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ABSTRACT Neural Architecture Search (NAS) methods are widely used in various industries to
obtain high-quality, task-specific solutions with minimal human intervention. Event Sequences (EvS) find
widespread use in various industrial applications, including churn prediction, customer segmentation, fraud
detection, and fault diagnosis, among others. Such data consist of categorical and real-valued components
with irregular timestamps. Despite the usefulness of NAS methods, previous approaches only have been
applied to other domains: images, texts or time series. Our work addresses this limitation by introducing
a novel NAS algorithm — SeqNAS, specifically designed for event sequence classification. We develop
a simple yet expressive search space that leverages commonly used building blocks for event sequence
classification, including multi-head self attention, convolutions, and recurrent cells. To perform the search,
we adopt sequential Bayesian Optimization and utilize previously trained models as an ensemble of teachers
to augment knowledge distillation. As a result of our work, we demonstrate that our method surpasses
state-of-the-art NAS methods and popular architectures suitable for sequence classification and holds great
potential for various industrial applications.

INDEX TERMS NAS, temporal point processes, event sequences, RNN, transformers, knowledge
distillation, surrogate models.

I. INTRODUCTION
Motivation. Event Sequences (EvS) with marker and timing
information are very common in real-world applications such
as medicine [1], biology [2], social medial analysis [3], fault
diagnosis [4], [5], churn prediction [6], [7], customer segmen-
tation [8], fraud detection [9] and more. Consequently, there
is a demand to model such data.

In [5], the authors focus on predicting failures using
telemetry data as a EvS classification task. They emphasize
the significant benefits of even predicting a small fraction
of these incidents, including improved availability, cost
reduction, and avoidance of reactive maintenance.

The associate editor coordinating the review of this manuscript and

approving it for publication was Alberto Cano .

Based on the results presented in [1], applications of
Automated Machine Learning (AutoML) in healthcare
require additional research and development. The utilization
of automated methods in medicine holds great potential
for substantially enhancing accuracy, with even minor
improvements carrying significant weight in the healthcare
sector.

In the field of biology, representing biological datasets as
sequences is common. In [2], the authors develop an end-to-
end automated machine learning tool specifically designed
for explaining and designing biological sequences.

In [10], the authors explore a wide range of machine
learning applications for enhancing efficiency in the financial
sector. These technologies have the potential to automate
processes, improve risk assessment and management, and
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enable more accurate and efficient decision-making. It is
important to note that the financial sector, particularly
banking, accumulates a significant amount of sequential data
based on customer behavior and market events.

EvS classification methods are used in various fields,
however, the successful utilization of machine learning
still requires substantial effort from human experts, as no
algorithm can achieve optimal performance on all possible
problems.

Most of machine learning research and applications have
been centered around core domains: text, images, time-series,
and speech. However, EvS differ from these well-studied
domains in several ways:
(1) events are usually described by both categotical and

numerical features,
(2) events in an arbitrary sequence are not uniformly spaced

in time (an example can be seen in Figure 1), whereas
data in core domains is usually uniformly distributed
spatially (image pixels) or temporally (speech signals),
and

(3) elements that are close together in space or time have
a shared context, and valuable information can be
inferred from their neighboring elements. However, this
principle does not necessarily apply to EvS since the
events may not occur in close proximity to each other
in time.

The properties mentioned above can vary significantly
across different datasets. As a result, effectively modeling
EvS requires the development of task-specific deep learn-
ing architectures. This process involves leveraging domain
knowledge and can be labor-intensive due to the iterative
nature of trial and error.

Our work aims to develop a NAS procedure specifically
designed to effectively handle diverse event sequences.
We refer to this approach as SeqNAS (Sequence NAS).

FIGURE 1. An example of the marked temporal event process. Event i
occurs at time ti and is characterized (marked) by the feature vector xi .

Our contributions and results:
• Performance. Our simple yet efficient method SeqNAS
shows the superior performance when compared to
existing NASmethods and popular architectures that are
used for EvS classification.

• Search Space Design. We design a novel search space
of size ∼ 5 × 106 possible architectures. The search
space contains multi-head self attention, convolutions,
and recurrent cells and is tailored to handle event
sequence data. To the best of our knowledge, we are the
first to develop and analyze such a search space for event
sequence datasets.

• EnsembleOf Teachers. Typically, intermediate (subop-
timal) architectures obtained during architecture search
are thrown away. We propose to utilize them as

an ensemble of teachers for subsequent models via
knowledge distillation [11].

• Benchmark Datasets. To advance the development of
event sequence classification methods, we have initiated
a benchmark for EvS classification by comparing
various models and methods. Our study employs six
event sequence datasets that were sourced from online
competitions held over time or used by other authors.
Our work is the first one to carry out a comparison of
EvS classification methods for a diverse list of datasets.
We make these pre-processed datasets openly available.

• NAS-Bench Event Sequences. We present a novel
neural architecture dataset comprising 3200 trained
architectures, each accompanied by its corresponding
scores. This dataset can further facilitate development
of predictor-based NAS methods.

We provide the source code for the experiments conducted on
publicly available datasets, as described in this paper, along
with the datasets themselves.1

II. RELATED WORK
A. SEARCH SPACE
The performance of NAS algorithms heavily relies on the
search space design, which should exhibit a reasonable
degree of flexibility and accommodate established high-
performing solutions. A well-designed search space can
deliver a satisfactory outcome even with a random search
strategy [12]. Therefore, search space design is a primary
focus of our work.
Although event sequence data are very common in various

applications, the majority of NAS algorithms are designed to
solve image classification problems and only rarely extend
their search procedures to other core domains.
Closest to our domain are works exploring text classifica-

tion and multivariate time-series classification. To evaluate
the performance of our procedure for EvS classification,
we included methods from both domains in our benchmark
and studied their transferability to EvS. These methods are
discussed in Sections II-B and II-C.

B. NAS FOR TEXT CLASSIFICATION
The most frequently used building blocks in modern deep
neural network (DNN) architectures are: 1) Convolutional; 2)
Recurrent; 3) Multi-Head Self-Attention; 4) Pooling Layers;
and 5) Identity layers. AutoAttend [13] and TextNas [14]
have both explored different methods of combining these
building blocks as graph nodes to construct a search space.
In TextNas [14], each node is selected from a pool of

blocks described above, and each incoming feature (edge) is
selected from a pool of nodes from previous layers. This work
is the closest one to ours.
AutoAttend [13] introduces a NAS procedure to search

for attention representations. The main idea is that K-keys,
V-values, and Q-queries may originate as features from

1Our code: https://github.com/On-Point-RND/SeqNAS
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distinct layers and that different searchable blocks are used
to project each incoming feature. Then, incoming features are
aggregated in an attention or an addition layer.

In NAS-Bench-NLP [15], authors search for an Recur-
rent Neural Network (RNN) structure. The RNN cell is
represented as a directed graph in which nodes correspond
to specific operations and edges encode their inputs. The
authors use four different types of operations in their study,
namely: linear layers, element-wise weighted summation,
element-wise product, and various activation functions. The
operations associated with the nodes and edges are selected
during the search process.

C. DNN FOR MULTIVARIATE TIME SERIES CLASSIFICATION
Gated-Transformer-‘‘GTN’’ [16] uses two attention blocks
instead of one, one to model step-wise and another channel-
wise correlation between components of Multivariate Time
Series. The performance of this approach forEvS is evaluated
in Section IV-C.

In ROCKET [17], the authors focus on Univariate Time
Series (UTS) classification.ROCKET generates feature rep-
resentations using several randomly initialized convolutional
kernels and then trains a linear layer a top of these features.
A comparison of SeqNAS and ROCKET can be found in
Table 4.

D. SEARCH METHODS
The architecture of a deep neural network (DNN) can be
modeled as a directed acyclic graph (DAG), where the
nodes represent operations, and the edges denote incoming
or outgoing features. In this way, neural architecture search
(NAS) is viewed as an algorithms for discovering a task-
specific DAG.

There are various search strategies available, including
Bayesian Optimization (BO), Evolutionary Methods, Rein-
forcement Learning, and Differentiable NAS (DNAS). These
methods aim to find the best suitable architecture in the
vast space of neural architectures with significantly fewer
resources than an exhaustive search requires.

In ENAS [18], reinforcement learning is utilized to train
a super-net, which is an over-parameterized architecture
allowing for efficient weight sharing among sub-models.
This eliminates the need to train each candidate sub-model
from scratch, resulting in a significant reduction in search
time. Additionally, DNAS [19], [20], [21], [22], [23], [24]
builds upon this idea by representing the over-parameterized
super-net as DAG and assigning differentiable importance
weights to each edge. The highest edge values determine the
selected sub-graph or path. This approachminimizes the need
to evaluate multiple models, thereby accelerating the search
process. Knowledge distillation without an ensemble of
teachers was applied for NAS in [25] for image classification.
However, [26] and [23] demonstrated that the optimal

architecture is not always selected using DNAS and that
the procedure requires various modifications to perform

well. On the other hand, [15], [27] have demonstrated that
various BO-based methods perform effectively across varied
search spaces, including text classification. One suchmethod,
highlighted by the authors, is BANANAS [28], which
relies on BO and the neural Predictor-model — the model
designed to predict architecture performance bypassing full
train and validation cycle. The neural Predictor-model is
trained on previously queried architectures to score new
potential candidates before training them. Unlike DNAS,
BANANAS requires training multiple models. However,
we show that previously trained models can be used as a
practical advantage. This is discussed in Section III-D.
To train a Predictor-model on a set of architecture-

score tuples, it is necessary to have a procedure for
architecture encoding. The study [29] propose eight
architechure encoding schemes categorized into two groups:
adjacency matrix-based and path-based. The authors evaluate
the performance of each encoding scheme for different
NAS subroutines: Predictor-model training, architecture
perturbation and random architecture sampling. They show
that no encoding scheme performs well across all sub-
routines, but the path-based encoding outperforms the
adjacency matrix-based one on the task of training the
Predictor-model.

E. NAS BENCHMARKS
The NAS-Bench series of benchmarks [15], [30], [31],
[32], [33], [34] have made significant contributions to
the advancement of scientific research in neural architec-
ture search (NAS). These benchmarks aim to establish a
standardized measurement procedure and provide datasets
for easy comparison and reproducibility in NAS research.
They include datasets of trained architectures and their
corresponding scores, along with detailed discussions on the
characteristics and performance of various NAS algorithms.
However, these benchmarks have not yet explored the domain
of event sequence. In our work, we extend the NAS-Bench
series with NAS-Bench Event Sequences, a dataset of
architectures specifically designed to model EvS.

F. TEMPORAL POINT PROCESSES MODELING
Recently, different neural architectures and approaches were
used to model EvS as Temporal Point Processes (TPP) [3].
These data exhibit complex short-term and long-term tempo-
ral dependencies. Existing methods heavily rely on Recurrent
Neural Networks (RNNs) due to the sequential nature of
event sequences [35]. However, RNN units are not effective
in capturing long-term dependencies. On the other hand,
transformer and convolutional-based models are capable of
handling long-term dependencies, but they assume a uniform
temporal distribution. To address these challenges, authors
in [36] propose a transformer-based architecture that models
the dynamics of temporal point processes using a continuous
conditional events intensity function. Additionally, in [37],
a long convolutional kernel with weights, conditioned on
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event samples intensity, is prpoposed. This parameteriza-
tion enables the handling of non-uniformly sampled and
irregularly-sampled datasets.

FIGURE 2. The general layout of our search space. Dotted borders
indicate that blocks contain searchable operations. Dashed lines indicate
that connections between nodes are searchable. The solid line is an
example of selected architecture.

III. METHODOLOGY
A. SEARCH SPACE DESIGN
The general layout of all the blocks in our search space is
illustrated in Figure 2. There are four main blocks in the
search space:

• Stem (always present) has a searchable structure
depicted in Figure 3.

• Encoder (optional) is searchable with multiple layers,
whose structure is depicted in Figure 5.

• Decoder (optional) has a searchable number of layers.
• Head (always present) has a searchable structure
depicted in Figure 4.

Here, the term optional denotes that the presence of a
particular block is determined during the search procedure.
For instance, the minimal architecture would consist only
of the Stem and Head blocks. Now we describe earch
architecture block in more details.

FIGURE 3. Searchable part of Stem block is depicted with dashed and
dotted lines. Convolutional layers with different kernels and the presence
of dropout are selected at each search step. A solid line is an example of
a selected path.

FIGURE 4. There are two searchable pooling layers in Head Block: Max
pooling and Average pooling. The type of a pooling layer and the
presence or absence of spatial dropout are determined by the search
procedure. A solid line is an example of a selected path.

1) STEM
The Stem fuses categorical and numerical features from input
data into one vector as depicted in Figure 3.

The Stem pipeline is threefold:
• Categorical features are encoded using an embedding
layer, and the size of the embedding is automatically
determined by the formula: min(600, round(1.6 ×
N 0.56)). Where N is a sequence length.

• Numerical features are processed using Batch-
Norm [38]; afterwards, convolution with a searchable
kernel size is applied to each numerical input along the
temporal dimension, and optionally, dropout may be
applied after convolution.

• Finally, all embeddings of all types are concatenated
along the feature dimension to obtain the input sequence.

2) ENCODER
Encoder brings the most variability into the search space.
Common operations are available in the encoder: Multi-
Head Self-Attention (MHA) [39], Gated Reccurent Unit
(GRU) [40], and Convolution. Each of these operations
entails different assumptions about the nature of the data:
RNN units assume a sequential nature of the data, convo-
lutional layers are effective at capturing temporally local
correlations, and transformers excel at capturing long-term
dependencies throughout the entire sequence.

FIGURE 5. Encoder Layer with searchable MHA, GRU and conv
operations. A combination of one, two, or three operations can be
selected during each search step. Different combinations are selected on
different layers. Incoming features are divided into several selected
operations. An example combination with MHA, GRU and conv
operations is depicted with solid lines, and an example combination with
MHA and conv operations is depicted with dashed lines. Dotted border
around MHA indicates that it has a searchable number of heads.

Encoder has both a searchable number of layers and the
operations within each layer. Input of each Encoder layer is
divided into one to three blocks along the feature dimension,
which can be processed using one of six potential operations,
such as MHA, GRU, or Convolution. The number of heads
in MHA is searchable and is chosen from the set {1, 2, 4, 8}.
In total it provides up to 19 variations for a single Encoder
layer. It is worth noting that each layer has a distinct set of
operations. The outputs from each block are concatenated and
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sent to the next layer within the Encoder. This structure is
illustrated in Figure 5. The encoder may have three possible
values for the number of layers (1, 2, or 4), resulting in
approximately 130× 103 possible Encoder variations.

3) TEMPORAL ENCODING
The traditional positional encoding uses the token position
in the sequence to obtain the embedding [39]. However,
in the case of non-uniformly spaced event sequences, this
traditional positional embedding is inadequate for capturing
the relative arrangement of events. Therefore, in line with
the approach proposed in Transformer Hawkes process [36],
we utilize temporal encoding to address this limitation.

TE(t, 2i) = sin
(
t/100002i/d

)
,

TE(t, 2i+ 1) = cos
(
t/100002i/d

)
,

where t is an event time normalized to [0, 1], i— dimension,
and d is the embedding size.

4) DECODER
In the decoder block, we utilize a standard transformer
architecture with a searchable number of heads and layers
without recurrent or convolutional layers used in the encoder.
We adopt the transformer variant proposed in [41] with
Sub-LayerNorm and same weights initialization.

5) HEAD
Head aggregates the sequence of feature vectors to produce
the final classification as depicted in Figure 4. First, optional
spatial dropout operation is performed [42]. Next, the
sequence of tokens is aggregated into a single feature vector,
aggregation is also a searchable operation consisting from
either the maximum operation, averaging, or a combination
of both. Finally, the feature vector is projected to obtain the
final logits.

B. THE ARCHITECTURE VECTORIZER
To extract the architecture features for a Predictor-model
- the model designed to predict architecture performance,
we focus on a group of path-based encoders described
in [29]. According to [29] Path-based encoders outperform
the adjacency matrix-based ones for the Predictor-model
setting. Our encoding is done as follows. A binary variable
is assigned to each block, layer and the particular operation
in each layer. If the block or layer is not involved in
the architecture, the corresponding binary variable, and all
variables responsible for the operations inside the block or
layer are set to zero. Finally, all variables are concatenated
to obtain the feature vector. For simplicity we call our
architecture encoding scheme — AVec.

C. THE SEARCH PROCEDURE
With the reasoning presented in Section II-D, we have
opted to use a bayesian optimization similar to [28].

However, instead of an ensemble of DNNs we employed
CatBoost [43] to obtain predictions and corresponding
uncertainty estimates. This alteration from [28] has enabled
us to leverage the benefits that CatBoost offers over the
ensemble of DNNs, a more precise uncertainty estimation
following a theoretically justified approach [43]. We analyze
this choice in Section IV-D2. The search procedure is outlined
in Algorithm 1. There are three main components of the
search process: 1) Architecture vectorizer — AVec, 2) Score
prediction and uncertainty estimation — Predictor-model as
CatBoost, 3) Candidate selection — Thompson sampling.

Initially, a set of Ninit architectures is randomly sampled
from the search space A. After training all of them, actual
performance scores are obtained for each architecture. Next,
the Spredictor is trained using the architecture features and
actual scores. Architecture features are obtained with our
architecture vectorizer—AVec. Then, the trainedPredictor−
model is used to estimate scores and associated uncertainties
for new randomly sampled Niter architectures. It is crucial
to balance the exploration-exploitation trade-off during the
search process. To achieve the balance we use Thompson
sampling with estimated scores and uncertainties. Lcandidates
architectures are sampled for further trainig. These steps are
repeated until the allocated budget is met as described in
Algorithm 1.

For further technical details on each parameter, Section A
provides a detailed explanation.

D. ENSEMBLE OF TEACHERS
Our search procedure involves training many models.
By combining these models as an ensemble of teachers,
we are able to leverage the benefits of this approach. In [44],
authors demonstrated that a weak teacher ensemble could
lead to improved student performance. This observation
allows us to construct an ensemble of best-performingmodels
at a current search step.We use an average of different models
predictions as a teacher model. Before enabling distillation
loss, we train a total of 30 architectures. On each search
iteration all models predictions for all training examples are
being cached to avoid computational complexity. At each new
iteration, we update members of the ensemble by selecting
topK best performing models from our cached predictions.
We use ensembles of threemodels inmost of our experiments.

To compute the model-to-model loss, we opted for
Mean Squared Error (MSE) instead of Kullback–Leibler
divergence. This choice allows us to avoid using additional
temperature hyper-parameter [45].

IV. EXPERIMENTS AND RESULTS
A. DATASETS
We utilize six publicly available datasets consisting of event
sequences sourced from different data science competitions
and prior studies. These sequential datasets were carefully

2https://www.kaggle.com/competitions/amex-default-
prediction/overview/evaluation
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TABLE 1. Statistics of sequential datasets used for our analysis.

TABLE 2. Comparison of our method with two NAS procedures 1) AutoAttend [13], 2) TextNAS [14] and four fixed architectures 3) Gated Transformer
Networks [16], and baseline models such as 4) Fixed Transformer, 5) GRU, 6) LSTM. We report MEAN and STD of the 3 best models found, for both HPO
and NAS procedures. We mark the First and the Second best performing models as highlighted in this text.

selected to include both categorical and real-valued features.
In each dataset, a sequence of events is provided as an input
to predict a categorical target, making it a classification task.
Detailed statistics and target regarding each dataset can be
found in Table 1.

1) BANK TRANSACTION DATA
VBank,AmEx,AGE,RBchurn andABank datasets consist
of card transactions, financial records, and other user-related
data. Leveraging these datasets, we utilize event sequences
to predict specific targets such as default events, churn,
user higher education, age and etc. Mainly each transaction
is characterized by its date, type, amount, and Merchant
Category Code.

2) TAOBAO
Taobao dataset is a subset of the Taobao APP user behavior
data, comprising millions of items recorded over one month.
The dataset is organized in a user-item interaction format,
consisting of user ID, item ID, category ID, behavior type,
and timestamp.

To suit the context of our task, we preprocess the dataset by
excluding the item ID for simplicity. Additionally, we merge
all categories that appear less than 500 times in the dataset
into a single category. This preprocessing step allows us to
reduce the number of unique categories from 8,900 to 1,900.
We focus on the client’s behavior within a 7-day window to
predict whether they will make a payment in the following
7 days.

No manual feature generation or preprocessing was
conducted on most of the datasets, except the Taobao and

AmEx datasets. In the case of the AmEx dataset, we utilized
a cleaner version obtained from the Kaggle competition
platform.

To create train, test, and validation sets, we performed
a random split for each dataset. The split ratios were set
to 0.6 for the training set, 0.2 for the test set, and 0.2 for
the validation set, based on the total sample size. Sequences
shorter than specified in Table 1 were padded with zeros; for
sequences longer than specified, we tookN last events, where
N is the sequence length specified.

B. METHODS
We compared our results with two NAS approaches, namely
AutoAttend [13] and TextNAS [14]. However, we had to
make some modifications to adapt these methods for the EvS
domain. These modifications are described in Appendix A.
Furthermore, we also compared our approach with fixed
architectures such as GRU, LSTM, and Transformer.
To ensure optimal performance, we performed Hyper-
Parameter Optimization (HPO) for all fixed architectures.
The details of the HPO can be found in Appendix A.

C. RESULTS
Our main results are presented in Table 2. SeqNAS outper-
forms all other methods. The second place is shared by fixed
architectures: Transformer and GRU. We further analyze
importance of MHA and RNN as building blocks of our
search space in Section IV-D3 and show that all blocks are
complementary to each other.
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Algorithm 1 Predictor − model — Model Score Predictor
With Parameters θ , Ninit — Initial Number of Architectures
to Train, Niter — Number of Architectures to Sample
During Each Iteration, Lcandidates —Number of Architectures
to Train During Each Iteration, Ensemble — Ensmbling
Function, M — Number of Iterations, X̂ , S — Predicted
Scores and Corresponding Uncertainties
1: K1 ← Sample(Ninit ), sample random architectures from

the search space.
2: TrainedArches ← Train(K1). Train all architectures in
K1 and obtain their scores, X is a set of scores from all
trained models, Xi are scores for a current iteration.

3: ArchFeatures← AVec(TrainedArches), encode architec-
tures into features.

4: min
θ
(MAE(Predictor − model(ArchFeatures; θ ),X )),

train a score predictor model.
5: for i = 1, 2, . . . ,M do
6: K1+i ← Sample(Niter ), sample random archi-

tectures from the search space such that Ki+1 ∩
TrainedArches = ∅.

7: X̂ , S = Predictor−model(Ki+1; θ ), predict scores and
score uncertainties.

8: Select Lcandidates architectures from K1+i with Thom-
son sampling using obtained uncertainties S.

9: T ← topK (TrainedArches), select the best performing
teacher models from already trainedmodels and obtain
an ensemble of teachers Ensemble(T ).

10: Train all models in Lcandidates with distillation loss and
Ensemble(T ) and obtain actual scores Xi.

11: TrainedArches← TrainedArches ∪ Lcandidates.
12: X ← X ∪ Xi.
13: ArchFeatures = AVec(TrainedArches), encode archi-

tectures into features.
14: Update a score predictor model θ ←

argminθ L(θ), where L(θ) = MAE(Predictor −
model(ArchFeatures; θ ),X ).

15: end for
16: Select the best architecture from TrainedArches accord-

ing to some performance metric.

Our experiments show that search spaces from related
domains, such as text, do not always transfer well to EvS and
sometimes underperform even simple models such as RNN.

A potential disadvantage of SeqNAS is its longer training
time compared to other approaches, as shown in Table 5.
However, as discussed in Section I, it is still a reasonable time
complexity given significant gains for various applications.

D. ABLATION STUDIES
1) ENSEMBLE OF TEACHERS
In Figures 6 and 7 we demonstrate the results of the search
procedure with and without Knowledge Distillation (KD) on
two datasets, AmEx and RBchurn correspondingly. We show
the average scores of the top 3 models over the search steps.

FIGURE 6. Search performance of SeqNAS with and without KD on AmEx
dataset over a number of trained architectures, for 200 architectures in
total. Results are averaged over 3 best performing models as a sliding
window. Performance is measured with a metric specified in Table 2 for
AmEx dataset. KD is employed after 30 models were trained. It can be
seen that lines start to diverge approximately after 60th iteration.

FIGURE 7. Comparison of SeqNAS, Random search with KD and Random
search without KD on RBchurn dataset over a number of trained
architectures, for 400 architectures in total. Results are averaged over
3 best performing models as a sliding window. Performance is measured
with a metric specified in Table 2 for RBchurn dataset. KD is employed
after 30 models were trained.

It can be seen that KD significantly improves performance
metrics for both datasets. The same observations can be seen
for other datasets in Table 3, where we demonstrate the final
metrics for the single best architecture using a random search
procedure.

We experimented with different approaches to (1) select
diverse teachers and (2) combine their predictions into an
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TABLE 3. Effect of knowledge distillation on search score using random
search.

ensemble. We found that averaging the predictions of 3 best
performing models resulted in the best performance. During
training, we had access to hundreds of trained models, and
we believe there are further opportunities for improvement
and potential applications in this direction.

2) CatBoost VS. DNN PREDICTIOR
We evaluate two types of models for architecture scoring
and uncertainty estimation (Predictor − model) in Figure 8.
The results demonstrate that the model based on CatBoost
outperforms the one based on an ensemble of DNNs with
slightly superior performance. We used an ensemble of eight
models.

FIGURE 8. Comparison of different predictors on AmEx dataset:
CatBoost [46] and an ensemble of DNNs originally proposed in
BANANAS [28]. Results are averaged over 3 best performing models as a
sliding window. Performance is measured with a metric specified in
Table 2 for AmEx dataset.

3) ENCODER BLOCKS IMPORTANCE: MHA, GRU,
OR CONVOLUTIONS
To better understand the roles of MHA, GRU, and Convolu-
tions in the encoder layers, we conducted a search procedure
where we removed one of these blocks at a time. As shown in
Figure 9, models without GRU block exhibited a significant
drop in performance compared to those with all three blocks

FIGURE 9. Search performance of SeqNAS without different blocks in
Encoder layer and with all blocks included — ALL on AmEx dataset.
Results are averaged over 3 best performing models as a sliding window.
Performance is measured with a metric specified in Table 2 for AmEx
dataset. We see that different types of operations complement each other.

present. Unsurprisingly, these results can be explained by the
good performance of GRU model alone presented in Table 2.
Nonetheless, it is worth noting that the relative importance of
each block varies depending on the dataset used.

FIGURE 10. Search performance of SeqNAS and Random search with KD.
Results are averaged over 3 best performing models as a sliding window.
Performance is measured with a metric specified in Table 2 for ABank
dataset. Both SeqNAS and Random search use the ensemble of teachers.

4) RANDOM SEARCH VS SEQNAS
In Figures 10 and 7, we compare SeqNAS and Random
search procedure for two datasets, AmEx and RBchurn
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correspondingly. In our settings, we first train 100 randomly
sampled architectures and then fit Predictor − model to
score new candidates. It can be seen that SeqNAS starts to
outperform Random search approximately after 100 steps for
both datasets.

E. NAS-BENCH EVENT SEQUENCES
Analogous to the precomputed NAS benchmarks [15],
[31], [32], we release a dataset with trained and evaluated
architectures. The details can be found in Appendix C.

V. DISCUSSION
• The search space of TextNAS contains same operations
as SeqNAS. However, TextNAS differs from SeqNAS
in terms of graph topology and search procedure.
TextNAS performs worse than both SeqNAS and fixed
architectures with HPO, raising questions about the
impact of search space design or search method, such
as ENAS.

• It’s important to note that SeqNAS does not outperform
ROCKET for univariate time series classification.
Many recent methods that performwell onUCR datasets
utilize specific convolutional operations or fixed feature
generation. Thus, our search space could benefit from
incorporating new searchable operations proposed in
various works for UTS classification.

• There are potential improvements that can be made
based on TPP modeling works, such as better estimation
of event densities [36] or the use of temporally
parameterized long convolutions [37].

• While our results highlight the importance of the
GRU unit in EvS modeling, this observation may be
specific to our datasets. It’s possible that with larger
datasets, Transformer-based blocks may offer better
performance. Different training strategies, like applying
causal masks, may also help improve Transformer
performance.

• Currently, our method may produce over-parameterized
models without considering hardware constraints. Fur-
ther improvement can be done to develop a more
computationally efficient approach.

• The literature currently lacks a NAS procedure that
features a broad search space suitable for a wide variety
of tasks, referred to as the Universal Search Space.
Moreover, we see that the generalization ability of
existing search methods is limited even across similar
domains.

VI. CONCLUSION
In this paper, we introduce SeqNAS, a novel method
for automatically searching neural architectures specifically
designed for EvS data. Our approach outperforms other NAS
methods and standard architectures with hyper-parameter
optimization in the EvS domain. We demonstrate the
versatility of our method by applying it to various datasets.

To the best of our knowledge, our work represents the first
extensive exploration of NAS for EvS.
We show that in our search space different types of

operations complement each other, leading to the discovery
of improved architectures. There is no architecture which
performs better without one of the operations: MHA, RNN
unit, or convolution.
Our approach combines knowledge distillation with

sequential Bayesian Optimization to achieve significant
performance improvements in a computationally efficient
way.
Additionally, we establish a benchmark for EvS classifi-

cation by comparing different models and techniques. This
benchmark can serve as a valuable resource for researchers
looking to advance the field of EvS classification.
We release the NAS-BENCH Event Sequences dataset,

which includes architectures and corresponding scores,
to support research on predictor-based NAS methods.

APPENDIX A
TECHICAL DETAILS
In SeqNAS, for all of our datasets, we used the following
hyper-parameters parameters: Ninit = 100, Niter = 100,
M = 40 and Lcandidates = 15. For more details regarding
each dataset, please refer to our repository.
To evaluate various NAS methods, including TextNas,

AutoAttend, and GTN, we used the hyper-parameters and
search procedures outlined in their original papers.

For TextNas and AutoAttend, we incorporated ur Stem
blocks to combine real-valued and categorical features. Sim-
ilarly, for GTN, we added embedding layers for categorical
features but chose not to utilize convolutional layers for real-
valued features, as they were not utilized in the original paper.

For fixed transformer architecture, we used a simple model
with two MHA layers in both Encoder and Decoder, with
8 heads in each. LSTM and GRU models consisted of only
one RNN layer, with Stem and Head blocks. Fixed models
were optimized using hyper-parameters optimization.

For all models, we used the identical fixed structure
for Stem and Head blocks described in our architecture.
In the Stem block, we did not use dropout and set fixed
convolutional layer kernel size to 3 × 3. For Head, we fixed
the spatial dropout rate at 0.3, and for pooling we used Max
pooling.

For HPO, we employed Optuna [47] and optimized the
following hyper-parameters for 30 iterations: 1) batch size,
2) optimizer type, 3) learning rate, 4) weight decay, 5)
embedding size, 6) linear layer size for Transformer or hidden
size for RNN, and 7) dropout rate.

APPENDIX B
ADDITIONAL EXPERIMENTS WITH TIME-SERIES
CLASSIFICATION
Additionally, we assessed the performance of our classi-
fication method on UTS (Univariate Time Series) using
datasets obtained from the UCR archive [48], specifically the
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TABLE 4. Comparison of UTS classification for datasets from USR archive
with ROCKET, ROC-AUC is computed for both datasets.

TABLE 5. Approximate search cost in GPU hours for SeqNAS, TextNAS
and GRU with HPO. SeqNAS used 400 iterations. TextNAS uses ENAS for
architecture search, which is significantly faster. For HPO details, we refer
to Section A.

TABLE 6. In this table, we demonstrate the distribution of architectures
among various datasets and methods. The architectures are presented
based on our final search procedure as well as randomly queried ones.

InsectSound and ElectricDevices datasets. Comprehensive
descriptions of these datasets are publicly available through
the UCR archive. We evaluate the performance of SeqNAS
on Univariate Time Series (UTS) classification against two
datasets from the UCR archive [48]. Our results, as displayed
in Table 4, demonstrate that SeqNAS produces reasonable
results for UTS classification due to its flexible search space.
However, it should be noted that SeqNAS performance
suffers when used with small-size datasets from the UCR
archive.

APPENDIX C
NAS-BENCH EVENT SEQUENCES
Our dataset consists of 3200 architectures obtained on
six different datasets. Out of the total architecture pool,
800 architectures were randomly queried from our search
space, while 2400 architectures were queried using our search
procedure. The distribution of these architectures across
datasets and methods can be found in Table 6. For each
architecture, we provide the best score achieved across all
epochs, alongwith its feature vector encoded usingAVec. The
corresponding metrics for each score are listed in Table 2.
All architectures within a dataset were trained for an equal
number of epochs.

We specifically present architectures obtained through
random search and our search procedure, as the architectures
found through our procedure tend to have better performance
metrics. This bias towards better performance can be
observed in Figure 11, which shows the distribution of

3Results are obtained from [49].

FIGURE 11. We present the distributions of queried architectures on two
datasets using both our search procedure and random search. The
distribution labeled with OUR represents our search procedure. It can be
seen that architectures queried with OUR procedure are slightly shifted
towards higher performance metrics, this shift is more significant for
ABank dataset.

queried architectures on two datasets using both our search
procedure and random search.
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