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ABSTRACT Resistive random access memory (RRAM), a new non-volatile memory, enables hardware
accelerators based on in-memory computing with improved throughput and energy efficiency, enabling
machine learning on-the-fly inference at the edge. However, sneak-path currents in RRAM crossbar
arrays (CBAs) can cause crosstalk, limiting high-density applications. The best choice for suppressing
leakage current is self-rectifying RRAM (SRR). Interface-type RRAMs offer CMOS compatibility, better
controllability, higher reliability, and lower power consumption compared to filament-type counterparts.
However, while there is much research on the filament-type RRAMs, there is little research and no
measurement validation on the interface-type RRAMs. In this paper, a compact model of the interface-type
RRAM is developed for circuit and system exploration. The model includes Schottky barrier diode, effective
layer resistance, nano-battery effect, parasitic resistance, and capacitance. It also has a dynamic behavior
model, including device-to-device variation, retention, and endurance. Compared with measurements,
it reproduces high accuracy of 98.97% in DC and 98.05% in AC. The proposed model is applied to a
neuromorphic 64 × 64 SRR CBA with 32-bit fixed-point precision. A nano-battery bias scheme is also
proposed to zero the current of RRAMs having non-zero I-V crossing points, reducing the sneak-pass current
error to 0.02%. A vector matrix multiplication application demonstrates 3.44 TOPS/W with a 50:50 LRS
to HRS ratio, and a deep neural network on a VGG-8 architecture using the CIFAR-10 dataset observes an
accuracy degradation of 1.36%.

INDEX TERMS Compact model, crossbar array, interface-type RRAM, multiply and accumulate (MAC),
nano-battery effect, parasitic capacitance, parasitic resistance, resistive random access memory (RRAM),
self-rectifying RRAM (SRR), vector matrix multiplication (VMM).

I. INTRODUCTION
ARTIFICIAL intelligence (AI) edge devices use parallel
computation and distributed systems to perform knowledge
and reasoning processes that emulate human behavior,
such as natural language processing, pattern recognition,
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knowledge modeling and representation, and intelligent data
retrieval [1]. Parallel processing technology enables the
processing of large-scale applications that are difficult to
process on a single processor system [2]. However, most
modern computing systems based on the von Neumann
architecture need to move large amounts of data back
and forth between processing and memory devices while
executing various computational tasks, incurring significant
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costs in latency and energy [3]. Therefore, even with parallel
processors, the von Neumann structure cannot completely
overcome the data movement problem [4].

Memory-centric chip technologies of near-memory-
computing (NMC) and in-memory-computing (IMC) have
emerged to alleviate the bandwidth bottleneck issues. The
NMC with advanced memory modules such as hybrid
memory cube (HMC), high bandwidth memory (HBM),
and three-dimensional (3D) monolithic integration places
compute units closer to monolithic memory to minimize
the expensive data movements, but there is still a physical
separation between memory and the computing units. The
IMC is an alternative approach to organizing compute
memory devices by performing specific computational tasks
on the memory itself, and it is implemented by utilizing
array-level memory devices and computing units together in a
monolithic fashion. The IMC has the potential to significantly
improve the computational time complexity associated with
certain computational tasks and mitigate the latency and
energy costs associated with data movements [5].
State-of-the-art deep neural network (DNN)-based

machine learning algorithms have demonstrated remark-
able effectiveness in a variety of artificial intelligence
applications, which requires the development of dedicated
accelerators to improve energy efficiency and latency when
running the DNN workloads on IMC systems. There are
three major types of IMC computation: bitwise Boolean
logic operations (AND, OR, XOR, etc.) using data stored
in a given memory cell array, pattern-matching computation
comparing the input data with the data stored in memory and
then returning the matching data address, and multiply and
accumulate (MAC) operation which are the primary calcula-
tions used in AI. Thus, the IMC requires high-speed, high-
density, low-power, and scalable memory devices, which
have been extensively studied in CMOS-based SRAMs [6].
While the SRAM is compatible with CMOS manufacturing
and suitable for arithmetic operations, its volatility after
power-off and density limitations due to its large cell area
has led to the exploration of new non-volatile memory
(NVM) technologies in in-memory computing, including
resistive RAM (RRAM) [7], magnetic RAM (MRAM) [8],
and phase change memory (PCM) [9], which can form
two-dimensional crossbar arrays. Among these non-volatile
memories, the RRAM is the most promising candidate for
IMC architectures for deep learning acceleration due to its
high-density integration, low read latency, and low power
consumption compared to other candidates.

A passive crossbar array (CBA) architecture for
high-density RRAM is shown in Fig. 1(a) where each
cell with a unit area of 4F2 (where F represents the
technology feature size) [10] is located at the intersection of
a word-line from the top row electrodes and a bit-line from
the bottom column electrodes. In analog MAC computing,
the programming process is performed by updating the
conductivity of the RRAM cells in the crossbar array, and
the inference process is performed by reading the current

FIGURE 1. (a) RRAM-based passive crossbar array and (b) sneak-path
current.

value of the cell conductivity value. A main challenge
faced by RRAM-based CBA is the sneak-path leakage,
an undesired current flowing through the RRAMcells parallel
to the selected one [11]. The sneak-path leakage in the
CBA is explained by describing a 3 × 3 CBA as shown
in Fig. 1(b). It assumes that the cell between word-line
WL0 and bit-line BL2 is selected and the cell resistance
is labeled as Rs. Meanwhile, the sneak-path parallel to
the selected cells consists of three unselected cells, whose
resistances are represented by RP1, RP2, and RP3. Hence,
the resistance measured between word-line WL0 and bit-
line BL2 is the parallel resistance of the selected resistance
and the sneak-path resistance while reading the selected cell
Rs, which can potentially lead to an inaccurate RRAM cell
readout and resistance modulation. The larger the crossbar
array, the more sneak-path currents there are, making it
much harder to distinguish and program the stored values.
Extensive research is being conducted on this urgent and
important challenge to eliminate or suppress sneak-path
current problems in RRAM crossbar arrays.

The 1T1R cell structure shown in Fig. 2(a), where a series
transistor acts as a switch, is an effective solution to the
sneak-path current problem. The unselected transistors are
set to the OFF state to avoid crosstalk. However, the cell
area is 8F2, the voltage drop across the transistor makes
it less energy efficient during inference and set operations,
and the threshold voltage drop during reset operation slows
down programming time. A RRAM with a unit cell area
of 4F2 and a stacked selector is shown in Fig. 2(b).
The selector has bidirectional high nonlinear resistors to
efficiently suppress sneak-path leakage by increasing the
resistance at low read and write voltages, as shown in
Fig. 2(d). However, it is difficult to operate each of the
two series elements independently since a single terminal
is used to read and program the RRAM cell through the
selector unless the selector is specifically adapted for the
RRAM cell or vice versa. Another approach to mitigate
sneak currents is to utilize a self-rectifying RRAM (SRR)
whose rectifying properties can inhibit current conduction
through reverse-biased RRAM cells along the sneak-path,
as shown in Fig. 2(c). A conventional structure for the SRR
is metal-insulator-metal (MIM). The large work function
difference between the top and bottom electrodes is essential
for the asymmetric effective barrier that appears at the
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FIGURE 2. CBA with (a) 1T1R, (b) 1S1R, and (c) SRR and (d) I-V
characteristics of 1S1R and SRR.

top and bottom electrodes to exhibit self-nonlinear I–V
characteristics as shown in Fig. 2(d).

There are two types of switching mechanisms in RRAM:
filament-type RRAM and interface-type RRAM. While the
filament-type has large memory windows, fast switching
speeds, and good retention characteristics, it inevitably
has variability due to the stochastic nature of filament
dynamics [12], which degrades system performance. The
interfacial scheme exhibits much better device-to-device
and cycle-to-cycle uniformity than the filament type due to
the uniform variation through the oxide [13]. In addition,
the highly nonlinear current-voltage characteristics allow
the passive crossbar array to operate without transistors or
selector devices. However, the low oxygen vacancy mobility
inside the oxide switching layer and the high depolarization
field after charge redistribution pose significant challenges
to the operating speed and data retention of interfacial
RRAMs [14]. Interface-type SRR with a Na-doped TiO2
by using the highly dependable technique of atomic layer
deposition (ALD) [15] exhibits an electroforming free bipolar
self-rectifying resistive switching behavior and high mobility
regardless of the underlying oxygen vacancy concentration
and even under reverse-biased Schottky diode [16].

Quantitative circuit analysis is required to characterize the
SRR CBA performance. Many integrated circuit engineers
consider physics-based compact models the most accurate
and simple enough for their circuit simulations as they
can be used for the largest operating range. While there
are many studies on compact models of the filament-type
RRAMs [17], [18], [19], [20], there are few studies on
those of the interface-type RRAMs [21] and, to the best
of the author’s knowledge, no measurement validation. The
models implemented in Verilog-A are compatible with many
industrial circuit simulators such as Spectre, HSPICE, Eldo,
etc., making it a standardized behavioral language.Moreover,

FIGURE 3. Pt/Na:TiO2 structure and (b) measured I-V characteristics.

FIGURE 4. Conceptual operation and energy band diagram of HRS and
LRS of Pt/Na:TiO2/Pt SRR.

interconnect modeling of the nanometer scale of RRAMCBA
becomes critical due to the dominant influence of parasitics in
determining the overall system performance. The remainder
of the article is organized as follows. Section II describes
the behavior of Pt/Na:TiO2/Pt devices with self-rectifying
I-V characteristics and the process of establishing the
high/low Resistance state (HRS/LRS), and a physics-based
model is proposed for the device. Section III presents the
simulation results of the proposed model at the cell level with
experimental validation. Section IV includes an assessment
of the models at the circuit and system levels. Concluding
remarks are in Section V.

II. SELF-RECTIFYING RRAM (SRR)
A. SRR STRUCTURE AND OPERATION
In this work, Na-doped TiO2 SRRs (Na:TiO2) with highly
mobile sodium cations as the main component for resistive
switching are measured and modeled. The structure of
the proposed SRR is controllably grown via atomic layer
deposition (ALD) by adopting TiO2 as the matrix material.
During fabricating the bottom electrode (BE), Ti ions diffuse
from the adhesion layer below the BE and form an effective
layer near the BE electrode. The effective layer is therefore
represented by TiOx stoichiometry, which is deficient in
oxygen vacancies compared to TiO2 on the TE side.
This asymmetric distribution of oxygen vacancies causes
the rectification behavior of the Pt/Na:TiO2/Pt structure.
Moreover, it can serve as an effective host for Na ion
transport, as shown in Fig. 3(a) [16]. Unlike conventional
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FIGURE 5. (a) Schematic diagram and (b) compact model of Pt/TiO2 SRR.

RRAMs based on oxygen anions, the high mobility of
Na ions provides RRAM behavior independent of the
underlying oxygen vacancy concentration, even at low
currents of reverse-biased Schottky diode operation. As a
result, reversible switching is possible at negative-biased
SRRs with rectification characteristics of currents lesser than
those of positive-biased by more than 103 times, as shown
in the measured data in Fig. 3(b). Fig. 4 shows the height
of the Schottky barrier at the readout voltage for HRS and
LRS. Based on the effective layer resistance value near
the bottom electrode (BE) interface, a low resistance state
(LRS) and a high resistance state (HRS) can be distinguished.
In the case of HRS, the effective layer has a relatively
high resistance compared to LRS because the BE interfacial
voltage (φBE,HRS ) in HRS is much higher compared to
LRS (φBE,LRS ). Instead, the top electrode (TE) interfacial
voltage (φTE,LRS ) of the LRS is slightly smaller compared
to the HRS (φTE,HRS ) since the oxide vacancy concentration
between the TE and effective layer interfaces varies less with
the resistance states. The SET operation from HRS to LRS
is achieved by applying a positive program voltage between
the anode and cathode to increase the concentration of Na+
cations in the effective layer, and the RESET operation from
LRS to HRS is achieved by applying a negative program
voltage to decrease the concentration of Na+ cations in the
effective layer. For stable readout current, the readout voltage
is set to a voltage value sufficiently lower than the program
voltage.

B. PHYSICS-BASED SRR COMPACT MODEL
Fig. 5(a) shows a simplified two-terminal SRR structure
based on Pt/Na:TiO2/Pt. According to the program voltage,
the concentration of Na+ ions in the active layer close to
the BE is redistributed to change the resistance of the active
layer and change the Schottky barrier at the Na:TiO2/Pt
interface. In the case of LRS, the concentration of Na+ ions
in the active layer increases, resulting in low resistance and
lowering the Schottky barrier at the BE interface. In the case
of HRS, the concentration of Na+ ions in the active layer is
reduced, resulting in a high-resistance state and increasing the
Schottky barrier of the interface.

An equivalent circuit model is proposed for the LRS/HRS
as shown in Fig. 5(b). Two Schottky barrier diodes (DSC) at

FIGURE 6. Schematic energy level diagrams showing thermionic–field
emission, and field emission for a Schottky barrier under the reverse-bias
voltage.

TE and BE are connected back-to-back, a forward-biased and
a reverse-biased. An effective layer variable resistance (Ra)
and electromotive force (EMF) due to the nano-battery effect
(VEMF) are connected in series between two DSCs. Parasitic
resistance (RP) and capacitance (CP) are added in parallel
with the main current path. RP represents the leakage current
between the two electrodes, such as direct tunnel, FN tunnel,
trap assisted hopping and so on. CP represents the intrinsic
capacitance of the MIM structure of SRR cell. The voltage
across both terminals of the SRR can be expressed as the sum
of the voltages across the three elements in series, as shown
in equation (1)

v (TE,BE) = vDSC + vEFF + VEMF (1)

where vDSC is summation between vDSC1 at TE interface and
vDSC2 at BE interface and vEFF is IR drop at effective layer.

1) SCHOTTKY BARRIER DIODE (DSC, PT–TIO2 CONTACT)
For a single DSC, a forward-biased current is given as
equation (2) with a thermionic emission model when the
applied forward-bias voltage of vf ≫ 3kT/q [22].

if = AEA∗T 2 exp
(

−
qφBf 0
kT

)
exp

( qvf
nkT

− 1
)

(2)

where AE represents the effective diode area, A* is the
effective Richardson constant for TiO2 (6.71× 106 A/m2K2),
q is the electron charge, φBf0 is the effective Schottky
barrier height, k is the Boltzmann constant, T is the
absolute temperature, and n is the ideality factor defined as
equation (3).

n =
q
kT

dvf
d ln

(
if
) (3)

Equation (1) shows rectifying behavior that varies expo-
nentially with the applied forward-bias voltage and has a very
small constant value for reverse-bias due to the fixed value
of φBf0. However, the image force lowering effect caused
by Coulombic attraction due to the positive image charges
induced inside the Pt by the conduction band electrons in
the TiO2 must be considered for reverse-bias condition. The
positive image charges reduce the effective Schottky barrier
height by 1qφB from qφBr0 as shown in Fig. 6, and the
reverse current can be described by equation (4) when the
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applied reverse-bias voltage of |vr | ≫ 3kT/q [22].

ir = −AEA∗T 2 exp

(
−
q
(
φBr0 − γ

√
|vr |

)
kT

)
(4)

where γ is the barrier lowering factor.
For two Schottky diodes with different directions con-

nected in series, as shown in Fig. 5(b), one is forward-biased,
and the other is reverse-biased. It has iDSC = if = −ir and
vDSC = Vf − Vr . Here VDSC is the voltage applied on the
two diodes, and iDSC is the current. When a positive bias is
applied to the TE, a forward-biased TE/TiO2 contact and a
reverse-biased TiO2/BE contact are created. The voltage drop
then comes mostly from the reverse-biased Schottky diode at
TiO2/BE. Therefore, the vDSC can be approximated as −Vr ,
and the iDSC can be approximated as the reverse-bias current
in Equation (4). When a negative bias is applied to the TE,
the situation is reversed: the TE/TiO2 contact determines the
current flow.

2) EFFECTIVE LAYER RESISTANCE (REFF)
In SRR devices, the resistance of the effective layer depends
on the density of the cations and anions. For HRS, the
effective layer holds a high-density of anions and a low
density of cations. For LRS, it has the opposite ion densities.
In forward-bias, Ra has a different resistance value depending
on the value of the state variable ω which is defined as a
value between 0 and 1 depending on the ion density of the
effective layer. For ω = 0, the resistance is in the HRS state
and corresponds to REFF =RHRS. Forω = 1, the resistance is
in the LRS state and corresponds to REFF = RLRS. In reverse-
bias, the resistance is fixed at RHRS. Therefore, the resistance
of Ra is defined by equation (5).

REFF =

RHRS

(
RLRS
RHRS

)w
, va ≥ 0

RHRS vEFF ≤ 0
(5)

where vEFF is the applied voltage across the effective layer.
LRS is programmed by applying a forward-bias voltage

to the RRAM that is greater than the positive reference
voltage, VTH,L. Conversely, HRS is programmed with a value
less than -VTH,H, the negative reference voltage. For bias
voltages between -VTH,H and VTH,L, the resistance state
remains unchanged. Thus, The dynamic behavior of the state
variable ω is defined as equation (6) [23].

dw
dt

=


α
(
va − VTH ,L

)
, va ≥ VTH ,L

α
(
va + VTH ,H

)
, va ≤ −VTH ,H

0 otherwise

(6)

where α is programming rates.

3) NANO-BATTERY EFFECT (VN)
After the setup and reset process of SRR, ion accumulation
can be detected at the electrode-solid electrolyte interface,
which leads to a chemical potential gradient within the cell

and the generation of electromotive force (emf), the nano-
battery effect [24]. The accumulation effect is particularly
pronounced in materials where the mobile ions are not ini-
tially present or cannot tolerate deviations in stoichiometry.
The nano-battery effect affects the RRAM for ON/OFF
steady-state and SET/RESET switching voltages; therefore,
this effect must be considered in the CBA design. The emf
voltage can be defined as equation (7) empirically.

VEMF = V0 +
kT
2q

ln
Cion
C0

(7)

where Cion is ion concentration, and V0 is defined as the
condition where ln (C ion/C0) = 0 on the VEMF versus log-
scaled Cion curve.

4) VARIATION, ENDURANCE, AND RETENTION
Variations in resistive switching kinetics are an important
factor affecting the adaptation of RRAM devices to high-
density CBAs, so the compact models must predict the
potential impact of the variability. The Schottky barrier
inhomogeneities present at the TE and BE interfaces result
in variations in the I-V characteristics of the SRR based
on Schottky emission. The inhomogeneous Schottky barrier
model, given by Equation (8), uses a Gaussian approximation
of the Schottky barrier height distribution to account for the
potential variability at the interface [25].

φ
app
B = φB −

σ 2

2kT/q
(8)

where φ
app
B is the apparent Schottky barrier height obtained

as a result of the convolution of the Gaussian distributed
Schottky barrier height with temperature in the thermionic
emission model, φB is the mean Schottky barrier height and
σ is the standard deviation of the Gaussian distribution.
The stability including endurance and retention of the

RRAM is an obstacle for the application of CBAs with the
resistive switching devices. Interface-type RRAM devices
have good endurance performance but poor retention per-
formance. Retention time degradation of the interface-type
RRAM occurs naturally, and it has been found that read
voltage pulses can exacerbate the degradation process. The
resistance of interface-type RRAMs tends to increase over
time, which depends on the recombination process of oxygen
vacancies and ions [26]. Most of the vacancies are clustered
near the TiO2/BE interface due to their thermodynamic
stability [27], and the interface dominates this vacancy
recombination process by trapping oxygen or Na ions.
Therefore, the resistance stability and failure time depend on
the recombination rate of vacancies and ions. This process
follows a decay function of e−λt , and the Schottky barrier
variation with the applied voltage in time can be expressed
by equation (9).

iDSC (t) = iDSC (0) β exp (−λt) (9)

where iDSC (0) is the initial current, λ is the decay constant,
a parameter related to the average recombination time τ of
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FIGURE 7. Consecutive I–V loops of the proposed Pt/Na:TiO2/Pt SRR
model (a) without and (b) with CP effect under the applied voltage cycles
shown in the bottom left inset.

the vacancies with λ = 1/τ , and β is a correction factor (0 ≤

β ≤ 1) that reflects the strength of the recombination process.

III. MODEL VALIDATION WITH MEASUREMENTS
Fig. 7 shows the measured current-voltage (I-V) characteris-
tics of the 10 samples and the simulation results for the Na-
doped TiO2 SRR at an external bias voltage that cyclically
switches between −2 V and +2 V. The applied bias voltage
has a sweeping sequence of 0 → +2 → 0 → −2 →

0V that is a cycle triangle wave over time, as shown in
the bottom left inset of Fig. 7(a). When a positive bias is
applied to the top electrode, that is, a reverse-bias to the
bottom interface, Na cations migrate to the bottom interface.
Therefore, the electron injection from the bottom electrode
into the Na-doped TiO2 layer increases due to the increased
concentration of Na ions at the bottom interface, which is the
SET operation. When a negative voltage is applied after the
positive voltage sweep, the electron injection from the top

FIGURE 8. Successive SET, RESET, and read operations using the proposed
Pt/Na:TiO2/Pt SRR model.

electrode is suppressed due to the decreased concentration
of Na at the top interface, resulting in HRS at the negative
bias, which is the RESET behavior. Therefore, it exhibits
a resistive switching characteristic within ±2 V, and the
switching occurs in the order of HRS → LRS → HRS. The
progressive switching characteristic occurs without a forming
process, unlike filamentary switching. For the 10 different
SRR samples, an I-V characteristic is observed that is not a
zero crossing. Non-equilibrium states are inherently induced
during SRR device operation due to non-uniform cation
distribution, and these non-equilibrium states can be modeled
as a nano-battery (VEMF) of 600 mV.

Fig. 7(a) also shows simulation results using the model
described in Section II-B without parasitic capacitance to
neglect the parasitic capacitance (CP) effect (inset in the
upper left corner of Fig. 7(a)). The proposed model is mainly
coded in Verilog-A, a behavioral language standardized in
the semiconductor industry because it can be run on various
industrial circuit simulators (Spectre, HSPICE, Eldo, etc.)
due to its ease of use and flexibility. The simulation results
show well-matched behaviors with the experimental data for
the SET/RESET operations and readout current at a readout
voltage (VR) of 1V. For the LRS and HRS conditions, the DC
error between the measured and modeled readings is -1.04%
and 1.03%, respectively, and the AC error is 0.195% and
1.38%, respectively. However, the simulation results show
that the I-V zero crossings of LRS and HRS are the same at
600 mVwithout parasitic capacitance (CP), which is different
from the measurement of two different zero crossings at
600 mV for LRS and -900 mV for HRS.

Fig. 7(b) shows the simulation results using a model that
includes the parasitic capacitance effect (inset in the upper
left corner of Fig. 7(b)). During the sweep from 0 → +2V in
the HRS state, the current through the capacitor flows in the
direction of increasing the overall current. During the sweep
from +2 → −2V in the LRS state after a SET operation
at 2 V, the current flowing through the capacitor flows in
the direction of decreasing the overall current. This means
that the zero crossing of the HRS is formed at a voltage
lower than the VEMF and the zero crossing of the LRS is
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FIGURE 9. Cell current variation of Pt/Na:TiO2/Pt SRR with 10 samples
and normalized 100 simulations for (a) LRS and (b) HRS.

formed at a voltage higher than the VEMF. Therefore, the
model with the parasitic capacitor has two different I-V zero
crossings as measured. However, since the amount of current
flowing through the capacitor is insignificant compared to the
amount of current in the LRS state and is compatible with
the amount of current in the HRS state, the zero-crossing of
the LRS varies little with VEMF, but the zero-crossing of the
HRS varies significantly so that only the zero-crossing of the
HRS appears to deviate significantly from VEMF. Therefore,
the proposed model matches well with the measurements
in the SET/RESET operations, the readout currents, and the
low-current region where zero crossings occur.

A simulation of electrical pulses applied to successive SET,
RESET, and read operations using the proposed model is
shown in Fig. 8. The pulse widths were fixed to 20 nsec. The
simulation shows that the SRR changes from the HRS state to
the LRS state after a +2 V program pulse, and from the LRS
state to the HRS state after a −2 V program pulse. The state
changes occur in less than 0.5 nsec. After the SET/RESET
operation, a steady LRS/HRS current value is delivered at a
continuous+1 V readout voltage. The current values for LRS
andHRS are 180 nA and 314 pA, respectively. Based on these
results, the fabricated pt/Na:TiO2/Pt structures are operated
with programmable pulses commonly used in conventional
electronics, demonstrating excellent applicability.

Device-to-device variations which is attributed to the
nonuniformity of the patterned electrodes have created
significant challenges for circuit design for SRR CBA
integration. After applying the SET and RESET voltages
to form the LRS and HRS, the experimental read-out
currents of the 10 different samples are obtained. The current
distributions are illustrated in Fig. 9 for LRS and HRS, and
the average value and the percentage change from the average

FIGURE 10. Measurements and simulation results for retention time of
Pt/Na:TiO2/Pt SRR.

value are calculated. The LRS distribution has a standard
deviation of 9.06 % and the HRS has a standard deviation
of 1.92 %. In Verilog-A, the Gaussian distribution of the
apparent Schottky barrier height of φ

app
B is generated using

the $rdist_normal(seed, µ, σ ) command, where the seed is
an integer used to initialize the random number generation
process, µ is set to 0, and σ is set to the corresponding values
of the measured LRS and HRS current distributions. After
performing simulations with 100 different devices with the
proposed model, the standard deviations of the simulation
results for LRS and HRS are found to be 9.50 % and
2.08 %, respectively. The histogram of the simulation results
is normalized to 10 samples to match the measured data.

Fig. 10 shows the retention properties of the Pt/Na:TiO2/Pt
device with a repeated reading procedure for 104 sec at +1 V
of the read voltage after +2 V for the SET or −2 V for
the RESET operations as shown in the bottom left inset of
Fig. 10. High temperature of 125◦C accelerate the movement
of ions and aggravate the degradation and instability. The
LRS and HRS tend to drift toward the higher resistance after
SET/RESET operations. This suggests that both the HRS and
LRS decay spontaneously, and the HRS variation is more
pronounced than the LRS variation. The current degradation
rate of the HRS and LRS can be calculated by the slope
of linear fitting in log(I)-log(time) scale respectively. The
equation (9) is used to fit the current decay process, and the
excellent agreement between simulation and measurement
results confirms the retention validity of the proposed
compact model.

Fig. 11 shows a 1000-cycle endurance test with SET
and RESET voltages of +2 V and −2 V and a readout
voltage of+1V, respectively. Themeasurement voltage pulse
sequence is shown in the inset of Fig. 11. The device shows
excellent endurance performance, and the proposed compact
model provides the same current for the first readout current
immediately after SET and RESET operations.

IV. CBA APPLICATIONS WITH SRR
A distinctive feature of RRAM is that its conductivity
depends on past electrical signals, allowing it to operate
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FIGURE 11. 1000 cycles of continuous switching in an Pt/Na:TiO2/Pt SRR
for endurance measurement and simulation analysis.

as a non-volatile memory. In addition, unlike the binary
states of ‘‘0’’ and ‘‘1’’ in traditional digital storage systems,
memristors can store multiple bits of information using
continuously adjustable conductivity, enabling higher bit
densities. Due to their non-volatility, fast programming, low
programming energy, and small footprint, memristors are
emerging as a promising solution for the next generation
of embedded memory that can combine the advantages
of SRAM and floating gate transistors. The simple two-
terminal metal-insulator-metal (MIM) structure of RRAMs
allows them to be integrated into high-density crossbar
arrays. In the readout operations, the sneak-path mentioned
in the introduction leads to additional energy consumption in
unselected cells, which degrades the read margin and limits
the array size. It is important to note that the average current
issue, which is prominent in sequential read andwrite isolated
memristors in crossbar arrays, has less of an impact on both
machine learning and neuromorphic computing.

To mitigate the sneak-path problem, a bias scheme has
been proposed for the write/read process by applying a
fractional voltage to unselected cells. The floating bias
scheme keeps all unselected words and bit-lines floating,
as shown in Fig. 12(a). CBAs with the floating method can
exhibit good energy efficiency with very high-density, but the
sneak currents flow if the unselected three cells in series are
not adequately suppressed. In the 1/2V bias scheme, the full
voltage of V and 0 V are applied to the selected word-lines
and the selected bit-lines, respectively, and 1/2V is applied to
unselected word-lines and bit-lines, as shown in Fig. 12(b).
This results in a V bias for selected cells, 1/2V for half-
selected cells, and a 0V bias for unselected cells. The 1/3V
bias scheme shown in Fig. 12(c) applies full voltage of V
and 0 V to the selected word-line and the selected bit-line,
respectively, the same as the 1/2V situation. 1/3V is applied to
the unselected word-line and 2/3V is applied to the unselected
bit-line. This puts the selected memory cells in a V bias, the
semi-selectedmemory cells in a 1/3V bias, and the unselected
memory cells in a 1/3 or −1/3V bias. A nano-battery bias
scheme that utilizes the nano-battery effect is proposed. For
SRRwith Pt/Na:TiO2/Pt structure, it has zero current at VEMF
bias rather than at 0V bias. A full voltage of V and 0 V is
applied to the selected word-lines and selected bit-lines as

FIGURE 12. Conventioanl bias schems (a) with floating bias, (b) with 1/2V
bias, and (c) with 1/3V bias. (d) Proposed nano-battery bias scheme and
(e) schematic diagram of CBA architecture with the proposed bias
scheme.

in the 1/2 V and 1/3 V bias schemes. The bit-lines of the
unselected cells are floated and the word-lines are biased
at VEMF, as shown in Fig. 12(d).

The read current is measured with a 64 × 64 SRR CBA.
The current error is calculated as IERR = IBIT / ICELL based
on the four bias methods mentioned earlier. IBIT is the current
flowing on one bit-line in a 64 × 64 CBA when applying
the full voltage of V and 0 V to one cell and the other
biases determined by each bias scheme to the remaining cells,
while ICELL is the current obtained by applying the maximum
voltage V and 0V to only one cell without considering the
64 × 64 SRR cell arrangement. IBIT is the sum of ICELL
and ISNK, where ISNK is the sneak-path current in the CBA.
The current error of the floating bias method is 176.8 %
since the sneak current cannot be suppressed even with the
SRR cells when the three unselected cells are connected in
series. The conventional 1/2V and 1/3V bias schemes apply
partial bias voltages in series to the three unselected cells to
reduce the current error to 0.45 % and 0.70 %, respectively.
The 1/2V bias scheme has less error than the 1/3V bias
scheme since the current at 0.33 V using the 1/3V scheme
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FIGURE 13. Comparison with various bias schemes for sneak-path
current error.

FIGURE 14. CBA power consumption and energy efficiency with different
LRS:HRS ratios.

is higher than the current at 0.5 V using the 1/2V scheme,
as shown in Fig. 13. The proposed VEMF bias scheme can
reduce the current error to 0.02 % because it provides zero
current to unselected cells. It can also reduce the complexity
of the readout circuit because it only requires a word-line bias
circuit compared to the 1/2V and 1/3V bias schemes that use
both word-line bias and bit-line bias, as shown in Fig. 12(e).
The non-volatile property of RRAM naturally lends itself

to consolidating computations into memory and converting
them into weighted sums. The MAC capabilities of memory
arrays can greatly improve the computational efficiency of
in-memory computing. The MAC, also known as vector
matrix multiplication (VMM), is an important and expensive
operation often used in neural network structures. The VMM
performs the multiplication and accumulation process of
computing the product of two numbers and adding that
product to an accumulator. Many basic operations, such
as dot multiplication, matrix multiplication, digital filter
operations, and even polynomial evaluation operations, can
be decomposed into VMM operations, as expressed in
equation (10) [28].

G11 G12 . . . G1n
G21 G22 · · · G2n
...

...
...

...

Gn1 Gn2 . . . Gnn



V1
V2
...

Vn

 =

n∑
j=1

Gij · Vj = Ii

(10)

The total current on the i-th bit-line, Ii, is the sum of the
currents through each RRAM cell in this column according
to Kirchhoff’s current law, where the current through each
RRAM cell is the j-th word-line input voltage, Vj, and the
conductance of the RRAM cell at the i-th and j-th indices, Gij,
according to Ohm’s law. The ability to perform parallel VMM
operations using RRAM thus enables general acceleration of
all matrix operations, which naturally translates to the analog
domain for low-power, high-speed operations. The scalability
and flexibility of the array architecture alsomakes it very easy
to reprogram, providing excellent hardware acceleration for
a wide variety of VMM-based applications.
The proposed Pt/Na:TiO2/Pt SRR model is used to

simulate the power consumption and energy efficiency of a
64 × 64 CBA in 180 nm CMOS technology for inference
operation. In addition to the unit cell model, the parasitic
resistance and capacitance of the CBA interconnects that
affect the voltage drop, time delay, and power consumption
are also included. Every cell in a 64 × 64 CBA performs a
VMM operation with a 100 nsec period, and the cell read
voltage is+1V.With an LRS to HRS ratio of 30:70, the power
consumption of the CBA is 3.4µW . As the LRS to HRS
ratio increases, the power consumption increases linearly to
8.02µW for an LRS to HRS ratio of 70:30. TOPS/W (tera
operations per second per watt) is used as a metric to estimate
computational energy efficiency, where 1 OPS is defined as
one analog multiplication or addition operation per second.
The energy efficiency is estimated with 32-bit fixed-point
precision. The energy efficiency of the CBA is 5.88 TOPS/W
with an LRS to HRS ratio of 30:70, which decreases to
2.49 TOPS/W with a 70:30 ratio.
A deep neural network (DNN) is a type ofmachine learning

algorithm, similar to an artificial neural network, that aims to
mimic the brain’s information processing. DNNs have one
or more hidden layers between the input and output layers,
as shown in Fig. 15(a). Each layer contains a given number of
neurons that apply a specific functional transformation to the
input. VMMs are themost common operation implemented in
hardware for DNNs. However, DNNs are quite deep in layers
and require an enormous amount of VMM operations, which
require a large number of weights and a large input dataset.
The open-source simulatorMNSIM [29] is used to evaluate

the combined impact of all SRR non-idealities on DNN
inference accuracy for the CIFAR-10 dataset. Simulations
are performed using built-in DNN models including LeNet,
AlexNet, VGG8, VGG16, and ResNet18. The accuracy is
compared by applying the idealized RRAM model from the
MNSIM package and the proposed SRR compact model to
each DNN model. The accuracy depends on the number
of convolution layers of the networks and the number
of channels of each layer. Figure 12 shows the top-5
accuracy of each DNN model. VGG-16 and VGG-8 achieve
higher accuracy than LeNet, AlexNet, and Resnet-18. The
degradations of VGG-8 and VGG-16 are 1.36% and 4.46%
respectively, which is much lesser than those of LeNet,
AlexNet, and Resnet-18 since there is more redundancy in
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FIGURE 15. (a) Structure of the VGG-8 convolutional neural network for
CIFAR-10 32 × 32 color image classification and (b) accuracy comparison
with different neural network architectures.

VGG-8 and VGG-16. The Resnet-18 network has the worst
accuracy degradation of 17.54% as it typically uses a much
smaller number of fully connected layers than the other
networks.

V. CONCLUSION
In this paper, a physics-based compact model for
self-rectifying RRAM devices with bipolar switching char-
acteristics is presented, and it is validated with the measured
data from Pt/Na:TiO2/Pt devices. The model simplifies the
RRAM switching mechanism by using essential equations.
The model considers the concentration of Na+ cations in
the effective layer near the bottom electrode and the effect
of Schottky barrier lowering under forward and reverse-bias.
The developed compact cell model consists of Schottky bar-
rier diodes, effective layer resistance, nano-battery effect, and
parasitic resistance and capacitance. The I-V characteristics
in HRS and LRS of with self-rectifying resistive switching
behavior can be reproduced with high accuracy of 98.97%
on DC and 98.05% on AC by the proposed model. Moreover,
the proposed model also reproduces the behavior of different
non-zero I-V crossings in HRS and LRS when the bias volt-
age is applied in a triangular waveform alternating between
positive and negative with time. It also includes physics-
based models of device-to-device variability, retention, and
endurance, and is validated with measurement data.

The proposed model is applied to a neuromorphic
64 × 64 SRR CBA to simulate the sneak current. The
proposed bias scheme utilizing the nano-battery voltage
rather than the conventional 1/2V or 1/3V reduces the sneak

current error to 0.02% in the interface-type SRR SRR array.
Moreover, the SRR CBA also achieves 3.44 TOPS/W at a
50:50 LRS to HRS ratio in 32-bit fixed-point precision VMM
operations. The computation of the DNN is significantly
expedited by the resistive CBA since the RRAM devices can
save weight factor, and the CBA provides multiplication and
accumulation in one cycle in analog domain as explained
in Section IV. From the proposed model, we can extract
the degree of non-ideality of SRR cells as a function of the
size of the crossbar array and use it to estimate the accuracy
degradation of DNNs using SRR CBA. Several DNN bench-
marks using MNSIM for CIFAR-10 datasets are observed
that the accuracy degradation can be significant, ranging from
1.36 % to 17.54 %. The excellent agreement between model
predictions and measured data shows promising prospects
for future implementation of this compact model in circuit
simulations and optimizing the design of SRR CBAs.
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