lift truck.
If no operator is detected, the current cycle also terminates.
Conversely, if an operator is present, the system proceeds to
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FIGURE 19. The diagram of the real-time detection system.

FIGURE 20. Loading RTSP stream in the detection system.

analyze the bounding boxes of both the lift truck and the
operator. The termination condition is triggered when the
intersection over union (IoU) of the bounding boxes between
the lift truck and the operator is less than or equal to zero,
indicating no overlap between them. Conversely, if the IoU
is greater than zero, it signifies an overlap between the lift
truck and the operator, prompting the system to verify if the
operator is wearing a safety helmet. If the operator is wearing
a safety helmet, no alarm will be activated. Otherwise, if the
operator is not wearing a safety helmet, an alert will be
promptly issued, ensuring the safety protocols are adhered to.

2) IMPLEMENTATION OF REAL-TIME DETECTION
The real-time monitoring system is utilized to detect whether
the personnel operating the lift truck are wearing safety
helmets. It is based on a server architecture and provides
real-time viewing and statistical analysis functions. As show
in FIGURE 19, the system primarily consists of three com-
ponents: cameras, streaming media server and clients.

The cameras are responsible for capturing real-time video
streams, while the streaming media servers receive, process,
store, and transmit the video streams. The clients are used
for real-time viewing and conducting statistical analysis.
To achieve real-time recognition and viewing effects, the

FIGURE 21. Helmetless detection system.

cameras need to support common streaming protocols, such
as real-time streaming protocol (RTSP).

RTSP is an application layer control protocol based on the
client/server model, which is used to control the transmis-
sion of real-time streaming media data. The cameras push
the real-time captured video streams to the streaming media
servers or clients using RTSP protocol to realize real-time
monitoring and viewing functions.

As show in FIGURE 20, upon receiving the video streams,
the streaming media servers first handle the reception and
parsing of the video streams. Then, the videos are encoded
and transcoded to meet the requirements of different trans-
missions and devices. Subsequently, the server stores and
transmits the real-time video streams, establishing connec-
tions with clients through wireless RTSP stream or RTSP
stream. The server acts as an intermediary between the cam-
eras and clients.

At the server side, our improved YOLOv5s model is
deployed for the identification of whether personnel oper-
ating the lift truck are wearing safety helmets. This model
runs on the server side and changes the input source to a
streaming address. By packaging the recognized images into
video streams and pushing them to the playback address,
clients can view the recognized videos in real-time and man-
age the display of video streams through interface control
functions (such as play, pause, fast forward, etc.). The client
also provides statistical analysis functions, such as counting
the number of people wearing safety helmets and analyzing
violations, aiming to facilitate more effective management
and decision-making for supervisory personnel.
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As depicted in FIGURE 21, once the camera captures
real-time video streams, it transmits the streams to a stream-
ing media server via RTSP. The streaming media server is
responsible for receiving and parsing these real-time video
streams. At the server end, the proposed helmetless detection
model is deployed. This model receives the real-time video
stream data transmitted from the camera and processes the
video frames.

The recognized images are encapsulated into video streams
and pushed to the client in real-time through the interfaces
provided by the streaming media server. The client can uti-
lize the corresponding interface to control the functionality
and view the real-time video stream of lift truck operators
wearing safety helmets. The detection results are illustrated
in FIGURE 21, where FIGURE 21(a) represents the display
of ‘‘safe’’ when the operator wears a safety helmet, and
‘‘danger’’ is displayed regardless of whether the operator is
on the lift truck or not. Notably, when an operator on the lift
truck is not wearing a safety helmet, in addition to displaying
‘‘danger,’’ a warning prompt of ‘‘WARNING’’ will also be
shown, as demonstrated in FIGURE 21(b).

IV. CONCLUSION
To tackle the challenge of detecting small targets concealed
by safety helmets worn by operating personnel on lift trucks,
the enhanced YOLOv5s improves the effectiveness and pre-
cision of detection. The primary contributions of this research
paper encompass: (1) Introducing a novel attention mech-
anism EfficientViT to replace the backbone of the original
YOLOv5s, thus enhancing the accuracy in detecting small
helmets. (2) Replacing the original YOLOv5s head’s C3
module with the C2F module to improve predictability for
challenging events. (3) Applying the Alpha-IoU Loss func-
tion to further enhance YOLOv5’s ability in detecting small
targets. (4) A real-time helmetless detection system was built
with a set of well-designed detecting logic.

We have devised three datasets for model training and
performance evaluation. The experimental outcomes suggest
significant improvements compared to the original YOLO
v5s. Specifically, the mAP (0.5) has been enhanced by 6.7%,
and the mAP (0.5:0.95) has improved by 6.5%. Further-
more, the model size has been substantially reduced by
51.16%. In addition, our method exhibits advantages over
other models mentioned in the text in terms of mAP and
model dimensions.

However, the methods proposed in this article do have
certain limitations:

(1) Video quality and angles: The performance of the
model may be constrained by real-time monitoring video
quality and angles, such as pixel blurriness, poor light-
ing conditions, or camera angle issues. These factors could
potentially affect the accuracy and robustness of helmet-less
detection.

(2) Pose and occlusion: In real-time monitoring videos,
the accuracy of detecting individuals without helmets may be

influenced to some extent by variations in the head poses of
lift truck drivers and possible occlusions.

In terms of future development prospects, our focus for fur-
ther investigations will be on enhancing performance under
low video quality. This entails accelerating inference speed
while simultaneously improving detection accuracy.

REFERENCES
[1] A. Hayat and F. Morgado-Dias, ‘‘Deep learning-based automatic safety

helmet detection system for construction safety,’’Appl. Sci., vol. 12, no. 16,
p. 8268, 2022.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[3] J. Redmon and A. Farhadi, ‘‘YOLO9000: Better, faster, stronger,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA,
Jul. 2017, pp. 6517–6525.

[4] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’
2018, arXiv:1804.02767.

[5] A. Bochkovskiy, C. Y.Wang, andH. Y.M. Liao, ‘‘YOLOv4: Optimal speed
and accuracy of object detection,’’ 2020, arXiv:2004.10934.

[6] Ultralytics. YOLOv5. [Online]. Available: https://github.com/ultralytics/
YOLOv5

[7] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot MultiBox detector,’’ in Computer Vision—
ECCV. 2016.

[8] J. Jeong, H. Park, and N. Kwak, ‘‘Enhancement of SSD by concatenating
feature maps for object detection,’’ 2017, arXiv:1705.09587.

[9] Z. Li and F. Zhou, ‘‘FSSD: Feature fusion single shot multibox detector,’’
2017, arXiv:1712.00960.

[10] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, ‘‘DSSD : Deconvo-
lutional single shot detector,’’ 2017, arXiv:1701.06659.

[11] M. Tan, R. Pang, and Q. V. Le, ‘‘EfficientDet: Scalable and efficient
object detection,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 10778–10787.

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Columbus, OH, USA, Jun. 2014,
pp. 580–587.

[13] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440–1448.

[14] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[15] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2980–2988.

[16] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017,
pp. 936–944.

[17] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, ‘‘GhostNet: More
features from cheap operations,’’ 2019, arXiv:1911.11907.

[18] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, ‘‘MobileNetV3:
Searching for MobileNetV3,’’2019, arXiv:1905.02244.

[19] S. Woo, J. Park, J. Y. Lee, and I. S. Kweon, ‘‘CBAM: Convolutional
block attention module,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 3–19.

[20] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, ‘‘Path aggregation network for
instance segmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 8759–8768.

[21] D. Reis, J. Kupec, J. Hong, and A. Daoudi, ‘‘Real-time flying object
detection with YOLOv8,’’ 2023, arXiv:2305.09972.

[22] L. Jun, W. C. Dang, and P. Lihu, ‘‘Safety helmet detection based on LO,’’
Comput. Syst. Appl., vol. 28, no. 9, pp. 174–179, Sep. 2019.

[23] K. Han and X. Zeng, ‘‘Deep learning-based workers safety helmet wearing
detection on construction sites using multi-scale features,’’ IEEE Access,
vol. 10, pp. 718–729, 2022.

[24] F.Wu, G. Jin, M. Gao, H. E. Zhiwei, and Y. Yang, ‘‘Helmet detection based
on improved YOLOv3 deep model,’’ in Proc. IEEE 16th Int. Conf. Netw.,
Sens. Control (ICNSC), May 2019, pp. 363–368.

4368 VOLUME 12, 2024



Y. Zheng et al.: Real-Time Helmetless Detection System for Lift Truck Operators

[25] W. Tai, Z. Wang, W. Li, J. Cheng, and X. Hong, ‘‘DAAM-YOLOv5:
A helmet detection algorithm combined with dynamic anchor box and
attention mechanism,’’ Electronics, vol. 12, no. 9, p. 2094, 2094.

[26] A. Benjumea, I. Teeti, F. Cuzzolin, and A. Bradley, ‘‘YOLO-Z: Improv-
ing small object detection in YOLOv5 for autonomous vehicles,’’ 2021,
arXiv:2112.11798.

[27] Z. Jin, P. Qu, C. Sun, M. Luo, Y. Gui, J. Zhang, and H. Liu, ‘‘DWCA-
YOLOv5: An improve single shot detector for safety helmet detection,’’
J. Sensors, vol. 2021, Oct. 2021, Art. no. 4746516.

[28] H. Cai, J. Li, M. Hu, C. Gan, and S. Han, ‘‘EfficientViT: Lightweight
multi-scale attention for on-device semantic segmentation,’’ 2023,
arXiv:2205.14756.

[29] Y. Sun, G. Chen, T. Zhou, Y. Zhang, and N. Liu, ‘‘Context-aware
cross-level fusion network for camouflaged object detection,’’ 2021,
arXiv:2105.12555.

[30] D. Moore and T. Rid, ‘‘Cryptopolitik and the Darknet,’’ Survival, vol. 58,
no. 1, pp. 7–38, 2016.

[31] J. Wang, Z. Liu, Y. Cheng, Y. Shen, J. Shen, X. Huang, C. Yan, H. Zhang,
X. Li, and S. Yan, ‘‘CSPDarkNet: A light modular darknet for object detec-
tion,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)
Workshops, 2020.

[32] B. Koonce and B. Koonce, ‘‘EfficientNe convolutional neural networks
with swift for tensorflow: Image recognition and dataset categorization,’’
Tech. Rep., 2021.

[33] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese,
‘‘Generalized intersection over union: A metric and a loss for bounding
box regression,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 658–666.

[34] A. Neubeck and L. Van Gool, ‘‘Efficient non-maximum suppression,’’ in
Proc. 18th Int. Conf. Pattern Recognit. (ICPR), 2006, pp. 850–855.

[35] J. He, S. Erfani, X. Ma, J. Bailey, Y. Chi, and X.-S. Hua, ‘‘α-IoU: A family
of power intersection over union losses for bounding box regression,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021, pp. 20230–20242.

[36] F. Geser, G. K. Wenning, K. Seppi, M. Stampfer-Kountchev, C. Scherfler,
M. Sawires, C. Frick, J. P. Ndayisaba, H. Ulmer, M. T. Pellecchia, and
P. Barone, ‘‘Progression of multiple system atrophy (MSA): A prospective
natural history study by the European MSA study group,’’ Movement
Disorders, vol. 21, no. 2, pp. 179–186, 2006.

[37] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

YUNCHANG ZHENG received the B.S. degree
in electronic science and technology and the M.S.
degree in signal and information processing from
the University of Electronic Science and Tech-
nology of China, in 2013 and 2016, respectively.
Since 2017, he has been a Lecturer with the Col-
lege of Electrical Engineering, Hebei University
of Architecture, Zhangjiakou, China. His research
interests include image processing, deep learning,
and artificial intelligence.

MENGFAN WANG is currently pursuing the
degree in electrical engineering and automa-
tion with the Hebei University of Architecture,
Zhangjiakou, China. His research interests include
machine learning and artificial intelligence.

YICHAO LIU has been an Assistant Engineer
with China Tobacco Zhangjiakou Cigarette Fac-
tory Company Ltd., since 2016. His research
interests include security management and image
processing.

CUNYANG LI is currently pursuing the degree in
measurement and control technology and instru-
ments with the Hebei University of Architecture,
Zhangjiakou, China. His research interests include
deep learning and artificial intelligence.

QING CHANG received the B.S. degree in
measurement and control technology and instru-
ments from Yanshan University, in 2004, and
the M.S. degree in computer technology from
the Hebei University of Technology, in 2011.
From 2010 to 2018, she was with the Depart-
ment of Scientific Research Management. Since
2004, she has been a Teacher with the Depart-
ment of Electrical Engineering, Hebei University
of Architecture, where she is currently an Asso-

ciate Professor. Her research interests include virtual instruments, signal
processing, and industrial process control.

VOLUME 12, 2024 4369


