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ABSTRACT In the field of blood glucose prediction, the literature is abounded with algorithms that
demonstrate potential in glucose management. However, these propositions face an issue common to many
machine learning algorithms: the repeated reuse of datasets (overfitting) and a tendency to develop algorithms
in isolation, detached from practical scenarios. Compounding these challenges is that many insulin
pump vendors and continuous glucose monitor vendors use closed and proprietary protocols, restricting
researchers’ data access and the ability to deploy complex, multivariate optimizers. This study seeks to
bridge the gap between theoretical algorithms and their real-world applications by devising a software
development kit. This kit collects real-time data from continuous glucose monitors, carbohydrate intake,
insulin deliveries from insulin management systems, and metrics like physical activity, stress, and sleep
from wearables. Our methodology leverages the open-source insulin management system, Loop, integrated
with Apple Health and various wearable devices. Although navigating through diverse communication
protocols to link these devices presented challenges, we succeeded in aggregating a comprehensive dataset
for blood glucose predictions. To underscore the utility of our software development kit, we executed a
technical proof-of-concept on this platform, illustrating real-time, individualized, data-driven multivariate
blood glucose predictions. We hope that our platform can contribute to transforming machine learning
algorithms from technical developments into actionable tools with real-world benefits in blood glucose
management. It provides a foundation for researchers to refine their predictive algorithms and decision
support systems within a more dynamic, data-rich environment.

INDEX TERMS Blood glucose prediction, health information systems, machine learning, wearable sensors.

I. INTRODUCTION
Predicting blood glucose (BG) levels is important for man-
aging diabetes and can also be helpful for non-diabetics [1].
BG prediction models can assist in decision-making or be
part of a system that helps regulate insulin in the body [2].
Continuous glucose monitoring (CGM) devices can measure
and transmit BG levels to a smartphone or insulin pump.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chan Hwang See.

BG dynamics are influenced by various factors such as
meals, sleep, exercise, stress (MESS) [3], and the menstrual
cycle [4]. BG predictions using CGM, insulin infusion data,
and physiological sensor data would greatly benefit people
interested in better glycemic control and researchers in
developing accurate prediction models and utilizing them
in products to benefit users. Researchers have attempted
to create smartphone applications for predicting future BG
levels, but these have been tested only on simulation data or
rely heavily on user manual input.
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Commercially available wearable sensors can provide
raw physiological signals that can non-invasively indicate
the occurrence of stress, physical activity, sleep [5], and
even menstrual cycle patterns [6]. Developing lightweight
physiological sensors will lead to more comfortable and less
costly wearable devices to monitor various activities [7].
BG measurements, insulin injections, and carbohydrate
intakes are commonly used parameters in BG prediction.
This study will focus on research using additional variables
from non-invasive sensors or user-reported events. Types of
additional inputs can be heart rate, galvanic skin response,
skin temperature, sleep events, exercise events, or accelerom-
eter data [8], [9]. Biometric variables might contribute to
enhanced glycemic control [10].
Most studies in multivariate BG prediction have only

focused on comparing the prediction accuracy to other studies
rather than universal requirements for prediction accuracy.
To the authors’ knowledge, there are no such defined
requirements, and such requirements must depend on the use
case of the BG predictions. The OhioT1DM dataset [9] is a
common benchmark dataset to train and evaluate multivariate
BG predictions because of its input feature space containing
both wearable sensor data and self-reported live-event
data. Researchers have proposed numerous BG prediction
algorithms in the literature. However, BG prediction accuracy
is statistically and clinically different between datasets [11].

Previous research has established that real-life validation
for multivariate BG prediction algorithms is a remaining gap
in the research [12] and that most algorithms are trained
on small datasets or clinically obtained datasets from highly
motivated patients. Assessments in field conditions will help
develop products and evaluate and compare BG prediction
models.

Researchers have attempted to create mobile systems
that display BG predictions. In 2020, Krivenstov et al.
developed Diabits [13], a smartphone application directly
connected to CGM data. Users could input meals, insulin,
and physical activity manually. They claim that most users
need to provide more manual inputs; hence, CGM values
are the most significant factor in the predictive models. The
280 most long-standing users observed a correlation between
increased frequency of app use and improved standard
BG control metrics. He et al. [14] created a smartphone
application, CausalBG, that could collect CGM data and
other external factors impacting BG levels. Insulin, meals,
and other factors were based on manual inputs, although the
smartphone-embedded sensors could automatically record
sleep and calorie expenditure. The BG predictions were
tested on three subjects for one day, showing promising
results in terms of prediction accuracy. Li et al. deployed
their BG prediction on an Android mobile phone [15].
Zhu et al. implemented a wearable wrist-worn device to run
a machine-learning BG prediction model in real-time [16].
Li et al. and Zhu et al. evaluated their smartphone system on
simulated data. Researchers still need to address the issue of
automatically reading data from various sources of wearable

sensors and insulin management systems (IMS) in mobile
BG prediction systems. It is crucial to fill this gap to help
users avoid the burden of manual inputs while conducting
experiments in real-life scenarios.

FIGURE 1. Visual representation of key components within the system,
highlighting the distinction between the primary contributions and the
validation experiment.

In this study, we aim to fill a gap in real-time data access
from wearable devices by developing a modular software
development kit (SDK) that can integrate with arbitrary blood
glucose prediction algorithms. Unlike previous approaches,
our SDK enables reading insulin pump data and other
sensor inputs, eliminating the need for manual user inputs.
We have illustrated the main components of the study
in Fig. 1. Our research question focuses on whether our
SDK can capture the essential factors influencing BG
dynamics, including MESS and menstrual cycles. To address
this, our SDK interfaces with three distinct peripherals:
HealthKit, Empatica SDK, and Oura API. The SDK provides
data access endpoints and can be adapted to alternative
predictive methodologies.We evaluate the SDK by deploying
a machine learning prediction model, a Ridge Regressor, to a
smartphone application. The proof-of-concept app displays
real-time BG predictions and can export experimental data
for further analysis.

II. METHODS
In this study, our aim is to develop an SDK capable of
interfacing with various wearable devices to provide essential
inputs for BG prediction. We structure our study as follows:
First, we identify the required inputs through a literature
review. Following this, we design and implement the system,
including the SDK. For validation, we create a proof-of-
concept smartphone application utilizing the SDK to predict
BG in real-time while also collecting and exporting data
for analysis. In the validation experiment, one participant,
an author of this study, wears the system for a continuous 24-
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hour period. This validation phase adopts an observational
approach. Lastly, we qualitatively analyze the results of
our observational validation experiment to assess our study
objectives.

In accordance with ethical guidelines, the human subject
involved in this study provided their informed consent to
participate.

A. INTRODUCTION OF SYSTEM
Our primary objective is to develop an SDK that facilitates
access to diverse data sources for BG prediction. This
achievement holds significance as current technology lacks
a real-time method for predicting BG levels without relying
on manual user inputs. While previous studies have explored
various prediction approaches, ranging from linear models
to deep neural networks [17], our software application, built
using this SDK, serves as an experimental platform to address
this gap. Fig. 1 provides an overview of the system developed
in this study.

TABLE 1. A list of the required variables for the SDK and which factors of
impact on the BG dynamics the variables can explain. Green background
means that the relationship is well established in the literature. Yellow
cells refer to smaller studies, and further research on how to apply the
information in BG prediction might be needed.

In pursuit of our research objectives, we identified the
essential data input sources for our system through a review
of the current literature. Table 1 presents a comprehensive
list of the identified input variables, along with references
to studies elaborating on the influence of these features
on BG dynamics. The selection of input types was made
strategically to encompass significant factors affecting BG
dynamics, specifically focusing on MESS and the menstrual
cycle. These input features conform to existing multi-input
artificial pancreases [8] and are integral components of a
benchmark dataset for predicting BG levels using multiple
inputs [9].
The core purpose of our SDK is to provide a proof-of-

concept for evaluating various BG prediction algorithms in
real-time scenarios, while minimizing the need for manual
user inputs. Therefore, while ensuring functionality and

effectiveness, our emphasis is not on achieving the high
degree of robustness required for clinical-grade applica-
tions [18]. Such clinical-grade requirements represent a
substantial undertaking beyond the scope of our current study.

B. OVERVIEW OF SYSTEM
1) HARDWARE COMPONENTS
The hardware components used in our system are listed
below. Fig. 2 shows the experimental setup with all hardware
components and a smartphone application predicting BG
levels.

FIGURE 2. A CGM, an insulin pump and various non-invasive smart
devices are connected to our SDK allowing real time BG prediction in a
smartphone application.

Wireless communication unit: We use an iPhone as
the wireless communication unit and for running mobile
applications on top of the SDK.

Insulin management system: An IMS consists of an
insulin pump and a CGM. We use a Dexcom G6 and an
OmniPod. The hardware units are managed through the Loop
app running on an iPhone [19]. The controller writes insulin
deliveries, carbohydrate intakes, and CGM measurements
to Apple Health. The CGM records measurements with a
5-minute sampling rate.

Empatica E4 wristband: Empatica E4 provides users
with raw, continuous physiological sensor measurements.
The communication protocol is Bluetooth low energy.
A complete list of available raw sensor values can be found in
the SDK documentation [20]. The sample rates are between
1 and 32 Hz.

Oura ring: Oura Ring is a smartring focusing on sleep
and activity tracking. Data can be accessed through a
web API [21]. The user must open the Oura smartphone
application to synchronize new sensor readings. Activities
and sleep are sampled as events, and sensor measurements
are available at 5-minute intervals or averaged during a sleep
or activity event.

Apple Watch: The last hardware component is an Apple
Watch, which automatically records workouts and biometric
variables to Apple Health. Signals available in our SDK are
heart rate (5-10-minute sample rate), heart rate variability
(2-5-hour sample rate), energy expenditure (1-minute sample
rate), and workout events.
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2) SDK
Our SDK interfaces with the hardware components above
using three distinct communication protocols: HealthKit,
Oura Web API, and Bluetooth Low Energy (BLE),
as depicted in Fig. 1. Through these protocols, we access real-
time data from five hardware components, comprising both
components of an IMS and non-invasive wearable devices.

- HealthKit: Data from Apple Health is inherently
integrated into an iPhone. Users will be prompted with
a consent form on initial use. Subsequently, users can
access the data.

- Oura API: The SDK requires an API key during calls
to access data from the Oura Ring.

- Empatica E4: The Empatica E4 connects directly to the
SDK via BLE. Our SDK facilitates the establishment
and verification of these connections.

It’s worth noting that our SDK focuses on providing
endpoints for various data types. While it does not include
machine learning algorithms or BG prediction capabilities,
it offers comprehensive data access and integration func-
tionalities. The rationale behind excluding machine learning
algorithms is that such algorithms can vary significantly,
making data preprocessing a user-dependent task.

C. IMPLEMENTATION
1) PLATFORM SDK
The SDK is written in the programming language Swift and
works for iOS applications. It provides access to several
input values from wearable devices and IMS. Table 1 lists
all the input values accessible from our SDK. We will
describe how we solved the three main technical challenges
to overcome during the development: Software architecture,
interoperability of input values, concurrency, and BG predic-
tion responsiveness.

FIGURE 3. Class diagram for the proposed SDK.

2) SOFTWARE ARCHITECTURE
The proposed software architecture of the SDK aims to
provide a unified interface for accessing real-time data
from diverse sources, including the HealthKit framework,
Empatica wristbands, and Oura Rings. Fig. 3 shows the
class diagram for the proposed SDK. Specifically, access to
HealthKit data is facilitated through singleton objects, which

possess a startObserver method that incorporates an update
handler. This design enables applications to receive updates
in real-time as data changes are detected. In contrast, the
Empatica wristband and OuraRing objects provide access to
all relevant data types through a single object. This design
choice is consistent with the protocols to access data from
these peripherals. However, this architecture only provides
access to real-time data and does not incorporate any data
persistence and storage mechanisms.

One key benefit of the proposed architecture is the
utilization of a singleton object for HealthKit data access,
which enables a centralized and efficient management of
updates. Furthermore, using separate objects for Empatica
wristband and OuraRing data access simplifies the develop-
ment process by conforming to protocols for accessing data
from these peripherals. The proposed SDK architecture is
based on object-oriented programming principles and adopts
a modular design, with distinct classes allocated to each
data source. Additionally, the SDK class is designed to be
adaptable, making it capable of accommodating new data
sources and peripherals in the future. Finally, the observer
pattern is utilized to deliver updates for the datatypes accessed
throughHealthKit, making the SDKhighly responsive, which
explains why real-time updates are possible.

3) INTEROPERABILITY
BG prediction algorithm inputs represent some state of an
individual at a point in time. The platform SDK is connected
to several sources of data inputs, which differ in sample
intervals and might have some delay in their impact on BG
levels. Three solutions for this problem are implemented
depending on the input value:

- Aggregating values using the sum or average
- Using the most recent value
- Using physiological models to represent the delay and
the relationship between the value and the BG response

Energy expenditure is an example of a value where data
aggregation is used over a given time interval. In this study,
sleep was recorded each morning, which is not as frequently
as required for real-time prediction. Hence, our solution is to
use the most recent sleep analysis value for predictions the
whole day.

The effect of insulin injected subcutaneously has a slow
onset and lasts for several hours. Physiological modeling
of the insulin effect can improve BG prediction [22]. The
amount of active insulin in the body at a given time is referred
to as insulin on board (IOB). We used the insulin-on-board
algorithm provided by the LoopKit library [23]. The SDK
has been designed to allow developers the flexibility to select
the parameters most appropriate for their specific application.
This algorithm allows for user-defined insulin delay, peak
activity time, and total activity time, as these vary across
individuals and types of insulin. The same algorithm is used
to model carbohydrate absorption. In our proof-of-concept
software, the insulin model utilizes the default parameters
specific to adults utilizing rapid-acting insulin provided by
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the LoopKit library. The parameters utilized in the meal
model were determined through trial and error, utilizing
validation data to determine the optimal parameters. Table 2
lists the parameters used in our algorithms, and Fig. 4 plots
the models.

TABLE 2. Parameters used in the physiological models for calculating
insulin and carbohydrates on board.

FIGURE 4. The physiological absorption models for insulin and
carbohydrates.

4) CONCURRENCY
DispatchGroup is implemented in the SDK to synchronize the
execution of concurrent calls and ensure that the calls for data
from all the different peripherals have been completed before
executing a BG prediction.

5) PREDICTION RESPONSE TIME
Two factors can impact BG prediction response times: The
choice of prediction algorithm and the fetching of the input
data values fromwearable sensors or the IMS. For the SDK in
this study, only the last factor is relevant, as users will choose
their prediction approach. Three communication protocols
are used, and different challenges are tied to them regarding
response time optimization.

To observe changes in the Oura Ring web API data,
we have used Swift to periodically request the API to retrieve
and compare the latest data to the previous data. There is no
preset time of day when the API updates, so we must always
assume new data might be available. The response time of the
retrieval from awebAPI is dependent on thewireless network
speed. Empatica E4 is a Bluetooth Low Energy peripheral.
The SDK is the host that sends continuous requests for data,
and the wristband responds with the current measurement.

Hence, if the request interval of the host is lower than the
sample interval of the wristbands, measurements will be lost.
Both the Oura Ring and the Empatica E4 data are accessed
with requests, and the request intervals can be adjusted if the
prediction run time becomes a problem.

Data from the Apple Watch and the IMS is retrieved
using HealthKit’s HKAnchoredObjectQuery, which uses an
‘‘anchor’’ to track the position of the last item returned in the
previous query. The anchor allows you to retrieve data that
has been added to the HealthKit store since the last query
efficiently. The SDK receives notifications whenever new
data is added to the HealthKit store, allowing apps to update
in real-time as new data becomes available, which leads to
improved response time.

D. PROOF-OF-CONCEPT SMARTPHONE APPLICATION
The primary objective of developing a smartphone appli-
cation using our proposed SDK is to showcase the SDK’s
capability to create real-timeBGprediction applications. This
demonstration involves the creation of a technical proof-
of-concept, resulting in a smartphone app that leverages a
Ridge regression model for these predictions. Our models are
trained using Python and then exported to a compatible model
format for iOS development using coremltools. Please note
that our proposed SDK primarily focuses on data retrieval,
and we expect users to develop and deploy their predictive
models.

1) RIDGE REGRESSION MODEL
Users of our SDK can employ any BG prediction approach.
In our proof-of-concept, we implement a Ridge Regres-
sor within our smartphone application. This decision is
anchored in the findings of Xie and Wang [17], who
demonstrated that Ridge Regression outperforms other state-
of-the-art algorithms in predicting BG levels. Their analysis
spanned a range of predictive algorithms, from conventional
machine learning models to advanced deep neural networks.
We further justify the selection of Ridge Regression by its
comparative simplicity, reduced computational demands, and
greater interpretability relative to alternative algorithms.

We employ a direct prediction strategy to generate future
glucose level sequences, opting against a recursive approach.
Direct predictions can mitigate the propagation of errors [24].
Hence, we implement two models that estimate BG levels at
30 and 60 minutes into the future. The optimization of the
alpha parameter within the Ridge Regression algorithm is
conducted through a grid search bolstered by a 5-fold cross-
validation process.

Guided by the optimal results presented in the benchmark
study by Xie and Wang [17], we add 12 time-lagged features
for each feature. Each model is trained on an individual
basis.

We compare two models with different feature spaces. The
first model has only CGM measurements as an input, while
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the other model has CGM measurements, absorbed insulin,
absorbed carbohydrates, and the energy expenditure.

2) DATA PROCESSING
Our study utilized two datasets to validate the Ridge
Regression model. Initially, the Ohio T1DM dataset was
employed to confirm that our implementation yielded compa-
rable performance with the benchmarks established in [17].
Subsequently, this verified implementation was applied to
train and test the model using data collected from our study
participant.

To align our predictive performance with [17], we engaged
the same OhioT1DM dataset from 2018, which comprises
data from six individuals diagnosed with Type 1 Diabetes
Mellitus (T1DM) [9]. The dataset spanned eight weeks and
designated approximately 20% of its data for testing. Details
on the division of test and train samples are delineated in [9].
We obtained this dataset under a Data Use Agreement (DUA
no. D201804) between Ohio University and the Norwegian
University of Science and Technology.

For our proof-of-concept application, data sourced from
an author with T1D was extracted from the Apple Health
app. This dataset, encompassing three months of monitoring,
served to train the personalized prediction model. The train
test split approach mirrors the protocol used with the Ohio
T1DM dataset, where 20% of data was reserved for testing,
culminating in 20685 training samples and 5211 test samples.
In order to prevent data leakage between the train and the
test samples, we omitted a segment of 12∗24 data points
(equivalent to one day) from the sequence.

The preprocessing steps were conducted using the pro-
cedures outlined in [17]. Initially, disparate features were
resampled to a unified temporal resolution of 5-minute
intervals. Subsequently, any missing values were imputed
using the Akima method. Imputed target values were
excluded from our evaluation. Finally, feature normalization
was executed, scaling values to a [0,1] range.

3) PERFORMANCE METRICS
Following the best practices for BG prediction algorithm
evaluation as outlined by Jacobs et al. [25], our analysis
employs recommended metrics. In accordance with Best
Practice 33, root mean squared error (RMSE) serves as
our primary measure of accuracy. RMSE is defined in (1).
Additionally, adhering to Best Practice 34, we include a
measure of relative error by the mean relative error (MRE),
defined in (2).

RMSE =

√
1
N
(
∑N

1
(ŷ (k + PH) − y(k + PH))2) (1)

MRE =
1
N

∑N

1

ŷ (k + PH) − y (k + PH)

y (k + PH)
(2)

Here, ŷ (k + PH) denotes the predicted BG level at a
future time point k plus the prediction horizon (PH), and
y (k + PH) represents the actual measured BG level at that
same time point.

III. RESULTS
A. SOFTWARE DEVELOPMENT KIT
The core objective of this study was to engineer a versatile
platform SDK capable of real-time data acquisition from an
IMS and non-invasive wearable devices. The data acquired
encompassed critical information related to physical activity,
stress levels, and sleep patterns, intending to establish
endpoints for input variables suitable for multivariable BG
predictions.We addressed this challenge by utilizing an open-
source IMS named Loop, which facilitated data transmission
to Apple Health. Concurrently, several wearable devices were
employed to achieve our objectives successfully. Ultimately,
our SDK seamlessly provided all the requisite feature inputs
identified and detailed in Table 1.

In summary, our SDK provides the following endpoints
based on the communication protocols:

- HealthKit:
◦ CGM values
◦ Insulin deliveries
◦ Carbohydrate inputs
◦ Energy expenditure
◦ Heart rate
◦ Heart rate variability
◦ Workouts

- Oura API:
◦ Sleep duration

- BLE:
◦ Galvanic skin response
◦ Accelerometer
◦ Skin temperature

To assess the proficiency of our newly developed SDK,
we chose to implement a proof-of-concept application that
harnessed the capabilities of the SDK. Our primary goal
was to determine the feasibility of constructing a smartphone
application leveraging our SDK, capable of presenting real-
time BG predictions without necessitating manual inputs.
As illustrated in Fig. 2, our mobile system established
connections with our wearable devices, thus enabling the
provision of real-time mobile BG predictions. Furthermore,
we incorporated a feature within the smartphone application
that facilitates the export of input values and BG predictions
to an Excel sheet, facilitating further in-depth analysis.

B. PREDICTION ALGORITHM PERFORMANCE
We benchmarked our Ridge Regression model against [17]
using the OhioT1DM dataset, conducting individualized
training for each subject and then computing the mean
performance. Table 3 presents the RMSE results across
different PHs and input features, comparing the OhioT1DM
dataset with our data. Including additional features consis-
tently yielded superior RMSE values compared to using
only CGM inputs, both in the benchmark dataset and our
participant’s data.

Relative to the findings reported in Table 4 in [17],
our model—incorporating CGM, insulin, carbohydrates, and
heart rate with 12 time-lagged features over a 30-minute
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TABLE 3. Accuracy in RMSE for models using a benchmark dataset
compared to the data from our validation experiment, with respect to the
input features and prediction horizons. All models use 12 time-lagged
features for each input feature.

TABLE 4. Accuracy in MRE for models using a benchmark dataset
compared to the data from our validation experiment, with respect to the
input features and prediction horizons. All models use 12 time-lagged
features for each input feature.

PH—achieved a RMSE of 18.87 (± 2.91), compared to the
benchmark’s 19.52 (± 2.90). This enhancement is likely
attributable to our physiological modeling of insulin and
carbohydrates. Table 4 illustrates the MRE results, indicating
balanced predictions without significant skewness.

C. VALIDATION EXPERIMENT
To validate our SDK, one of the authors participated in a
24-hour experiment using the proof-of-concept smartphone
application. The experiment encompassed various scenarios,
resulting in the collection of a diverse set of data, including
metrics related to absorbed carbohydrates, absorbed insulin,
and calorie expenditure, as well as measured and predicted
BG levels. The subject of the experiment was one of the
authors, who has diabetes. The experiment was structured
around three primary scenarios:

- Carbohydrate intake: The subject added carbohy-
drates to the IMS in conjunction with meals.

- Insulin administration: The subject administered
insulin in response to meals or to correct elevated BG
levels.

- Physical activity: Thirty minutes of high-intensity
physical activity was included as a part of the
experiment.

As the smartphone application was utilized throughout
the experiment, real-time changes in BG predictions were
observed in response to all the varying scenarios. As depicted
in Fig. 5, the consumption of a carbohydrate-rich meal
corresponded with an increase in predicted BG levels, while
insulin administration decreased predicted BG levels.

FIGURE 5. Screenshots from mobile predictions in different scenarios.
Upper picture shows the initial BG prediction. The middle one shows the
updated prediction after adding 60 g of carbohydrate to the insulin
management system, and the lower picture is after 6 U of insulin is
injected.

FIGURE 6. Absorbed carbohydrates, insulin and active energy burned.

During the 24-hour duration of the experiment, an array
of data was tracked, including absorbed carbohydrates,
absorbed insulin, and active calorie expenditure. These
metrics were standardized and plotted in Fig. 6. The graphical
representation allowed us to discern how the levels of
absorbed carbohydrates and insulin evolved over the course
of the day, along with fluctuations in calorie expenditure.
Notably, there was a rise in calorie expenditure during
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periods of high-intensity physical activity, accompanied by
corresponding declines in BG levels.

FIGURE 7. Comparison of predictions of a model trained on only BG
measurements and another model using all the parameters plotted in
Fig. 6.

In Fig. 7, we saw that the Ridge regression model
using multiple parameters resulted in better predictions of
glycemic responses to food, insulin, and physical activity
compared to the model using only one parameter. However,
these models were implemented to illustrate the potential
benefits of providing access to more parameters in such
prediction models, but the model approach still has room for
improvement.

Overall, our experiment was a success, showing us that our
SDK can provide data inputs in real-time without requiring
manual inputs from the user. As we can see in Fig. 5, our app
was able to make predictions in various situations, and the
predictions were updated without requiring manual inputs.
We observed that predictions increased after we registered
carbohydrates in the IMS and decreased after we injected
insulin and performed physical activity.

IV. DISCUSSION
One of the major challenges we encountered in implementing
the platform SDK was the need to use multiple communica-
tion protocols, such as HealthKit, Bluetooth Low Energy, and
a Web API, to connect to different wearable devices and the
IMS. It required significant effort to ensure compatibility and
interoperability but ultimately allowed us to collect a wide
range of data types, as outlined in Table 1.
There has been a missing gap in research to evaluate

multivariate BG predictions in real-life scenarios [12]. Some
attempts have been made, but the solutions have required
manual user inputs [13], [14]. In prior work, Kriventsov et al.
created Diabits, an app that displayed BG predictions. They
found a statistical connection between better glucose control
and more frequent app use [13]. However, a drawback was
that the predictions strongly relied on manual inputs from the
users because most users failed to provide them. A significant
challenge for developing a system that does not require
manual inputs from the user is that insulin pump and CGM
vendors usually have closed protocols so that researchers
cannot access the data or the insulin delivery algorithms.
Closed protocols are also the case for many wearable devices;
they do not provide any raw data for users or researchers
because theywant to protect their algorithms. Thismight slow
research in many health-related projects because it might

require research groups to develop their own devices or go
with unpractical, non-mobile solutions, making it challenging
to run long-term experiments.

The potential applications of the platform SDK are
numerous and varied. For example, the platform could be
used to develop decision support systems for people with dia-
betes, providing real-time BG predictions and personalized
recommendations for insulin dosing and lifestyle changes.
The platform could also be integrated with other wearable
devices, such as smart scales and smart clothing, to provide
a more comprehensive view of an individual’s health and
well-being. Additionally, the platform could be used to
evaluate different multivariate BG prediction algorithms in
real-life scenarios. Various predictive methodologies have
been explored, including traditional machine learning tech-
niques, advanced deep neural networks, and physiological
modeling [22]. Transformer models represent a novel and
growing area in glucose level prediction [26]. Our SDK
provides a more realistic testbed for developing new and
improved BG prediction models.

A limitation of this study is that the developed platform
SDK depends on whether the IMS can write data to Apple
Health in real-time. We solved this by using Loop, an open-
source system without medical approval. Hence, doctors can
not recommend that patients use this system. Also, it would
be beneficial to know more about the insulin delivery algo-
rithms of the IMS to create proper machine-learning models.
For example, the interval between insulin deliveries for basal
rates is unknown. Another consideration is the system’s limi-
tation regarding robustness, which falls short of the stringent
clinical regulation requirements. Robustness pertains to the
system’s resilience in managing errors, which may arise from
communication breakdowns between units or intermittent
signal loss. Predictive adjustments to channel fluctuations
can facilitate stable connectivity and data fidelity in remote
sensor-smartphone communications [27]. However, the pri-
mary focus of this study was to establish data endpoints.
We intended to develop a system capable of supporting real-
life exploration of BG prediction algorithms, irrespective of
the stringent regulatory demands. In this context, our system
aligns with our intended objectives and scope.

V. CONCLUSION
Overall, our study provides proof of concept for a platform
SDK that could be used to develop tools and decision support
systems for people with diabetes or non-diabetics who want
to optimize their health. This platform might contribute
to a broader understanding of multivariate BG prediction
algorithms by allowing for testing algorithms in real-life
scenarios. Previous work has usually evaluated the algorithms
on small, benchmark datasets from controlled environments.
Currently, available simulators do not incorporate other
multiple inputs, although this would generally be a good way
to evaluate prediction algorithms. Further research is needed
to explore the platform’s potential applications in a broader
range of BG prediction approaches, settings, and populations.
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