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ABSTRACT Standalone microgrids (MGs) and distributed generations (DGs) suffer power generation
intermittencies. This leads to a frequent deficit in the supply to consumers. This is worsened by the further
delay experienced in the transaction process of the generated energy. Critical loads face the greatest risk
of the resulting power shortage. Using the blockchain-integrated data envelopment analysis (DEA), this
paper proposes a customer-centered approach to minimizing these inherent issues. Consequently, generation
capacity reliability is maximized while the energy supply latency is minimized. First, considering the varying
generation reliabilities of standalone MGs, a simulation method is presented using the DEA algorithm
for identifying and selecting the most reliable MG in real time for supply. That is, the microgrid with
the maximum generation capacity. Next, to address MG’s energy supply latency, a blockchain-integrated
energy trading platform is proposed (for prosumers’ DGs) to enhance the peer-to-peer electricity transac-
tion experience. Thus, considering the inherent transaction delay in blockchain-integrated energy trading
platforms, a DEA algorithm is proposed for determining and adopting the fastest blockchain transaction.
Finally, an algorithm is developed to streamline the integration of the two-step enhancements. It was observed
that, as the input data (efficiencies of MGs and blockchains) are changing, maximum power delivery and
the fastest electricity transaction rate are achieved in the standalone generation arena at minimal cost. This
addresses the characteristic supply deficits and delays, thus minimizing the risk of shedding critical loads.

INDEX TERMS Blockchain transaction, data envelopment analysis (DEA), efficiency assessment, linear
regression, loss of load expectation (LOLE), multi-microgrid (MMG), peer-to-peer energy trading, reliability
assessment, standalone distributed generations (DG).

I. INTRODUCTION
A. MICROGRID OPERATIONS
Due to low carbon emission, cost-effectiveness, and
pollution-free generation, renewable sources are globally pre-
ferred and adopted for energy generation. The conventional
operation of Microgrids (MGs) and distributed generations
(DGs) ensures a seamless and adequate supply of power to
consumers. To mitigate against supply interruption arising
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from contingencies and achieve reliability, MGs are conven-
tionally connected to the utility (traditional) grid [1], [2]. This
ensures a bi-directional exchange of energy to mutually meet
individual demands. Depending on the consumption require-
ment of the local consumers, profit-and-cost optimization
interest amongst operators, etc., MGs can be scaled up to
include more MGs [3], [4], [5]. They typically operate in a
collaborative fashion referred to as a multi-microgrid (MMG)
system. Thus, energy is primarily exchanged amongst the
MGs through local optimizations to meet the energy demands
of the connected consumer loads. Secondary optimization
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is further initiated with the utility grid in the event of
further demand which however was unobtainable via local
optimization. The entire association ensures seamless power
transmission in a quantity sufficient for the connected loads.
MGs in some locations may however not be connected to the
utility grid for certain reasons. There could be emergencies
resulting in power disruption in the utility grid. For instance,
in October 2017 in Puerto Rico, Americans were thrown into
darkness by the Hurricane Maria disaster which resulted in
a collapsed energy grid and communication system [6], [7].
During such incidences, MG operators disconnect from the
utility grid and operate in islanded mode [8]. This is to
ensure that the disruption effects are not extended. In this
manner, resiliency is maintained in the MG. In addition,
the long-distance remote site location of the MG from the
utility grid and the resulting high cost of power transmission
make MG operators decide to adopt the islanded operation
fashion [9].

B. RESEARCH CHALLENGES
1) SUPPLY INADEQUACY
The islanded operation fashion of MGs however faces sev-
eral bottlenecks. During the standalone operation of the MG
as a result of its remote location, MMGs are commonly
developed to meet the increasing load demands. However,
due to the stochastic nature of renewable resources, the
supply targets are frequently not met. Moreso, consistent
growth in consumer loads over time worsens the situation.
In addition, disruptions could also take place within the MG
arena as a result of natural disasters and successful hacker-
cyber attacks. Such attacks include false data injection (FDI),
denial of service (DoS), malware, etc. For example, a massive
blackout was experienced in the Ukrainian power grid in
December 2015 which resulted from a hacker attack [10].
This left up to 225000 people in darkness for days. These
incidences collectively degenerate to insufficient energy from
renewable sources. To avert energy insufficiency, convention-
ally, individuals engage in private and independent renewable
energy generation resulting in DGs. This is to achieve two
purposes: (i) self-consumption sufficiency and (ii) profit-
motivated trading. Thus, consumers engage in peer-to-peer
(P2P) energy trading using a blockchain transaction platform
to meet individual energy needs [11].

2) ENERGY TRANSACTION LATENCY
Furthermore, some challenges are, however, encountered
with the introduction of blockchain technology in the dis-
tributed energy P2P trading domain. Several blockchain
platforms are set up to facilitate seamless energy transactions
between consumers and prosumers. Blockchain deployment,
however, depends largely on the availability and strength of
the wireless connection amongst participating devices for
data transmission. Thus, handling large transaction volumes
under a weak wireless connection leaves high traffic in the
network. This results in transaction delay (latency) [12].

In addition, it faces malicious cyber attacks from adversaries
leading to additional delays [13], [14]. Furthermore, to boost
a security measure against unforeseen malicious attacks in
blockchains, a limit is inherently set to the block-creation
time and transaction size [15]. This consequently sets a
limit to the number of transactions admissible in each block.
Thus, it results in transaction queues and consequently
increases transaction latency [16]. Besides, the inconsistently
increasing number of blockchain members (nodes) and their
corresponding transaction sizes lead to further irregular trans-
action delays. This is because the number of miners to
approve the entire initiated transaction sometimes becomes
insufficient. These collectively lead to uncertainty in the
transaction completion time of the initiated transactions due
to unforeseen delays. The duration for which the transaction
latency adversely affects the energy supply reliability is not
definite. It depends on the rate at which the blockchain fea-
tures (number of nodes, block size, and the corresponding
transaction time ) vary as transactions progress. For instance,
if the number of nodes and their corresponding transaction
block sizes increase more rapidly, the rate at which the
resulting transaction delay would affect the reliability would
correspondingly increase and vice versa. The uncertainty
in the transaction delay is a result of the combined effect
of the standalone limited generations and the delay experi-
enced in energy trading in the blockchain platform. While
the supply inadequacy is borne by the undesired circum-
stances surrounding the standalone generation environment,
the condition is further exacerbated by the transaction delay
borne by the blockchain transaction technology during the
trading of the available generations. Thus, how to improve
the energy supply sufficiency and the blockchain transac-
tion time (transaction duration) becomes a concern and a
necessity.

C. RESEARCH CONTRIBUTIONS
Researchers have made several achievements in energy man-
agement in the standalone distributed generation (DSG)
arena. Akhtar [17] published a research finding on the power
system reliability assessment. His research direction was,
however, on the impact of integrating renewable energy
resources into the main grid. A standalone operation of
renewable distributed generators (RDG) was not consid-
ered. A predictive method of reliability assessment of the
generation capacity was proposed in [18]. The generation
capacity and load data of the 24-bus IEEE reliability test
system ’96 were utilized to achieve this. Thus, RDGs and
their standalone power intermittency issue were not con-
sidered. A consumer-centered electricity price optimization
approach in the standalone RDG platform was successfully
presented in [19], however, the electricity supply adequacy
and an alternative cost optimization method were not in the
scope. Various other forms of reliability assessment of power
systems have been performed but each focuses on a different
problem-solving domain.
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Consumers’ energy sufficiency in standalone generations
remains a concern. To address the aforementioned challenges,
this paper proposes consumer-centered approaches to maxi-
mizing energy supply, minimizing buying prices and delivery
time, and ensuring greater penetrability of renewables. The
specific contributions are as follows:
i. The power supply real-time reliability efficiency assess-

ment is conducted for each MG in the remote location
using data envelopment analysis (DEA). This is achieved
by performing a reliability assessment of the individual
MGs. Finally, the individual efficiencies of the obtained
reliability magnitudes are quantified and ranked. The
MG with the maximum efficiency is determined and
selected.

ii. The transaction time efficiency assessment of the vari-
ous blockchain-integrated energy transactive platforms
is conducted using DEA. Consequently, each blockchain
platform is classified, in real-time, based on its trans-
action timeliness. Targeting lower buying costs of elec-
tricity, the platform with the shortest transaction time is
selected for energy transactions in each instance.

iii. Next, a streamlined integration of the two afore-
mentioned enhancements is executed. Consequently,
a method for selecting the most efficient MG and the
fastest blockchain transaction platform is described and
simulated. This is such that, as the input data (efficiencies
of MGs and blockchains) are varying, the consumers
are capable of identifying and selecting, in real-time,
electricity sources with themaximum adequacy andmin-
imum transaction time at the lowest cost.

II. STANDALONE MICROGRID OPERATION
A. THE RELIABILITIES OF STANDALONE
MULTI-MICROGRIDS
1) STANDALONE MULTI-MICROGRID ARCHITECTURE
Detached from the conventional MG architecture, a stan-
dalone MG lacks connection to the utility grid. This usually
happens when MGs are remotely located at a very long
distance from the utility grid, thus, the high connection
cost and losses are averted. This could also happen when a
connected MG is disconnected for safety from the utility grid
as a result of a severe fault in the utility grid. The disconnec-
tion is always done to contribute to resiliency achievement
in the MG. Such a standalone operation depends solely
on the standalone generation capacity for supply adequacy.
Due to the possibility of power insufficiency from a single
MG, several other modular MGs are independently cited to
augment the power supply to the surrounding rising loads.
They can be interconnected to boost their energy delivery
efficiency via a collaborative operation. An architecture of
standalone MMGs is shown in Fig. 1 [20]. It includes MG1,
MG2, and MG3. Each of them contains (i) electrical loads
being fed; (ii) RDGs that generate electrical energy from
renewable sources; (iii) a battery energy storage system
(BESS) which comprises modules of electrochemical cells
arranged in parallel and series to achieve the desired voltage

FIGURE 1. Standalone multi-microgrid architecture.

and current level; and (iv) controllable distributed generators
(CDG), diesel generators whose output power is dispatchable.

2) STANDALONE MULTI-MICROGRID OPERATION
Local optimizations in the MGs are performed by the local
energy management system (MG-EMS) [21]. Based on the
magnitude of load demands, time-of-demand (ToD), and
energy price at ToD, a schedule is made by MG-EMS to
decide which energy generation source(s) is to be operated
to minimize generation cost. For instance, during off-peak
hours, the algorithm must prevent the running of the more
expensive CDGs. RDGs are conventionally scheduled during
the peak availability of their sources, such as, in sunny times
of the day for photovoltaics (PVs) and during windy periods
for wind generators. Excess energies from RDGs are stored
in the BESSs. Also, during low energy prices, it schedules
possible energy purchases from other MGs that have surplus
generations and then stores them in the BESS. CDGs are
operated during peak-demand hours when other generation
sources are inadequate to supply connected loads. As a prin-
ciple in the cost optimization process, sources with lower
generation costs are scheduled and exhausted before those
with higher costs. The central EMS (C-EMS) functions to
execute optimization decisions reached by the MG-EMSs.
For instance, excess energy and energy deficit from vari-
ous MGs are communicated to the C-EMS for exchange.
The overall aim is to collaboratively achieve cost optimiza-
tions amongst the MMGs. Also, mutual energy transactions
facilitate more penetration of the generated energy thereby
drawing closer to consumers’ energy needs.

3) STANDALONE MULTI-MICROGRID SHORTCOMINGS
Due to the daily frequent surge in the consumers’ load magni-
tude and their consequent energy needs, the standalone RGDs
frequently become incapable of meeting the consumers’
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rising demands. This is due to the availability intermittency of
RDG sources leading to an insufficient generation capacity.
Moreso, it lacks connection to the utility grid, thus, it has
no access to a regular power supply source. Thus, CDGs are
frequently operated. However, similar to the demand charges,
electricity prices become much higher during this time due to
their inherent high operating cost. At this time, prosumers in
the communities (who are consumers capable of generating
energy on a smaller scale) trade their generated energy at
lower prices. Sole consumers, who don’t generate energy,
would prefer to take advantage of prosumers’ lower cost.
This connects and moves prosumers and sole consumers to
an energy trading platform for distributed energy transactions
at lower price deals. Thus, a temporary disconnection from
the MGs is made. This is however restored the moment that
a lower buying price is restored. Hence, consumers char-
acteristically seek their energy needs temporarily from the
blockchain platform when the supply from MGs becomes
deficit and/or when electricity cost becomes higher.

B. DISTRIBUTED ENERGY TRANSACTIONS
1) BLOCKCHAIN TRANSACTIVE TECHNOLOGY
For decentralized, convenient, cheap, and secure energy
transactions, blockchain transaction technology is reliably
adopted for trade between prosumers and consumers in the
RDG arena. Blockchain technology improved the usual trans-
action fashion by moving away from the centralized trading
architecture to a decentralized platform. This is as shown in
Fig. 2. The conventional cost and delay bottlenecks associ-
ated with the presence of the intermediary (middleman) are
thus eliminated [22]. Traditionally, transaction payments to
the energy sellers were usually done through intermediaries.
Thus, blockchain’s intervention shortens the transaction time
and lowers transaction costs that would have been incurred
with the presence of an intermediary [23]. It grants direct
access to every member of the consortium thereby also
increasing transaction convenience.

FIGURE 2. Blockchain transaction platform (a) Centralized platform,
(b) Decentralized platform.

Another benefit of adopting blockchain technology in
energy trading is its high-security feature. Each member of
the consortium is known as a node. For instance, there are
8 nodes in Fig. 2 (b). Energy trading requests are made from
each consumer to prosumer in sizes of bytes or kilobytes [24].
The greater the amount of energy transaction requests,
the greater the corresponding data size. Usually, various

transaction requests made within the same time interval are
assembled into a block with a size limit and dispatched for
the transaction. This block size increases with an increase
in transaction requests. Each completed node-to-node (N2N)
transaction is stored in a distributed ledger which is main-
tained by a smart contract [25], [26]. The smart contract
contains every completed transaction as well as the consensus
algorithm on which blockchain transactions depend [16]. The
consensus algorithm is used by the smart contract to digitally
execute and updatemembers’ transaction agreements. A copy
of the contract is made available to every node as shown in
Fig. 2 (b). Thus, each node has a record of every completed
transaction on the blockchain network.

The transaction blocks are uniquely chained to one another
as shown in Fig. 3. As more and more transaction blocks
are completed, they are added to the existing chain, hence
the unique name, blockchain. Each block is securely tied
to the preceding and subsequent blocks with alphanumeric
strings [27] known as hash keys [28], [29]. Each block con-
tains two hash keys such that one hash key is tied to the
immediately preceding block and the other is tied to the
immediate next block [13]. Hence, for an adversary to tamper
with the concatenated transaction data, he must be able to
know the entire hash keys of the entire blocks in the chain.
This is almost impossible. Thus, in this manner, the security
of blockchain-integrated transactions is guaranteed.

2) BLOCKCHAIN TECHNOLOGY SHORTCOMINGS
One of the shortcomings of blockchain transaction support
is that as the number of nodes and the corresponding trans-
actions increase, the transaction time becomes increasingly
unwelcoming. The transaction time, also regarded as trans-
action latency, is the time it takes for an initiated energy
transaction request to be completed. This delay is due to
blockchain technology’s dependence on certain factors. Such
factors include WIFI connection strength, number of nodes,
size of transaction bandwidth, etc. As the number of nodes
and their consequent transaction block size grows, the trans-
action bandwidth reduces. This, in return, causes a decrease
in transaction throughput leading to a transaction delay. Thus,
transaction time increases. Also, the network miners, whose
responsibility is to approve the initiated transactions, might
not be able to approve the entire rising number of transac-
tion requests. This translates to a delay in transactions that
are not promptly approved. In addition, nodes with weaker
device connection strength might experience a delay in their
initiated transactions compared to other devices with stronger
connection strength.

Furthermore, in blockchain networks, some consumers
rarely engage in energy purchases. However, blockchain
inherently sends all transaction data to all nodes in the
network. These data, in the form of chains of transaction
blocks, are multiplied as many times as the number of nodes
and are stored in the network. Hence, the two issues here
include high-traffic data transmission which narrows the
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FIGURE 3. Secure blockchain transaction blocks.

network bandwidth and decreases transaction throughput.
This consequently leads to higher transaction latency. The
other issue is the high storage size occupied by the stored
data. This makes blockchain applications sometimes slow
in some nodes whose devices have lower device specifi-
cations, such as lower storage drive and lower RAM size.
In this condition, individually initiated energy transactions
might experience an undesired delay. The aforementioned
transaction time delays in the blockchain transactive platform
point to one reason: the increasing number of nodes and
transaction block size. Therefore, energy consumers prefer
individual blockchain networks whose nodes comprise pro-
sumers and only consumers with high transaction patronage.
The intent is to own a faster transaction advantage by cut-
ting off redundant nodes. Thus, the number of nodes and
corresponding block size is kept minimal. Some prosumers
might, however, reach a consensus with other like-feature
prosumers to collaboratively trade on the same blockchain
network. This is for the advantage of energy sharing and
balancing in times of surplus or insufficient generation. Thus,
during peak demand, a prosumer with insufficient generation
could purchase energy from counterparts whose generation
is surplus and then resell it to her immediate consumers.
However, consumers remain at the receiving end as their initi-
ated transactions frequently remain delayed at their expense.
Hence, a consumer-centered approach remains a solution to
both the energy insufficiency within the standalone MGs as
well as the delay in the blockchain transaction arena.

III. CONSUMER-CENTERED APPROACH TO ENERGY
ADEQUACY AND COST OPTIMIZATION
Following (i) the power generation intermittency and the
resulting insufficiency in the standalone MG RDGs and
(ii) the energy price surge during the running of CDGs,

we propose an energy maximization and cost minimization
approach for the consumers at the receiving end. Energymax-
imization is implemented in the MGs while transaction time
minimization is implemented in the blockchain transactive
platform.

A. MICROGRID ENERGY SUPPLY EFFICIENCY AND
OPTIMIZATION
Microgrid energy supply could be surplus or deficit (insuf-
ficient) depending on its connected load capacity. It also
depends on the capacity and intermittency of its RDG sources
intermittency. The purpose of energy maximization within
the MMG community is to identify, in real time, the MG
with the maximum generation spillover (surplus) or least
supply deficit. Then, consumers can migrate under the load
coverage of that MG to enjoy a minimum supply deficit
at a lower cost. To identify such an MG with maximum
supply efficiency, the individual reliability assessment of all
MGs is conducted. Thereafter, the efficiency assessment of
the obtained reliabilities is conducted. The MG that yields
the maximum efficiency ranking is selected at the moment.
Due to the intermittency characteristic of the RDG sources,
this ranking would vary with time. At a time, the MG
with the least supply efficiency could become the most effi-
cient MG. Because standalone renewable generations are
intermittent and frequently inadequate, the consumers char-
acteristically connect to more than one MG with the intent
to optimize supply and cost benefits at regular intervals
through switching processes. Thus, an algorithm is devel-
oped to identify and select, in real-time, the most efficient
MG at each instance. Next, an automated switch-over sys-
tem dynamically switches consumers to the best-performing
grid at the desired time intervals from the comfort of their
homes.
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1) RELIABILITY ASSESSMENT OF MICROGRID SUPPLY
The reliability assessment is performed to determine the
period, usually in hours, during which the MG’s supply is
in deficit in a year (8736 hours). It could also be recorded
in minutes, days, or even years as the demand warrants.
Also known as the risk model, it is the period during which
the consumer load magnitude surpasses the MG generation
capacity. This is illustrated in Fig 4 as the summation of
the two red-colored regions, x+y. The assessment is thus
conducted for each of the MMGs to determine their supply
reliability.

FIGURE 4. The risk Model.

The reliability assessment of the generation system was
conducted in our paper in [18]. A reliability index, loss of
load expectation (LOLE), was used to quantify the reliabil-
ity strength. LOLE is the time duration for which the load
magnitude exceeds the generation capacity. It is the duration
of power supply deficiency. From Fig. 4, LOLE is equivalent
to x+y as expressed in (1). To investigate its effect on the
LOLE on the existing generation capacity, the loadmagnitude
was gradually increased stepwise and in uniform percent-
ages. It was found that LOLE is directly proportional to the
load increment. A graph of the relationship between load
increment and the corresponding LOLE recorded is given in
Fig. 5. The load data and the generation capacity data that
were utilized were obtained from the IEEE Reliability Test
System (IEEERTS) 1996. From Fig. 5, the linear relationship
between load increment and LOLE was obtained as given
in (2) using the linear regression algorithm.

LOLE = x + y (1)

LOLE = 45.84L + 5.29 (2)

In this paper, a similar approach is deployed to assess the
reliability of each MG in the MMG arena. Consequently,
two more MGs, MG2 and MG3, were considered and mod-
eled using (2) as a reference equation. Hence, the equations
are formulated using the ranges of LOLE and L as con-
tained in the parent equation (2). For instance, the LOLE in
equation (2) ranges from 6.16 to 1380.66 as shown in (3).
Also, the load increment, L, ranges from 0 to 30% as shown
in (4). Thus, for each of the L and LOLE, two streams of data
are generated representing MG2 and MG3 data. An uninflu-
enced generation and demand data sequence was upheld in

FIGURE 5. The load and LOLE relationship.

the microgrids’ scheduling. This is to maintain fairness and
uninfluenced randomness in the generation dispatch amongst
the microgrids as well as the consumption history in the
load. To uphold uninfluenced relationships in the generated
data, a random number generator is utilized. To enable the
reproducibility of our simulation work, the random numbers
are seeded such that when regenerated, the same data values
are obtained.

6.16 ≤ LOLE ≤ 1380.66 (3)

0% ≤ L ≤ 30% (4)

The first stream of load (Lg) and the corresponding LOLE
(LOLEg) are generated for MG2 using the Python codes in
Table 1 and Table 2, respectively. The subscript, g, represents
the index of the MG. Line 2 seeds the random number using
the value, 1. Line 3 generates the values in 15 rows which
corresponds to 15 input-and-output data. The data is made up
of 15 rows to be sufficient for linear regression analyses to be
performed. Line 4 generates and prints the data in 2 decimal
values within the specified lower and upper bounds.

TABLE 1. Python code for generating the Load (L2) of MG2.

TABLE 2. Python code for generating the LOLE2 of MG2.

Similarly, L3 and LOLE3 of MG3 are obtained using the
value, 2, as the random number seed. The resulting values
of L2 &LOLE2 and L3 &LOLE3 for MG2 and MG3, respec-
tively, are shown in Table 3. From Table 3, the relationship
between L2 and LOLE2 is graphically shown in Fig. 6 while
that of MG3 is given in Fig. 7.
From Fig. 6 and Fig. 7, it was found that the relationship

between load increment and LOLE is linear, hence, a linear
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TABLE 3. Load and LOLE Data for MG2 and MG3.

FIGURE 6. The load and LOLE relationship for MG2.

FIGURE 7. The load and LOLE relationship for MG3.

regression algorithm was used to model the source data in
Table 3. Consequently, the resulting fitting formula for MG2
and MG3 is given in (5) and (6), respectively.

LOLE2 = 45.819L2 + 6.1928 (5)

LOLE3 = 45.825L3 + 6.043 (6)

To assess and compare the reliability efficiencies of MG1,
MG2, and MG3 and determine the one with the maximum

efficiency, their corresponding equations (2), (5), and (6) are
optimized and compared, respectively. This is achieved using
the DEA. Other optimization algorithms, such as particle
swam optimization, artificial bee colony algorithm, etc could
have been selected as an alternative to the DEA. However,
a high precision is required for the accuracy of the optimized
result. This is because the optimization involves more than
one quantity (MG 1-3 and BCH 1-3). Hence, several (three)
optimization results are obtained and compared. Meanwhile,
their input data values have thin separation boundaries. The
accuracy of a search-based heuristic algorithm, such as PSO
and others, does not have such a high precision in their
results. An iteration-obtained result is thus not reliable in
this scenario considering the comparisons in the MGs and
BCHs efficiencies. Thus, the robustness and high accuracy
level of the DEA algorithm [30] made it a perfect match for
the optimization purpose in our paper.

In this paper, only three MGs were considered. This is for
simplicity and less ambiguity. Otherwise, more than three
MGs could be cited in the remote locality depending on the
magnitude of the load demand and the financial capacity of
the local operators.

2) EFFICIENCY ASSESSMENT OF MICROGRID RELIABILITIES
The efficiency assessment of the reliabilities of MG1, MG2,
and MG3 is achieved using the DEA model. In a nut-
shell, the DEA is a nonparametric and robust method of
comparing the efficiencies of various alternatives to an objec-
tive [31], [32], [33]. Each alternative is terminologically
regarded as a decision-making unit (DMU). It is an input
and output-oriented multiobjective optimization algorithm.
It offers a robust approach for advanced decision-making
when comparing various alternatives whose individual fea-
tures do not have a clear separation for judgment during
comparison. It was adopted in preference over other con-
ventional multiobjective optimization algorithms because its
algorithm accommodates multi-input and multi-output simu-
lation data. For instance, the generation efficiency assessment
and blockchain transaction time assessment have input and
output data orientations. DEA specifically performs better
in systems with similar input-output data orientations. DEA
was first proposed by Charnes et al. in 1978 [34], [35].
Several DMUs, each with individual inputs and outputs, are
compared. Thereafter, the DMU which offers the maximum
efficiency is selected as the most efficient alternative for
deployment.

There are two approaches to achieving the task. The
input-oriented approach and output-oriented approach. In the
input-oriented, the objective is to minimize the inputs given
the output. The DMU whose inputs collectively yield the
minimum value becomes the alternative to be selected.
Similarly, in the output-oriented approach, the outputs are
maximized given the existing input. The DMUwhose outputs
yield the maximum value becomes the alternative to be
selected. Thus, in either of the two approaches, the linear
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programming algorithm is used to achieve the purpose. For
instance, consider alternatives with n number of DMUs as
shown in Table 4. d is the index of DMUs where d = d1, d2,
d3, . . . , dn. For example, d2 is the secondDMU, d3 is the third
DMU, and dn is the nth DMU. Each DMU has m number of
inputs, i; and p number of outputs, o; as shown in Table 4 (a)
and Table 4 (b); respectively. Thus, i = i1, i2, i3 . . . , im and
o = o1, o2, o3, . . . , op.

a: THE INPUT-ORIENTED APPROACH
The objective of the input-oriented DEA efficiency assess-
ment approach is to minimize φ in (7) such that the constraint
in (8) is achieved.

n∑
d=1

(λdxd i) ≤ φx ′

d i (7)

n∑
d=1

(λdydo) ≥ y′do (8)

where x= input value of a DMU; y= output value of a DMU;
xd i = ith input of the dth DMU (i.e., the input value, x,
at dth row and ith column); x ′

d i = ith input of the dth DMU
whose efficiency is currently being calculated; yd o = oth
output of the dth DMU; y′d o = oth output of the dth DMU
whose efficiency is currently being calculated; n= number of
DMUs, d; λd =weight of the dthDMU; andφ = efficiency of
x ′

d i. Thus, the values of Table 4 (a) and Table 4 (b) are shown
in Table 5 (a) and Table 5 (b), respectively. For example,
from Table 5, the efficiency (φ1) of DMU1 (d1) is calculated
by minimizing φ in (9) given the constraint in (10) (refer
to (7) and (8)). Similarly, the efficiency (φn) of DMUn (dn)
is calculated by minimizing φ in (11) given the constraint
in (12), and so on.

Finally; φ1, φ2, φ3, . . . ., φn are obtained and sorted in
ascending order. The one whose input is the most minimized
becomes the alternative to be selected and deployed.

Min(φ)∣∣∣∣∣∣∣∣
λd1xd1i1+λd2xd2i1+λd3xd3i1+λdnxdni1 ≤ φλd1xd1i1
λd1xd1i2+λd2xd2i2+λd3xd3i2+λdnxdni2 ≤ φλd1xd1i2
λd1xd1i3+λd2xd2i3+λd3xd3i3+λdnxdni3 ≤ φλd1xd1i3
λd1xd1im+λd2xd2im+λd3xd3im+λdnxdnim ≤ φλd1xd1im

(9)

λd1yd1o1 + λd2yd2 o1 + λd3yd3o1 + λdnydno1 ≥ λd1yd1o1
λd1yd1o2 + λd2yd2o2 + λd3yd3o2 + λdnydno2 ≥ λd1yd1o2
λd1yd1o3 + λd2yd2o3 + λd3yd3o3 + λdnydno3 ≥ λd1yd1o3
λd1yd1op + λd2yd2op + λd3yd3op + λdnydnop ≥ λd1yd1op


(10)

Min(φ)∣∣∣∣∣∣∣∣
λd1xd1i1 + λd2xd2i1 + λd3xd3i1 + λdnxdni1 ≤ φλdnxdni1
λd1xd1i2 + λd2xd2i2 + λd3xd3i2 + λdnxdni2 ≤ φλdnxdni2
λd1xd1i3 + λd2xd2i3 + λd3xd3i3 + λdnxdni3 ≤ φλdnxdni3
λd1xd1im + λd2xd2im + λd3xd3im + λdnxdnim ≤ φλdnxdnim

(11)

TABLE 4. nDMUs (a) with m Inputs, (b) with p Outputs.

TABLE 5. Input Values of Table 4 (a), (b) Output Values of Table 4 (b).

λd1yd1o1 + λd2yd2 o1 + λd3yd3o1 + λdnydno1 ≥ λdnydno1
λd1yd1o2 + λd2yd2o2 + λd3yd3o2 + λdnydno2 ≥ λdnydno2
λd1yd1o3 + λd2yd2o3 + λd3yd3o3 + λdnydno3 ≥ λdnydno3
λd1yd1op + λd2yd2op + λd3yd3op + λdnydnop ≥ λdnydnop


(12)

The format of the minimization equation is that the sum-
mation of the individual units (composite unit) is less than or
equal to the operating unit multiplied by its efficiency. The
operating unit is the unit whose efficiency is currently being
calculated. From the inputs and outputs in Table 5, the format
of the objective function of theminimization equation is given
as:

Min(φ)

∣∣∣∣∣∣∣∣
i1(composite unit) ≤ i1(operating unit) ∗ φ(operating unit)
i2(composite unit) ≤ i2(operating unit) ∗ φ(operating unit)
i3(composite unit) ≤ i3(operating unit) ∗ φ(operatingunit)
im(composite unit) ≤ im(operating unit) ∗ φ(operating unit)

(Objective function)

The format of the minimization constraint, from Table 5,
is given as:

o1(composite unit) ≥ o1(operating unit)
o2(composite unit) ≥ o2(operatingunit)
o3(composite unit) ≥ o3(operating unit)
op(composite unit) ≥ op(operating unit)

 (Constraint)
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b: THE OUTPUT-ORIENTED APPROACH
For the output-oriented model, the objective is to maximize θ

in (13) such that the constraint in (14) is achieved.
n∑

d=1

(λdyd o) ≥ θy′do (13)

n∑
d=1

(λdxd i) ≤ x ′

d i (14)

It is important to notice that for the output-oriented approach,
efficiency (φ) is the inverse of θ (i.e., φ = 1/ θ ). For example,
from Table 5, the efficiency (φ1) of DMU1 (d1) is calculated
by maximizing θ in (15) given the constraint in (16) (refer
to (13) and (14)). Similarly, the efficiency (φn) of DMUn (dn)
is calculated by maximizing θ in (17) given the constraint
in (18), and so on. Finally; φ1, φ2, φ3, . . . ., φn are obtained
and sorted. The one whose value is the maximum is the most
efficient alternative to be selected and deployed.

Max(φ)∣∣∣∣∣∣∣∣
λd1yd1o1 + λd2yd2 o1 + λd3yd3o1 + λdnydno1 ≥ θλd1yd1o1
λd1yd1o2 + λd2yd2o2 + λd3yd3o2 + λdnydno2 ≥ θλd1yd1o2
λd1yd1o3 + λd2yd2o3 + λd3yd3o3 + λdnydno3 ≥ θλd1yd1o3
λd1yd1op + λd2yd2op + λd3yd3op + λdnydnop ≥ θλd1yd1op

(15)

λd1xd1i1 + λd2xd2i1 + λd3xd3i1 + λdnxdni1 ≤ λd1xd1i1
λd1xd1i2 + λd2xd2i2 + λd3xd3i2 + λdnxdni2 ≤ λd1xd1i2
λd1xd1i3 + λd2xd2i3 + λd3xd3i3 + λdnxdni3 ≤ λd1xd1i3
λd1xd1im + λd2xd2im + λd3xd3im + λdnxdnim ≤ λd1xd1im


(16)

Max(φ)∣∣∣∣∣∣∣∣
λd1yd1o1 + λd2yd2 o1 + λd3yd3o1 + λdnydno1 ≥ θλdnydno1
λd1yd1o2 + λd2yd2o2 + λd3yd3o2 + λdnydno2 ≥ θλdnydno2
λd1yd1o3 + λd2yd2o3 + λd3yd3o3 + λdnydno3 ≥ θλdnydno3
λd1yd1op + λd2yd2op + λd3yd3op + λdnydnop ≥ θλdnydnop

(17)

λd1xd1i1 + λd2xd2i1 + λd3xd3i1 + λdnxdni1 ≤ λdnxdni1
λd1xd1i2 + λd2xd2i2 + λd3xd3i2 + λdnxdni2 ≤ λdnxdni2
λd1xd1i3 + λd2xd2i3 + λd3xd3i3 + λdnxdni3 ≤ λdnxdni3
λd1xd1im + λd2xd2im + λd3xd3im + λdnxdnim ≤ λdnxdnim


(18)

It is necessary to mention that both the input and
output-oriented approaches present the same accuracy when
finding the most efficient alternative to select. The simple
reason is that outputs are dependent on their fed inputs, i.e.,
outputs are obtained from inputs. The assessment approach to
select depends on what the output represents. A general rule
is that the loss function should be minimized and the gain
functionshould be maximized. For instance, if the output rep-
resents a loss function, the input should be minimized, thus
input-oriented approach should be adopted. Conversely, if the
output quantity represents a gain function, the output-oriented
efficiency assessment approach should be adopted. A loss
function is a quantity whose increment retards the system’s
efficiency.

In the efficiency assessment of microgrids MG1, MG2, and
MG3, the objective is to optimize the MGs’ LOLE by an
efficiency-driven optimizer (DEA) and thereafter select the
MG with the maximum efficiency. As explained in the input
and output orientations, this could be achieved in either of
the two methods. Either the outputs are maximized using the
DEA output orientation method or the inputs are minimized
using the input orientation method. Meanwhile, the output of
the MGs’ equations (2), (5), and (6) to be optimized is LOLE.
Since LOLE is a loss function, i.e., an unwanted quantity
that must never be maximized, the input-oriented approach is
thus selected to minimize the inputs. Recall that the method
is that output orientation maximizes the outputs while the
input orientation minimizes the inputs. Subsequently, the
input-oriented efficiency assessment approach is adopted to
minimize the inputs under a constant return to scale, given the
outputs. Compare equations (2), (5), and (6) with a character-
istic equation of a straight line shown in (19).

LOLE = mL + c (19)

where m = slope of the equation, and c = intercept on the
vertical (LOLE) axis.

To obtain the input and output values, two data points (Li
and Lii) were selected to represent L in each of the straight
lines of equations (2), (5), and (6). The points are 10 and 20.
The points could be any value provided that they lie on the
straight line of the equation. More points can be selected.
The more the number of data points, the more the number
of DEA input and output fields. This makes the system more
robust and increases the accuracy of the resulting system
efficiency. Let K represent the number of selected data points.
The resulting number of input and output fields for the
characteristic multiple linear regression equation is {nK+1}
and K, respectively, where n = the number of explanatory
variables. However, for simpler analysis, our selected number
of data points is limited to two. Hence; the quantities; mLi,
mLii, and c; are the inputs while their resulting LOLEs;
LOLELi and LOLELii; are the outputs. Thus, the respective
input and output formats for their DEA efficiency assessment
are tabulated in Table 6 (a). Their resulting corresponding
values are given in Table 6 (b). For MG1, equation (20), as
shown at the bottom of the next page, is minimized with the
constraint in (21), as shown at the bottom of the next page.
Similarly, the efficiencies of MG2 and MG3 were also

calculated and obtained. It is important to note that the
DEA assessment algorithm does not utilize negative values.
Meanwhile, in some cases, some of the values could be
negative, such as the intercept, C. Hence, the entire values
under the data field of the negative value are converted into
their non-negative equivalent. Given that xi is the input vector,
xj is the output vector, and k is the number of data points,
the non-negative conversion is achieved using the activation
function, Softmax,as shown in (22).

Softmax(xi) =
exi

k∑
j=1

exj
=

ereference datapoint

Summation of eeach datapoint (22)
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TABLE 6. DEA Inputs and Outputs of Equations (2), (5), and (6) (a) Data
Format (b) Data Values.

B. BLOCKCHAIN TRANSACTION TIME OPTIMIZATION IN
THE ENERGY MARKET
The transaction time minimization approach is proposed to
minimize the time spent in purchasing affordable and backup
energy from the prosumers.

1) BLOCKCHAIN TRANSACTION TIME ASSESSMENT
In our paper in [36], the blockchain transaction time assess-
ment was performed. Consequently, the relationship between
block size, node size, and transaction time, was obtained.
This was achieved by simulating theMG transaction platform
using the NS3. In a nutshell, NS3 is an internet-enabled
research and educational software for modeling and simu-
lating the occurrences of network discrete events in the real
world. The number of trading participants (node size - N),
the size of their transactions (block size - Z), and the time
taken to complete the transactions (transaction time - T) were
given. Consequently, their relationship was obtained as given
in (23).

T = 0.012Z + 0.1393N + 1.23 (23)

Equation (23) is the model equation of BCH1. Similar to the
MG1, MG2, and MG3 energy efficiency modeling approach;
in section III-A2; the DEA method is utilized to model and
compare the transaction timeliness of blockchain transac-
tions considering several blockchain platforms. Thus, two
more blockchain platforms were developed from the parent
equation (23) and were subsequently modeled. This is to
compare their transaction time efficiencies. Consequently, the

TABLE 7. Input and Output Data for MG2 and MG3.

input and output data of the blockchains, BCH2 and BCH3,
were generated as shown in Table 7 using random number
seeds, 3 and 4, respectively. The ranges of their input and
output data are the same as that of (23). These are given
in (24), (25), and (26). That is, equations (24), (25), and (26)
are the data intervals of (23), (27), and (28). This implies that
data values of Z range from 10 to 3590, N ranges from 2 to
500 and T ranges from 0.8586 to 115.1642.

10 ≤ Z ≤ 3590 (24)

2 ≤ N ≤ 500 (25)

0.8586 ≤ T ≤ 115.1642 (26)

where Z = block size, integer values; N = node size, integer
values; and T = transaction time, 4-decimal float values.
Following the linear relationship in the data of BCH2 and
BCH3, their fitting formulae are obtained as given in (27)
and (28) using the least-square linear regression model. Next,
their efficiencies are determined and ranked.

T2 = 0.03315034Z2 − 0.00877778N2 + 0.54671509 (27)

T3 = 0.03488736Z3 − 0.02125745N3 + 0.54944503 (28)

2) EFFICIENCY ASSESSMENT OF BLOCKCHAIN
TRANSACTION TIME
To determine and rank the efficiencies of transaction times
of blockchain platforms BCH1, BCH2, and BCH3, the DEA
input orientation method is exploited. The objective is to
optimize the transaction durations, T, of the blockchains
using the efficiency-metric algorithm (DEA). Thereafter, the

Min(φ)

∣∣∣∣∣∣
458.4 λMG1 + 458.19 λMG2 + 458.25 λMG3 ≤ φMG1 458.4 λMG1

916.8λMG1 + 916.38λMG2 + 916.5λMG3 ≤ φMG1 916.8 λMG1

5.29λMG1 + 6.1928 λMG2 + 6.043λMG3 ≤ φMG15.29λMG1

(20)

463.69 λMG1 + 464.3828 λMG2 + 464.293 λMG3 ≥ 463.69 λMG1
922.09λMG1 + 922.5728λMG2 + 922.543λMG3 ≥ 922.09λMG1

}
(21)
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blockchain with the most efficient transaction time is deter-
mined and selected. Considering that the transaction time is a
loss quantity that must never be maximized, the blockchain
with the most efficient transaction time is defined as that
whose inputs (Z & N) are the least minimized given the same
level of output (T). Because the transaction time is a loss
quantity that must never be maximized, the output orientation
method was not selected. To obtain the input and output
values, two random points, (Zi & Ni) and (Zii & Nii), were
selected on each of the trendlines of linear equations (23),
(27), and (28). This is similar to the DEA method in the
previous section III-A2. The points selected are Zi=100,
Ni=50, Zii=1000, and Nii=300. Hence; the quantities; mZi,
mNi, mZii, mNii, and their intercepts, c; are the inputs. Their
corresponding T s; TZi,Ni and TZii,Lii; are the outputs. Sub-
sequently, the respective input and output formats for the
DEA efficiency assessment are tabulated in Table 8 (a). Their
resulting values are given in Table 8 (b) and their non-negative
equivalent, which is obtained using (22), is presented in
Table 8 (c). Since an increment in the output, T, is unde-
sired; T is a loss quantity. Therefore, the input-oriented DEA
assessment approach is exploited. For BCH1, equation (29),
as shown at the bottom of the page, is minimized with the
constraint in (30), as shown at the bottom of the page. The
resulting efficiency, φBCH1, is obtained. Likewise, φBCH2 and
φBCH3 are calculated and obtained.

The stepwise path to the simulation processes is illustrated
in Fig. 8. The left arm examines the supply adequacies of the
individual MGs and determines the MG that has the maxi-
mum adequacy. The right arm focuses on cost optimization.
Its operation is activated at the moment the energy buying
cost in the MMG exceeds a set threshold.

Thus, a lower cost is prioritized. Next, the blockchain
trading platform whose transaction time is the minimum is
determined and selected.

IV. RESULTS AND ANALYSIS
A. EFFICIENCY ASSESSMENT RESULT OF MICROGRIDS’
RELIABILITY
From section III-A2, the results of efficiency comparisons
of the MG1, MG2, and MG3 are given in Table 9. It was
found that the MG1 recorded the maximum power supply
efficiency among the three (3) MGs. Considering their model
equations (2), (5), and (6), it could appear as if the MG1
would rather have the least efficiency considering that its

FIGURE 8. The stepwise path to the simulation processes.

equation has the maximum slope, 45.84. However, the beauty
of the DEA model is that it uses a robust analysis approach.
The slopes of the equations are too close in magnitude to
make a tangible difference in their effect. The differences
in their intercepts are more significant. The DEA model
characteristically considers the combined contributions and
weights of every input and output feature robustly to reach
a decision. The simulation result implies that the MG1 is to
be selected for maximum power adequacy supply pending
when another MG surpasses it. The MG that surpasses it
would then become the new best choice for selection. The
efficiency value, 1, of MG3 suggests that its input value,
load, is the most minimized to yield the same level of the
output, LOLE. Considering a gain function, it offers the
best efficiency. However, since the LOLE equation is a loss
function, it is regarded as the reverse. Thus, MG1 with the
efficiency value, 1.141783, is selected for its least mini-
mized characteristic of the input to yield the same level of
output.

Min(φ)

∣∣∣∣∣∣∣∣∣∣
1.2 λBCH1 + 3.315034λBCH2 + 3.488736 λBCH3 ≤ φBCH1 1.2 λBCH1

12λBCH1 + 33.15034 λBCH2 + 34.88736λBCH3 ≤ φBCH1 12 λBCH1

0.999065752λBCH1 + 0.000608311λBCH2 + 0.000325938λBCH3 ≤ φBCH10.999065752λBCH1

λBCH1 + 5.09557E − 20 λBCH2 + 1.20568E − 21 λBCH3 ≤ φBCH1
λBCH1

1.23λBCH1 + 0.54671509 λBCH2 + 0.54944503 λBCH3 ≤ φBCH11.23λBCH1

(29)

9.395 λBCH1 + 3.42286 λBCH2 + 2.975309 λBCH3 ≥ 9.395 λBCH1

55.02 λBCH1 + 31.06372 λBCH2 + 29.05957 λBCH3 ≥ 29.05957 λBCH1

}
(30)
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TABLE 8. DEA Inputs and Outputs of Equations (23), (27), and (28) (a) Data Format, (b) Data, (c) Non-Negative Data.

TABLE 9. Efficiency Values of Microgrids MG1, MG2, and MG3.

B. TRANSACTION TIME EFFICIENCY ASSESSMENT IN THE
PROSUMERS’ TRADING PLATFORM
Similarly, in the transaction time efficiency assessment of
the blockchain platforms (BCH1, BCH2, and BCH3) in
Section III-B2, the obtained results are given in Table 10.
Considering a gain function, the BCH2 with an efficiency
value of 1.210702 would have been the most efficient choice
for being the closest to 1 (Note that the DEA efficiency value
of 1 is the most efficient). However, since the transaction time
that is being considered is a loss quantity that must never
be maximized, the BCH1 with an efficiency of 7.582534 is
selected. This is followed by BCH3 and then BCH2. The loss
function signifies that the transaction time in Likewise, the
selection of the fastest blockchain trading platform is made
accordingly pendingwhen another BCH surpasses the current
BCH2. The BCH that surpasses it would become the new best
choice for selection.

TABLE 10. Efficiency Values of Microgrids BCH1, BCH2, and BCH3.

In this paper, the steps of the DEA optimization algorithms
as implemented include:

i. The system model equations of the alternatives whose
efficiencies are to be compared are developed. For micro-
grids, the equations are (2), (5), and (6). For blockchains, the
equations are (23), (27), and (28).

ii. From the trendline of the equations, the input values are
obtained. These are values that lie on the equations’ best line
of fit. The corresponding outputs are also obtained. For MGs,
the input and output values are obtained in Table 6, and for
BCHs, they are obtained in Table 8.

iii. The input and output values are then optimized using
the parent reference equations (7) and (8). The result of the
optimizations is the efficiency values in Tables 9 and 10.

It is helpful to recall that the parent optimization formula
(Objective function and constraint) given in (7) and (8) is for
the DEA input orientation simulation that was implemented
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FIGURE 9. Consumers’ power-switching algorithm.

for each of the MGs and BCHs efficiency simulations. The
particular formula that yielded the efficiency value of MG1
of Table 9 are equations (20) and (21) (objective function
and its constraint). Similarly, those of MG2 and MG3 were
utilized to obtain their efficiency values respectively. The
formula that yielded the efficiency value of BCH1 of Table 10
are equations (29) and (30) (Objective function and its con-
straint). Similarly, efficiency values of BCH2 and BCH3 were
obtained. The optimization equations of BCH2 and BCH3
are similar to that of MG1 in (20) and (21) except that the
right-hand side bears MG2 or MG3 instead of MG1. They are
however omitted to reduce monotony (minimize repetitions).
The general format of the optimization equations is given in
the ‘‘Objective function’’ equation that is next to (12). It is
important to note that in our data simulations, it was assumed
that the energy transactions among the participants of the
blockchain platforms (BCH1, BCH2, and BCH3) are done
randomly as the conditions and needs of the participants war-
rant. Hence, uninfluenced random data was employed in the
modeling of the blockchain transaction. It is also important
to note that the scope of study in our manuscript is limited to

the standalone generations. For clearer comprehension of the
scope, a comparison of the features of this work with other
peers is given in Table 11.

TABLE 11. Comparison of Features of this Work with the Peers.

C. SWITCHING ALGORITHM BETWEEN MICROGRID AND
BLOCKCHAIN TRADING PLATFORM
The blockchain trading platform is preferred and selected
under two different conditions:
i. When the reliability of the most efficient MG plummets

further than the acceptable limit thereby disconnecting
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some consumer loads. This is recorded when the LOLE
value of the individual MGs all exceed the acceptable
threshold. This is when the supply reliabilities of the
individual MGs are all lower than the acceptable thresh-
old. This could occur when RDG generating capacity
becomes limited due to low solar irradiation, low wind
speed, etc.

ii. When the supply reliabilities are guaranteed but the elec-
tricity buying price of all theMGs exceeds the acceptable
preset threshold. This mainly occurs during peak con-
sumption hours. Because CDGs are powered at this time,
MG operators inflate the electricity buying price to cover
the diesel generator operating cost.

The values of the preset thresholds are determined by the
consumer at will. The consumers’ power-switching algorithm
is illustrated in a flowchart in Fig. 9. Themaximum-efficiency
(most efficient) MG is determined and selected as the con-
sumer’s electricity supply source. It is then validated by
determining if its supply reliability adheres to the preset
threshold (the minimum acceptable reliability). This is the
maximum LOLE value that is tolerable considering critical
loads. The higher the LOLE value, the lower the MG reli-
ability, and vice versa. Next in the sequence, the electricity
buying price is monitored to determine when a set tolerable
threshold is exceeded. The supply source is then switched
over to the blockchain supply platform whose transaction
time efficiency is the maximum. That is, whose transaction
time is the shortest. The MGs’ electricity buying prices are
then monitored and the connection is restored at the moment
that the MGs’ buying price plummets below the set threshold
and with tolerable reliability efficiency.

V. CONCLUSION
The consumers’ consumption satisfaction was considered.
Through the energy generation and consumption data in
the standalone microgrid, an efficient method to harness
the generated energy at maximum adequacy was proposed.
In addition, a method was proposed to reduce the transaction
delays that are frequently encountered in the trading of the
generated energy. These were necessitated by the generation
intermittency of standalone MGs as well as the transaction
delay bottlenecks in the blockchain-integrated energy trans-
action platform. Consequently, two specific benefits were
achieved. A method to identify and adopt a cost-effective
electricity consumption source at maximum adequacy was
demonstrated. Also, an approach to achieve a rapid transac-
tion of the traded energies is described and simulated. Finally,
an intelligent switching algorithm for optimizing the achieved
benefits for consumers is presented. The intelligent switching
of consumers’ supply sources ensures that electricity sup-
ply adequacy is achieved at a more rapid rate and lower
buying price. Otherwise, the MGs with deficit generation
would conventionally buy electricity from the MGs with
surplus generations and sell to the consumers at a higher
price. In addition, the delay in doing the energy third-party
exchanges is a cost to the critical loads. The overall process

ensures maximum penetration of the renewables since MGs
with higher reliability are prioritized in the algorithm. This
holistically promotes a balance between generation and con-
sumption. However, it is important to mention that the scope
of study in our manuscript is limited to the standalone gen-
erations. Further study would be focused on how to integrate
the intermittency trends of the available generation sources
into the existing system to optimize the overall generation
efficiency.
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