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ABSTRACT The Internet of Things (IoT) is transforming how we live and work, and its applications are
widespread, spanning smart homes, industrial monitoring, smart cities, healthcare, agriculture, and retail.
Considering its wide range of applications, addressing the security challenges arising from IoT devices’
massive collection and transmission of user data is vital. Intrusion detection systems (IDS) based on deep
learning techniques offer new means and research directions for resolving IoT security issues. Deep learning
models can process large volumes of data and extract complex patterns, making them generally more
effective than traditional rule based IDSs. While deep learning techniques are gradually gaining popularity
in IDS applications, current research needs a comprehensive summary of deep learning-based IDS in IoT.
This paper introduces intrusion detection technologies, followed by a detailed comparison, analysis, and dis-
cussion of deep learning models, datasets, feature extraction and classifiers, data preprocessing techniques,
and experimental design of the models. It also highlights the challenges and issues associated with deep
learning models and relevant techniques for IDS. Finally, it concludes by providing recommendations to
assist researchers in this domain.

INDEX TERMS 10T, IDS, deep learning, datasets, data preprocessing, feature extraction, classifiers.

I. INTRODUCTION tions. In addition, IoT has various applications in healthcare,

The concept of IoT is to connect a multitude of physical
devices through a network, enabling them to collect and
exchange data efficiently for intelligent control and manage-
ment [1]. The applications of IoT have been widely used
in various industries and areas of life. In the home, IoT
technology enables devices such as lighting, heating, air
conditioning, TVs, and refrigerators to connect and interact
over a network for remote control, automated operation and
other functions [2]. IoT can monitor industrial production
processes to increase productivity and reduce operational
costs [3]. In urban management, IoT can be used for traffic
control, environmental monitoring, and public safety applica-
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agriculture, and retail [4].

With rapid growth and development, IoT has also encoun-
tered challenges, especially regarding data security and
privacy. This is a vital issue because IoT devices accumulate
and distribute large amounts of user data, which attackers
can compromise without adequate safeguards [5]. Recently,
artificial intelligence and machine learning-based IDS have
been used for IoT. These systems can automatically learn
and identify standard network behavior patterns to effectively
detect anomalous behavior [6]. Figure 1 shows the deploy-
ment of IDS in an IoT environment, illustrating that IoT
devices and servers are deployed on the open Internet. IDSs
can protect IoT devices from attacks by detecting intrusions
and alerting them to anomalous behaviors before the attackers
can penetrate the [oT.
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FIGURE 1. An IDS deployment scheme for loT environment.

There is a growing interest in the application of deep
learning and related technologies for IoT security. This devel-
opment can be attributed to its benefits, including improved
detection efficiency, fewer false positives and less reliance
on feature engineering [7]. In addition, it automatically and
intelligently identifies attack features, thus helping to detect
potential security threats [8]. Deep learning models can build
efficient IDS models using large amounts of traffic data to dis-
tinguish between normal and abnormal network behavior [9].
In addition, deep learning models can accurately identify
potential intrusions by scrutinizing features and patterns in
network traffic. The efficacy of IDS depends to some extent
on the appropriateness of feature extraction and classifica-
tion methods [10]. In turn, finding suitable and effective
intrusion detection datasets is a meaningful way to test the
effectiveness of IDS deep learning models, which is also
a significant challenge [11]. In addition, the selection and
tuning of superparameters play a crucial role in constructing
deep learning-based IDS models. For example, in [12], the
researchers investigated the ideal number of hidden layers
and neurons in Generative Adversarial Networks (GANSs).

The major contributions of this paper are highlighted as
follows:

o A detailed overview of intrusion detection techniques,
their classification, and characteristics.

o Overview of deep learning techniques, comparison of
common deep learning models, and highlighting and
their advantages and disadvantages.

« Analysis of standard intrusion detection datasets, intro-
duction of dataset characteristics, their composition,
distribution, and comparison of application scenarios.
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o Comparison of data preparation techniques from vari-
ous studies, including numerical encoding methods and
solutions for data imbalances. In addition, analysis of
application of feature extraction methods and classifiers
in deep learning-based IDSs and comparison of their
respective implementations.

The rest of the paper is organized as follows. Section II
presents intrusion detection techniques, including issues
related to classification and traditional rule based IDSs.
Section III examines common deep learning models applied
in IDSs and provides their analysis. Section I'V describes stan-
dard intrusion detection datasets and their respective charac-
teristics. Section V examines data preprocessing in intrusion
detection systems, techniques for addressing dataset imbal-
ance, feature extraction, and classifiers. Finally, Section VI
concludes the paper by highlighting limitations and providing
future research directions.

II. INTRUSION DETECTION SYSTEMS

Gathering information from critical network points is the
hallmark of intrusion detection. Data is scrutinized using
predefined rules to determine the presence of adversaries
and classify ongoing network attacks. This approach is often
referred to as intrusion detection [13]. Figure 2 illustrates the
intrusion detection process.

Data sources in networks typically contain valuable infor-
mation, including details of changes to sensitive files, the
operation of uncommon programs, and network traffic.
Once extracted, this information requires processing and
analysis, known as information analysis. To detect intru-
sions, various data mining techniques, pattern matching, and
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FIGURE 2. The process of intrusion detection.

integrated learning methods are commonly used. The
response is founded upon the outcome of the intrusion detec-
tion analysis intended for post-processing purposes, which
comprise data storage for subsequent reference, reconfigura-
tion of routers, and other equivalent actions [14].

An IDS sits behind the firewall and secures the entire
system against intrusion. It effectively complements to the
firewall, monitoring data traffic and blocking abnormal traffic
connections in conjunction with the firewall when the intru-
sion detection finds abnormal behavior [13].

Intrusion detection can be classified based on technology
or data sources. Technically, it is categorized into two cate-
gories: anomaly detection and misuse detection. Host-based
Intrusion Detection Systems (HIDS) and Network-based
Intrusion Detection Systems (NIDS) are used for data
sources.

Anomaly detection is a technique to identify whether a
user’s behavior or system resource usage indicates intru-
sion. This method quantitatively describes user behavior
characteristics and employs features to differentiate between
normal and abnormal behavior [15]. The fundamental con-
cept behind anomaly detection is that everyone’s behavior
follows a particular pattern, and by analyzing information
on normal and abnormal behavior and summarizing these
patterns, it becomes possible to distinguish between normal
and intrusive behavior [16].

Misuse detection, also known as feature-based detection,
is a relatively simple method [17]. It assumes that all network
attacks and methods have specific characteristics, and misuse
detection analyses the attack behavior, using expert experi-
ence to discover features, extract them and build a database of
attack features. The success of misuse detection is, therefore,
primarily a matter of building a feature base, i.e., compiling
a comprehensive feature base of attack behavior and elim-
inating the interference of subjective expert knowledge key
issues. Pattern matching and expert systems are the main
misuse detection methods [18].

Anomaly detection and misuse detection are based on
different ideas, and their actual detection performance has
its advantages and disadvantages. In principle, anomaly
detection is based on user behavior and resource usage to
determine whether an intrusion exists. In contrast, misuse
detection is based on the attack’s feature base to deter-
mine whether an intrusion exists [19]. In terms of detection
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accuracy, misuse detection has better detection accuracy
for known attacks. However, it is weaker for new attacks,
while anomaly detection has better detection ability for new
attacks [17].

Host-based intrusion detection technology aims to detect
the host system and local users, and its data comes from
the host, which mainly obtains audit data, system log infor-
mation, software logs and other information from the host.
This information is recorded in detail on the user, system,
and software operations, and the corresponding keywords
are extracted through the analysis system to analyze whether
there is an intrusion [20].

Network-based intrusion detection techniques no longer
depend on the data of the protected host. Instead, the data
used comes from the entire protected network. Characteris-
tic data is obtained through network traffic analysis, packet
parsing, and other network management techniques. Suspi-
cious behavior is then identified and analyzed within the
network [21].

Most intrusion detection technologies are network-based
and are transparent to intruders, making them less likely to
be attacked and ensuring their security; as they are deployed
at critical nodes in the network, they can protect all hosts
in the network for specific software to be installed on the
protected hosts [14]. Figure 3 shows the range of roles of
HIDS and NIDS.

Internet

HIDS HIDS
ﬂ i Firewall
‘ =54
SW1 SW2
------ e - Network
&)
NIDS

FIGURE 3. Intrusion detection range for HIDS and NIDS.

lll. DEEP LEARNING MODELS

This section presents an outline of six deep learning models
frequently used in IDS: (i) Deep Neural Network (DNN), (ii)
Convolutional Neural Network (CNN), (iii) Recurrent Neural
Network (RNN), (iv) Autoencoders (AE), (v) Deep Belief
Network (DBN), and (vi) Self-Taught Learning (STL).

A. DEEP NEURAL NETWORK

The DNN is a robust structure in neural networks, designed
as a feed-forward neural network (FNN) that avoids recursive
connections. Its most notable feature is its ability to con-
tain multiple hidden layers, which can considerably impact
learning. Each hidden layer consists of many neurons that
receive and process the previous layer’s output [22].

4747



IEEE Access

H. Liao et al.: Survey of Deep Learning Technologies for Intrusion Detection in loT

By performing a non-linear transformation of the activa-
tion function, these neurons can capture the intricate and
subtle relationships in the data. The stacked arrangement of
hidden layers in a DNN helps to learn complex non-linear
patterns and extract highly abstract and meaningful features
from the input data [23]. Figure 4 shows a typical DNN model
architecture.

Output
Layer

Hidden
Layerl

FIGURE 4. A typical DNN model architecture.

In these recent studies, [24] proposed a DNN consisting
of 200 hidden layers using an activation function that is a
ReLu function. This neural network was trained and tested
on the NSL-KDD dataset. Experimental results show that an
IDS based on this DNN model can achieve up to 93% classi-
fication accuracy. In contrast, the authors of [25] conducted
experiments on DNN models with different hidden layers.
They utilized a superparameter selection method to determine
the optimal number of hidden layers and used the ReLu
function as the activation function. In addition, they chose the
Softmax function as the output layer classifier. In contrast,
[26] developed a basic DNN featuring one input layer, three
hidden layers containing ReLu activation functions, and one
Sigmoid activation function output layer and evaluated the
model’s performance using three different datasets. In the
study conducted by the authors [27], they compared and ana-
lyzed the performance of the DNN with other deep learning
models. They also constructed a DNN with one input layer,
three hidden layers and one output layer, each consisting of
100 neurons. Through experiments, the authors’ proposed
IDS achieved 99.22% and 99.59% accuracy for binary classi-
fication and multivariate classification on the UNSW-NB15
test dataset, respectively.

References [28] and [29] combine two deep learning mod-
els, DNN and stacked auto-encoder (SAE), to apply them
to the IDS. However, [28] introduces an additional attention
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mechanism to construct an SAAE-DNN model. Moreover,
the ReLLu function serves as the activation function of the
hidden layer in [28], whereas the activation function of the
hidden layer in [29] is the tanh function. Both [28] and [29]
employ DNN as classification algorithms to carry out the
classification task for detecting intrusions. Table 1 presents
the details of the analysis.

TABLE 1. Comparison of DNN-based IDS in terms of hidden layers,
datasets and classification.

Hid Result
Cita Mo Data den Classifi
tion  del set lay cation .. Preci Rec F1-
ers . )
racy sion all
re
NSL 95
DN - 95.4 96.2 93. )
[24] N KD 200  2-class % % 59 ZS
%
D
NSL
DN - Multi- 785 ., 78 76
(23] N KD > class % 81% 5% 5%
D
NSL
98. 99.
DN - 99.84 99.9
[26] N KD 3 2-class % 4% §1 307
% %
D
UNS
DN W- Multi- 99.59
271N NBI 3 class % . . .
5
SA
NSL
AE Multi- 8214 g72 O %
28] g KD 2 class % 8% 89 37
DN D % %
N
SA
[29] E- ?]I)CS- 5 Multi- 98.22 100 100 100
DN class % % % %
N 2017

Table 1 demonstrates that the accuracy of the IDS with
DNN in detecting 2-classes of data in the NSL-KDD dataset
exceeds the accuracy in detecting multi-classes of data, which
is attributable to the data imbalance problem inherent in the
NSL-KDD dataset. In contrast, the accuracy of other intru-
sion detection datasets (e.g., UNSW-NB15, CIC-IDS2017)
usually exceeds that of the NSL-KDD dataset.

B. CONVOLUTIONAL NEURAL NETWORK

The CNN is a unique neural network structure that replaces
matrix multiplication with convolution calculation, which
makes it different from traditional artificial neural networks.
This convolutional operation gives CNNs a unique feature
that improves the data processing performance [8]. The struc-
ture of CNNss is distinctive in that it can take full advantage
of the two-dimensional features of the input data. Com-
pared to other deep learning structures, CNNs are known
to have excellent results in speech and image recogni-
tion [30]. The structure of CNNs consists of three main layers.
The convolutional layer is mainly responsible for feature
extraction, i.e., capturing the critical parts of the input data
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FIGURE 5. A typical convolutional neural network model.

through convolutional operations. The pooling layer serves
for feature selection, which reduces the parameter complexity
by decreasing the number of features. The final classification
task uses a fully connected layer to map the extracted features
to individual classes. The result is a hierarchy that helps
the CNN to perform excellent feature extraction and clas-
sification tasks. Figure 5 shows a typical CNN architecture
diagram.

The CNN was applied to IDS by [31], [32], and [33].
All three models use the ReLu activation function but were
trained and tested on different datasets. One of the papers [32]
also conducted an experimental comparison between the
CNN and the other two models and found that the accuracy
of the CNN model was significantly higher than that of the
LSTM and GRU models, reaching 97.01%.

In contrast, studies in [34], [35], [36], [37], [38], and
[39] have attempted to merge CNN and RNN deep learning
models to fully utilize the extracting feature advantages of
CNN and the powerful classifying capabilities of RNN.

In the [40], CNN combines with the Spark data process-
ing platform for 2-class and then with machine learning for
subsequent multiple classification of abnormal targets. The
benefit of this approach is that it improves the distinction
between normal and anomalous events while reducing the
chance of coupling. In addition, it reduces the time required
for data preprocessing and transformation. Table 2 presents a
summary of the details of the analysis.

Table 2 indicates that IDSs utilizing both CNN and LSTM
perform better than those utilizing only CNN. Additionally,
the intrusion detection datasets of the NSL-KDD and UNSW-
NB15 exhibit favorable results for multi-class tasks.

C. RECURRENT NEURAL NETWORK

The RNN is a neural network structure that processes sequen-
tial data, including time series or textual data. Its mecha-
nism involves cycling information throughout the network,
enabling it to save contextual information from previous
inputs and apply it to the current input [41]. Figure 6 illus-
trates the structure of an RNN.

Figure 6 shows how the RNN achieves weight sharing
by implementing a weight matrix W (a cyclic kernel). This
matrix uses the previous input to the hidden layer as the
weight for the current input. The structure of the RNN
determines its ability to process continuous data. Each time
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TABLE 2. Comparison of CNN-based IDS in terms of dataset,
classification, and modeling.

Model Result
Cita Dataset  Classif
tion s ication ; ]:[S Accu  Preci  Re Scl(;
N M racy sion  call e
UNSW Multi- 95.6
(31] -NB15 class v X % - -
. 99. 98.
KF- Multi- 98.07 97.06
34 v oo 213
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Note:
1. X as an input vector.
ii. h as a vector representing the value of the hidden layer.
iii. y is a vector representing the value of the output layer.
iv. U is the weight matrix from the input layer to the hidden layer,
V is the weight matrix from the hidden layer to the output layer.
v. W is the weight of the last value of the hidden layer as the input for this time.

FIGURE 6. A typical Recurrent Neural Network model.

the input X gets processed at a different point, the RNN
uses the same weight matrix, thus ensuring that every part
benefits. By calling the output characteristics of the previ-
ously hidden layer and transferring them to the following
input, the RNN can maintain an unwavering focus on and
memory for sequential information. This mechanism makes
RNNs a powerful tool for processing sequential data [42].
Furthermore, [43] validated an elementary RNN intrusion
detection model.

However, the RNN is prone to gradient explosion and
gradient vanishing during training, resulting in the gradient
not being passed through the longer sequence during training,
thus making the RNN unable to capture the effects of longer
distances [41]. Because of the large time span, the network
often cannot remember the information for such a long time,
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and as the time span gets larger, it becomes increasingly dif-
ficult for the RNN to learn this information. We can solve the
gradient explosion problem of RNN by setting the gradient
threshold. But compared to gradient explosion, the gradient
vanishing problem of RNN can appear trickier. We commonly
use Long Short-Term Memory Network (LSTM) and Gated
Recurrent Unit (GRU) to address the gradient vanishing prob-
lem, as they are more advanced variations.

The LSTM is specifically used to address the gradient
vanishing in traditional RNNs. LSTM selectively remembers
and forgets information by introducing gating mechanisms
to capture better and convey long-term dependencies [44].
Figure 7 presents the LSTM unit.

Forget Input Output h,
Gate Gate Gate

FIGURE 7. Structure of the LSTM unit.

Figure 7 illustrates that each LSTM memory cell has an
“input gate™, a “forget gate”, and an “‘output gate”, which
work in concert. The “output gate” is an integral part of this
coordinated operation. The “input gate” determines adding
new information and updating the internal state. The ‘““forget
gate” determines whether the previous internal state should
be discarded and regulates the degree of forgetting. The “out-
put gate” determines the current output value and oversees
the weighting of the output [30].

LSTMs have been applied to IDS in [45], [46], [47],
[48], and [49]. The LSTM-based IDS has shown satisfac-
tory results on various data sets. In contrast, in [27], [32],
[50], and [51], the IDS using LSTM were compared with
those using other models, and the performance of the IDS
using LSTM alone was not as good as the performance of
other combined models. To address the weak feature extrac-
tion capability of LSTM alone, [34], [35], [36], [37], [38],
and [40] used a combination of CNN to promote feature
extraction capability in IDS. In contrast, [52] took an alter-
native approach by using AE to reduce the dimensionality of
the features and used it in combination with LSTM, which
also achieved good intrusion detection results.

On the other hand, [39] used a weighted LSTM (WDL-
STM), a variant of the LSTM, to prevent the overfitting of
circular connections. In addition, [53], [54], [55], [56] have
used bi-directional LSTM (BiLSTM) to overcome the limi-
tation of only predicting the output of the following instant
based on the temporal information of the previous instant.
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The GRU is also an RNN, like LSTM. Figure 8 presents
the GRU. The structure of GRU is different from LSTM in
that it uses only two gates to adjust the flow of information.
The ‘“‘update gate” decides whether the internal state needs
to be updated and controls the transfer of previous state
information to the current state. Meanwhile, the “‘reset gate”
determines how much the previous internal state affects the
current time step [57]. In contrast, the GRU simplifies the
gating mechanism while effectively managing information
flow and state updates.

Reset Update h,
Gate Gate

X; |

FIGURE 8. A typical GRU structure.

Both [32] and [58] propose a GRU-based IDS that achieves
89% and 50.25% accuracy on NSL-KDD datasets, respec-
tively. The distinction between these two IDSs is that [32]
considers the imbalance of the NSL-KDD dataset while [58]
does not. Table 3 shows the details of the analyses.

Table 3 shows that the LSTM model is more frequently
used than the other two deep learning models in IDSs. Due to
the excellent feature extraction capability of the CNN model,
it is often paired with the CNN model to form a hybrid IDS
that performs well in intrusion detection. BiLSTM is also
frequently used in IDSs and shows good intrusion detection
capability.

D. AUTOENCODERS

The AE is an unsupervised machine learning algorithm
that learns compact features or data representations. It has
two major parts: the encoder and the decoder. The encoder
maps the data into a low-dimensional representation, and the
decoder remaps the low-dimensional representation into a
reconstruction of the data [59]. Traditional AEs include stan-
dard AE, sparse AE, denoising AE, and other enhancement
AE such as SAE.

The AE is mainly used for data dimensionality reduction
and feature extraction [60], [61]. Therefore, AE and machine
learning are often merged in IDS to create new deep learn-
ing models.AE is responsible for feature extraction and data
dimensionality reduction, while machine learning oversees
classification. For example, [60] proposed an IDS using a
stacked asymmetric deep autoencoder (SNDAE) and random
forest (RF). In [61], by combining sparse AE and logis-
tic regression (LC), binary classification accuracy reached
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TABLE 3. Comparison of RNN, LSTM and GRU in IDS.

) Result
Model Datasets Classification Hidden Citation
layers
Accuracy Precision Recall F1-score
Simple RNN NSL-KDD Multi-class 3 74.19% - - 90.26% [43]
UNSW-NBI5 Multi-class 3 85.38% - - - [27]
LSTM CICIDS2017 2-class 4 99.01% 96.71% 98.58% 97.64% [46]
NSL-KDD 2-class 4 99.56% 99.52% 99.55% - [47]
KF-ISAC 2-class 12 98.07% 97.06% 99.22% 98.13% [34]
AWID-GAN - 5 93.53% 57.45% 31.87% 41.00% [36]
CNN-LSTM CIDDS-001 Multi-class 5 99.83% 99.00% 99.00% 99.00% [37]
UNSW-NBI5 Multi-class 3 84.98% - 95.96% - [38]
CICIDS2017 Multi-class 3 99.91% - - - [40]
LSTM-AE CICIDS2018 - 3 99.10% 99.07% 99.10% 99.02% [52]
WDLSTM UNSW-NB15 Multi-class 5 98.43% - - - [39]
NSL-KDD Test* Multi-class 7 84.25% - - - [53]
CICIDS2017 Multi-class 128 98.48% 100.00% 96.10% 98.20% [54]
BiLSTM
UNSW-NBI5 2-class 2 95.71% 100.00% 96.00% 98.00% [55]
NSL-KDD Test" 2-class 4 94.26% 99.05% 90.79% 94.74% [56]
NSL-KDD 2-class 5 50.25% 48.77% 99.88% 65.53% [32]
GRU
NSL-KDD - 6 89.00% - - - [58]

87.2%. Reference [59] proposes an IDS that utilizes deep
sparse AE and STL to recognize various categories of net-
work attacks by pre-training the network and AEs to extract
features from network traffic. Similarly, [51] and [62] com-
bine SAE with support vector machines (SVM) applied in
IDS and achieve good results.

The AE can also be combined with other deep learn-
ing techniques. For example, [63] developed an IDS with a
denoising AE and a multilayer perceptron (MLP). On the
other hand, [64] combined AE and CNN for intrusion detec-
tion. In another study, [52] proposed to combine LSTM and
AE to achieve highly accurate classification results.

The SAE comprises numerous AE layers stacked on
top of one another. The output of each AE layer is uti-
lized as the input for the following layer, resulting in a
deep neural network structure [65]. Stacked AE can learn
higher-level feature representations through layer-by-layer
training and pre-training, thus improving feature representa-
tion and data characterization [28]. Reference [60] used an
SNADAE for feature extraction. Reference [66] uses deep
SAE and applies them to IDS. References [28] and [29]
both use an SAE for data dimensionality reduction and
then use DNN to enhance the classification effects of the
IDS. The main difference is that Tang et al. added an
attention mechanism to SAE to achieve better classification

VOLUME 12, 2024

performance [28]. A stacked contractive AE combined with
an SVM is proposed [51]. Table 4 presents the details of the
analysis.

As shown in Table 4, the AE is often used as a feature
extraction method for IDS, and the commonly used ones
are Sparse AE, Denoising AE, Stacked AE, and other AE
variants, among which SAE is more widely used due to its
excellent feature extraction performance by using stacked
multi-layer AE. On the contrary, the classification perfor-
mance of AE is relatively weak. It thus needs to be integrated
with machine learning or deep learning techniques by extract-
ing features (e.g., RF, LC, and MLP) to accomplish the
classification task. Furthermore, we find that AE-based IDS
rely heavily on the KDD Cup99 and the NSL-KDD datasets,
where the latter outperforms the former.

E. DEEP BELIEF NETWORK

The DBN is a deep generative model composed of multilayer
Restricted Boltzmann Machines (RBMs) [67]. The main goal
of DBN is to learn the underlying distribution of the data and
produce novel samples. Its distinguishing feature is the multi-
layer architecture, where each layer consists of an RBM. The
RBM is a probabilistic model that employs an energy-based
approach involving both visible and hidden layers to model
the joint distribution of the data efficiently by adjusting the
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TABLE 4. Comparison of the use of AE-based IDS for feature extraction and classifiers.

Feature Extraction Classifier
Datasets
Sparse Denoising Stacked Other
AE AE AE AE RF LC SVM MLP CNN DNN LSTM
KDD Cup99 x x \ N [64]
[60] [51]
NSL-KDD N N N v [62] [28]
UNSW-NB x N N x [63]
CIC-IDS x x J V [29] [52]
[62]
ISCX 2012 X x N x

Note: “V” means that the corresponding deep learning model is applied, and "< means the opposite of “p,

weighting parameters. DBNs are trained by layer-by-layer
pre-training and fine-tuning. They have various applications
such as feature learning, data generation, migration learning
and unsupervised pre-training. DBN can create data, scale
down data and extract valuable feature representations with
high performance and generalization capabilities [30].

A new hybrid weighting DBN (HW-DBN) was proposed
by [67], and the model’s effectiveness was tested on web and
bot systems with 99.38% and 99.99% accuracy, respectively.
Reference [68] used DBN for feature extraction on web data
and used the back propagation (BP) neural network as a
classifier, and ultimately, the model outperformed machine
learning in detection and classification.

F. SELF-TAUGHT LEARNING

The STL is a semi-supervised learning technique designed to
train models using a little piece of labelled data and many
unlabeled data. The initial model in STL starts with labelled
data for training. Then, it is used to predict unlabeled data and
add those predictions to the training set with high confidence
in the labels. Lastly, the model is retrained using the expanded
training set. This process is iterated until the stopping condi-
tion is satisfied [69].

The STL was used to enhance the performance of sparse
AE by connecting feature extraction based on STL to the
authentic features of the dataset, which enables sparse AE to
be trained on the combined features and show good general-
ization [59]. In the paper [69], the authors replaced the old
STL deep learning model using a combination of sparse AE
and Softmax classifiers with machine learning using stacked
AE and SVM on the original STL framework. After the
experimental results, the new model achieved 99.40% multi-
classification accuracy on the NSL-KDD.
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IV. DATASETS

In IDS, selecting appropriate datasets for intrusion detection
assumes critical importance, as the quality and heterogeneity
of the datasets directly impact the system’s performance and
resilience. This section explores the disparities between vari-
ous intrusion detection datasets to gain comprehensive insight
into their effect on experimental evaluation and algorithmic
testing. By comparing the features and distributions of diverse
datasets, researchers can gain valuable insights on selecting
datasets appropriate for their specific research goals.

A. KDD CUP99

The KDD Cup99 dataset constitutes the most comprehensive
and recognized public dataset within the field of intrusion.
It originated from MIT Lincoln Laboratory and the US
Department of Defense (DARPA) project in 1998 [25]. The
experiments were collected to simulate network traffic gen-
erated by attacks under different complex network conditions
in military networks, emulating a variety of different attack
methods, a variety of user types, and a variety of different
network traffic. The entire dataset contains approximately
7 million pieces of data, of which roughly 5 million are
training data and 2 million are test data; each piece represents
a single network behavior, which is determined to be expected
by the data label.

The KDD Cup99 dataset classifies network behavior
into normal behavior and abnormal behavior. The abnormal
behaviour includes four types: Denial of Service Attacks
(DoS), User-To-Root (U2R), Remote-to-Local (R2L) and
Scanning Attacks (Probe). Network attacks are classified into
four categories, each consisting of several types of attacks,
as shown in Table 5.

The DoS attack is an attacker preventing regular computer
network access. It targets the connectivity and broadband of
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TABLE 5. Composition of KDD Cup99 and NSL-KDD datasets.

10%KDD Cup99 NSL-KDD
Cate
80TY  Trainin  Testing KDD KDD KDD KDD
Set Set Traint T g Test-
g 20% 21
NZTm 97278 60593 67343 13449 9711 2152
DoS 391458 229853 45927 9234 7458 4342
R2L 1126 16189 995 209 995 2754
U2R 52 228 52 11 200 200

Probe 4107 4166 11656 2289 2421 2402
Total 494021 311029 125973 25192 22544 11850

a computer network, causing the relevant network service
resources and hosts to be busy and unable to carry out their
regular work.

Probe attacks are port attacks that scan a computer system
for vulnerabilities or weaknesses in network services and use
them to launch attacks on the system.

R2L is a kind of remote user attack; the attacker, through
the remote control of the relevant host or network services,
looks for the existence of vulnerabilities, usually for the target
host, to obtain access to some services through remote means
to carry out illegal operations, the primary behaviour is to log
in the target host, destroy the regular operation of the system.

U2R attack is an attack on the permissions of the target host
or network services; the attacker analyzes the vulnerability of
the host, the attacker obtains the highest operating authority
of the system through the vulnerability or weakness and
performs illegal operations on the network services of the
system, affecting the normal work of the system.

Each record in the KDDcup99 dataset contains 41 different
features, divided into basic features numbered 1 to 9, content
features numbered 10 to 22, and traffic features numbered
23-41. The last feature defines the network data as normal or
abnormal. Figure 9 illustrates the KDD Cup99 dataset record.

o,tcp,private,REJ,®,0,0,0,0,0,0,0,0,0,0,0,0,0,
e,e,0,0,112,18,0.00,0.00,1.00,1.00,0.16,0.07,¢
.00,255,18,0.07,0.087,0.00,0.00,0.00,0.00,1.00,
1.69,neptune.

e,tcp,private,REJ,?,0,0,0,0,0,0,0,0,0,0,0,0,0,
e,0,0,0,121,11,0.00,0.00,1.00,1.00,0.09,0.07,0
.00,255,11,0.04,0.067,0.006,0.00,0.00,0.00,1.00,
1.00,neptune.

@,tcp,private,REJ,,0,0,0,0,0,90,0,0,9,0,0,0,0,
,0,0,0,130,20,0.00,0.00,1.00,1,00,06.15,0.06,0
.00,255,20,0.08,0.06,0.00,0.00,0.00,0.00,1.00,
1.00,neptune.

o,tcp,private,REJ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
e,0,0,0,89,8,0.00,0.00,1.00,1.00,0.09,0.07,0.0
@,255,8,0,03,0.06,0.00,0.00,0.00,0.00,1.00,1.0
@,neptune.

FIGURE 9. KDD Cup99 dataset record.

VOLUME 12, 2024

Figure 9 shows that 38 of the 41 features are numeric, and
three are symbolic. Each data record consists of a category
label and 41 dimensions of features. Of these, dimension 2 is
a protocol-type symbolic feature, dimension 3 is a network
service-type symbolic feature, dimension 4 is a network con-
nection status symbolic feature, and the last dimension is a
label that serves as a basis for determining whether the record
is normal or abnormal. The rest are numeric features [24].
Table 5 demonstrates the composition of the KDD Cup99.

B. NSL-KDD

The NSL-KDD is an improved and adapted revision of the
KDD Cup99 [70]. Unlike the original dataset, the NSL-KDD
does not contain redundant data and retains the same data
characteristics. The amount of data was reduced by remov-
ing connection records numbered 136489 and 136497 from
the test set [25], [71]. The NSL-KDD consists of four sub-
datasets: KDD Train+, KDD train+_20%, KDD Test+ and
KDD Test-21 [53]. Table 5 demonstrates the composition of
the NSL-KDD.

C. UNSW-NB15

The Australian Cyber Security Centre’s Cyber Scope Lab’s
IXIA PerfectStorm tool generated the raw network packets
for the UNSW-NB 15 [63].

The UNSW-NB15 compiles network traffic data, includ-
ing cyber-attacks and general network traffic. The dataset
consists of network traffic records accumulated between
2015 and 2016, including protocols such as TCP, UDP,
ICMP, and HTTP. The UNSW-NB15 consists of a training
set containing 175,341 records and a testing set containing
82,332 records [55]. The dataset captures a variety of network
attacks, including DoS attacks, worms, analyses, backdoors
and nine other attacks [25]. In addition, the UNSW-NB15
contains 254,044 instances and 49 features [39]. Table 6
presents the composition of the dataset.

D. CICIDS2021

The CICIDS2017 dataset uses the CICFlowMeter tool to
extract over 80 feature attributes from the raw data [71].
There are two methods for extracting features: online and
offline modes. The online mode monitors network traffic in
real-time, generates features, and saves the feature attributes
locally in CSV format when listening is complete. The
offline mode is to submit an entire packet in .pcap format
to the CICFlowMeter tool, resulting in a CSV file contain-
ing the features. The categories of attacks identified in the
CICIDS2017 dataset are Botnet attacks, Brute Force attacks,
DoS & DDoS attacks, Infiltration attacks, Web attacks, and
Port Scan attacks [72]. Table 7 presents the composition of
the CICIDS2017.

This paper analyses the use of datasets commonly used in
recent years about IDS, intending to provide reference and
guidance for selecting subsequent datasets. Table 8 displays
that the primary datasets used in IDSs utilizing DNN and
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TABLE 6. Composition of UNSW-NB15 dataset.

TABLE 7. Composition of CICIDS2017 dataset.

. Training  Testing
Attack Types Description Set Set
Normal Normal data 56000 37000

The attacker consumes the
target system's resources,

DoS preventing it from 12264 4089
providing normal services
to legitimate users.
Worms do not need to rely
on a host file to spread, but
instead, use network or
system vulnerabilities to
replicate and spread
automatically.

A method of attack in
which sensitive
information, vulnerabilities
or weaknesses are obtained
through analysis of the
target system.

A form of attack that
exploits a vulnerability,
weakness, or error in a
computer system to
perform a malicious
operation.

Fuzzers An attack bqsed on fuzz 18184 6062
testing
An attacker's activity of
information gathering and
reconnaissance of a target
system or network.

A covert access mechanism
embedded in a computer
system is used to bypass 1746 583

normal authentication to
gain unauthorized access.
Attackers exploit common
vulnerabilities or 40000 18871
techniques
A code that is executed
under the control of an
attacker, usually to exploit 1133 378
a weakness in a system to
gain illegal access

Total 175341 82332

Worms 130 44

Analysis 2000 677

Exploits 33393 11132

Reconnaissance 10491 3496

Backdoors

Generic

Shell code

CNN are the NSL-KDD and UNSW-NBI5. In the RNN-
based IDS, the NSL-KDD is the primary dataset for intrusion
detection. In addition, for IDS with AE, the KDD Cup99 and
NSL-KDD are the primary datasets used for IDS training and
testing. In conclusion, the NSL-KDD dataset is the widely
applied and researched dataset in IDS.

V. COMPARISON ON APPROACHES IN DEEP
LEARNING-BASED IDS

This section discusses several aspects of deep learning in
terms of data preprocessing, feature extraction, and classi-
fiers, and it will help to provide further insights into the
processes and characteristics of deep learning models oper-
ating in IDSs.
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Class Attack Types Total
Normal Benign 2359087
Botnet Attack Botnet 1966
Web Attack SQL Injection, Brute Force, XSS 2180
DoS goldeneye, DoS slow loris, DoS
DoS&DDoS http test, DoS hulk, DDoS, Heartbleed 294506
Infiltration .
Attack Infiltration 36
Brute Force SSH patator
Attack FTP patator 13835
Port Scan Port Scan 158930

TABLE 8. Most commonly used datasets in IDS based on various deep
learning models.

Datasets
Model
KDD  NSL-  UNSW-
Cup99 KDD NB15 CICIDS2017 Others
DNN  [25]  [24][26] [25][27] [25]
[33]
321138]  [31][37]
CNN [40]  psjpe] 440 Eg}
[32] [43] [45]
[27] [43]
[47] [51] [46] [52] (48]
RNN- 11 rs37056) 157 [54] [49]
(58] [73] [52]
[51]
[28][50]
AE OO syypse  [O3106611hg) 160 [62]
(641 607 [61]
[66]
DBN  [68] [67]
SIL [59] [69]

A. DATA PREPROCESSING

Data preprocessing is the cornerstone of the intrusion detec-
tion process in IDSs because processed data enables the
system to reach optimal performance faster. During the data
preprocessing phase, non-numeric attributes in the dataset
must first be converted into numeric attributes using numeric
coding methods. Normalization is then performed by scaling
the features in the range [0, 1].

Most machine learning and deep learning frameworks are
constructed through mathematical operations and typically
accept numerical inputs and parameters. Non-numerical fea-
tures (e.g., text, category labels) cannot be directly used
for these mathematical operations in their raw form. There-
fore, it is necessary to transform non-numerical features into
numerical form to ensure model compatibility [74]. Standard
numerical coding methods in IDSs based on deep learning
models are one-hot and label encoding. Table 9 shows the
details.
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TABLE 9. Data preprocessing Methods for deep learning-based IDS.

Datasets Numerical Encoding Normalization Reference
KDD Cup99 [64][66]
B [24][28] [38] [47]
NSL-KDD One-hot Encodi J [53]1[61][69] [73]
UNSW-NBI5 ne-hot Encoding [31][55][63]
CICIDS2017 [26] [46]
Others [35][45][49]
CIDDS-001/UNSW-NB15 [37]
Label encoding \
NLS-KDD/CIIDS-001/UNSW-NB15 [76]
NSL-KDD/CICIDS2017 Label one hot encoding N [40]
KF-ISAC/CSIC-2010/ CICIDS2017 UTF-8 Character Encoding v [34]
NSL-KDD LeaveOneOut encoding N [50]
X-IloTID [77]
Ordinal Encoding \/
10T-23 [78]

Note: “ +” means that the corresponding step is included.

After digital coding, it is necessary to normalize the data
to standardize its distribution. The Min-Max normalization
technique scales the data to arange of [0,1] while maintaining
the linear relationship of the original data [75]. The most used
normalization method is Min-Max scaling, mathematically
defined in Equation 1 below.

X mm()f) )

max(x)—min(x)

where x is the original feature value of the attribute, min(x) is
the minimum feature value, max(x) is the maximum feature
value, and x’ is the normalized feature value of the attribute.
Each feature value is transformed to fit the range [0, 1].
Normalizing the data increases model convergence speed and
accuracy, as well as preventing gradient explosion issues.

Table 9 shows that several studies on IDS using deep learn-
ing techniques have highlighted the importance of numeric
coding to convert non-numeric features into numeric fea-
tures and the normalization process. The most used data
preprocessing techniques are One-hot encoding and Min-
Max normalization. One-hot encoding is a commonly used
numerical coding method in the data preprocessing phase of
deep learning-based IDS. This procedure can be implemented
intuitively, and each category is converted into a separate
binary feature. This approach is easy to understand and
interpret. In addition, single encoding effectively eliminates
any ordered relationships between different types, making it
distinct from other methods, such as Label encoding.

B. DATA IMBALANCE

In 2-class, the skewed nature of the data leads to classification
problems due to data imbalance. There are two types of data
imbalance: inter-class imbalance and intra-class imbalance.
Inter-class imbalance means a significant difference in the
sample size between different classes in a dataset. In con-
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trast, intra-class imbalance is defined as multiple subclasses
within a particular class with significant differences in the
sample size [79]. In data mining, classification algorithms
are designed on the premise that the number of categories for
each sample is balanced, whereas, in practice, the data is often
unbalanced. In the case of imbalanced multi-class datasets,
traditional classification methods tend to favor the major-
ity class. The minority classes provide limited information
to the classifier, resulting in a higher probability of mis-
classifying the samples from the minority classes. In many
real-world scenarios, minority class data carries crucial infor-
mation [80].

Strategies for addressing imbalanced datasets entail mod-
ifying the sample distribution through data-level interven-
tions, such as applying specific algorithms to increase or
reduce the number of samples. Resampling the dataset is
pivotal to achieving class balance in this approach [81]. This
strategy typically involves either oversampling or undersam-
pling. The notion behind oversampling is to augment the
number of minority category samples algorithmically. Rep-
resentative oversampling techniques include the Synthetic
Minority Over-sampling Technique (SMOTE) and Adaptive
Synthetic Sampling (ADASYN).

In contrast, the undersampling method aims to balance the
sample sizes in every dataset category by removing multiple
samples in some classes. Tomek-Links is an example of a
typical undersampling algorithm [82]. This section compares
the similarities and differences in data imbalance solutions
regarding deep learning-based IDS in recent years. Table 10
shows the details.

Table 10 shows that the SMOTE algorithm is frequently
employed for solving the data imbalance. Unlike basic
oversampling methods such as the random oversampling
algorithm, the SMOTE algorithm enhances the inclusiveness
of the minority category by making new samples. It helps the
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TABLE 10. Data imbalance solutions for deep learning-based IDS.

Datasets Dataset Imbalance Solutions Classification Accuracy (No Solutions) Accuracy Citation
CICIDS2018 Stratified K-Fold Cross-Validation Strategy 2-class / 99.70% [35]
NSL-KDD Stratified K-Fold Cross-Validation Strategy 2-class 99.09%(k=2) 99.36%(k=10) [38]

NSL-KDD SMOTE 2-class / 99.56% [47][66]
NSL-KDD Test" SMOTE Multi-class 82.24% 83.57% [73]
KDD Cup99 SMOTE Multi-class 98.00% 99.996% [66]
CIDDS-001 SMOTE and Tomek-Links Multi-class / 99.83% [37]
NSL-KDD ADASYN Multi-class / 85.24% [40]
Bot-IoT Focal Loss Function Multi-class 69.63%(CNN) 86.77%(CNN) [83]

Note: “/” means unknown or none.

model to understand the underlying patterns of the minority
class throughout the training process rather than just repli-
cating the current data. Due to severe class imbalance issues,
intrusion detection datasets like the NSL-KDD can lead to
false positives and inaccurate detection rates. This issue can
negatively impact performance evaluation, and therefore, it is
essential to address the data imbalance issue in the NSL-
KDD dataset. It is worth noting that only a few references
in Table 10 compare the accuracy rates before and after
addressing the data imbalance problem. It is recommended
that at least one controlled experiment be conducted in future
research to illustrate the impact and effectiveness of using the
data imbalance resolution technique versus not using it.

C. FEATURE EXTRACTION AND CLASSIFIERS

This section explores the differences between various IDSs
regarding feature extraction techniques and classifiers. The
feature extraction process is crucial, whether machine learn-
ing or deep learning. It transforms unprocessed data into
important feature sets that significantly improve the model’s
performance in subsequent training and prediction phases.

Standard techniques for extracting features in deep learn-
ing include CNN, AE, and DBN. CNN can capture local
features in data by performing convolutional operations,
which is particularly useful for processing network traffic
data [84]. In contrast, AE is an unsupervised learning method
that extracts valuable feature representations from unlabeled
data. It contributes to dimensionality reduction, noise filter-
ing, and deep feature learning [85]. On the contrary, DBN is
like AE, which can acquire favorable features from unlabeled
data while accomplishing data reduction and deep feature
learning [86].

In data mining, classification is a necessary method. The
basic idea is to obtain classification functions or models
called classifiers based on accessible data. The model maps
the data records in the database into predefined categories
for forecasting. Such as in [87] and [88], where it is shown
that RF is a reasonable classification algorithm for IDS.
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Moreover, in [89], it is argued that SVM outperforms other
classification algorithms in comparison to SVM.

On the other hand, [68] used BP neural networks as clas-
sifiers for IDS. Also, Softmax functions are often used as
classifiers for IDS in deep learning. Table 11 demonstrates
the details of analysis.

TABLE 11. Feature extraction methods and classifiers for deep
learning-based IDS.

Feature . . . o
Datasets Extractio Classifie  Classificatio  Citatio
n r n n
UNSW-NB15 [31]
CICIDS2018 [35]
NSL- .
Multi-cl
KDD/CICIDS201 CNN Softmax ulti-class [40]
7
NSL-KDD [53]
NSL-KDD [28]
KDD Cup99/ Softmax Multi-class o
UNSW-NBI5 (661
KDD Cup99/ .
NSL-KDD Multi-class [51]
ISCX 2012/ Multi-
CICIDS2017 AE SYM - lassiz-class 621
Multi-
NSL-KDD class/2-class [69]
KDD Cup99/ .
NSL-KDD RF Multi-class [60]
NSL-KDD LC 2-class [61]
UNSW-NBI15 MLP 2-class [63]
BP
KDD Cup99 DBN Neural 2-class [68]
Network

In various studies (e.g., [31] [35], [40], [53]), CNN models
are employed to extract features from the data. The CNN
models are built as a hierarchical structure that consists of
multiple convolution and pooling layers. The lower layers
acquire simple and local features, whereas the higher layers
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TABLE 12. Comparative analysis of the current status and future development trends of IDS development in the loT.

Model Dataset Data preprocessing Innovation Citation
FNN-Focal Bot-IoT ' Demonstra!;ing the Effective Trainipg of DL-Based
CNN-Focal 1IoT-2021 Focal loss function Models Using Focused Loss Functions to Overcome [83]
EHMS-2020 Unbalanced Data in IoT Datasets.
LSTM(2-class) . . Incorporating Lambda architecture in deep learning
. Ordinal Encoding . .
ANN+LSTM+CNN(Multi- IoT-23 o models can increase data processing power and enhance [78]
/Normalization .
class) the real-time performance of the model.
One-hot Encoding Propose an Al technology-based model to detect IoT users
ANN/LSTM/GRU - L and classify blockchain based smart contracts using DL [77]
/Normalization model.
. One-hot Encoding All 15 classes in the CICIDS2017 dataset were realized for
EIDM (Conlvolutlonal+ Dense CICIDS2017 /Normalization classification purposes, rather than grouping by similar [90]
ayers) /SMOTE features to achieve classification.
Ha}‘r 1s-HaWk A multi-modal architecture is used to deal with complex
MM-WMVEDL IoT-23 Optﬁmlz? tlor}-basled relationships in network traffic data, as well as the use of 1
(BiLSTM+ELM+GRU) UNSW-NBI5 elite fractiona wavelet-based feature extraction methods to enhance the o1
derivative mutation recognition capabilities of the model
(HHO-EFDM) & P :
IEDSIE?E};BQ A new feature selection algorithm MGO using Whale
CNN BoT-ToT MGO Opt%mization Algorithm (WOA) modified Growth [92]
CICIDS2017 Optimizer (GO) is proposed.
Group Method of
Data Handling
. . (GMDH) A fog-cloud based IoT IDS is proposed to process the
Simple RNN/BIiLSTM BoT-loT /Mutual dataset using different feature selection algorithms. (%3]
Information (MI)
/Chi-Square Statistic
KDDCup-99 . An improved version of CapSA feature selection algorithm
CNN-CapSA NSL-KDD Capuchin Search is proposed to improve intrusion detection in IoT [94]
BoT-IoT Algorithm (CapSA) environment
CICIDS201 ’
A BHS-ALOHDL model based on ALO feature selection
BHS-ALOHDL ToN-IoT Ant Lion Optimizer algorithm and Flower pollination algorithm (FPA) [95]
(CNN/LSTM) CICIDS-2017 (ALO) superparameter optimization algorithm with CNN-LSTM
fusion is proposed.
NLS-KDD Optimizing the weights of the LSTM model using WOA
WILS-TRS (LSTM) CIIDS-001 Label Encoding reduces time complexity, speeds up convergence and [76]
UNSW-NBIS5 improves intrusion detection.

effectively merge these essential characteristics to recognize
intricate and abstract patterns. This hierarchical mechanism
for feature extraction enables convolutional neural networks
to learn feature representations from lower to higher levels
automatically. AE map the input data to a low-dimensional
latent space for feature extraction. AE combined with Soft-
max classifiers, were used by [28] and [66] in forming an
IDS for multi-classification. However, [51], [62], and [69]
used AE to extract features and SVM to achieve classifica-
tion for intrusion detection. Using DBN to extract features,
as outlined in [68], is a suitable approach. This is due to
DBN’s ability to learn a layered and abstract representation of
the input data through its deep structure, layer-by-layer pre-
training, and generative modelling properties.

Softmax is a popular classifier in deep learning-based IDS,
capable of mapping network traffic data into probability dis-
tributions for different categories and, thus, being well-suited
for multi-category classification tasks. It is frequently used
due to its capability to be trained end-to-end by deep learning
models like CNN. While Softmax classifiers are commonly
used in IDS, it is worth considering other classifiers (such
as RF [60], LC [61], MLP [63], etc.) that may prove equally
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effective depending on the specific intrusion detection task
and dataset characteristics. The selection of classifiers should
be rationalized and assessed based on specific scenarios and
performance requirements.

D. THE STATUS AND TRENDS OF IDS DEVELOPMENT IN
THE IOT

This section discusses the current state of IDS development
and future research trends in the IoT environment by exam-
ining relevant literature and research from the past two years.
Such examination bears considerable theoretical and practical
significance in improving network security defense capability
and ensuring a more secure and dependable IoT environment.
Table 12 reveals specific analysis outcomes.

From Table 12, deep learning models applied to IDS in IoT
are mainly moving towards integrating hybrid deep learning
models. For example, [78] proposed a hybrid IDS combining
ANN, LSTM and CNN. In [91], a deep learning-based IoT
IDS called MM-WMVEDL was designed, where the model
includes BiLSTM, ELM and GRU, achieving the ability
to process complex network traffic data in a multimodal
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structure. Similarly, in [95], an IDS with excellent intru-
sion detection performance is built using CNN and LSTM
models combined with feature selection and superparameter
optimization algorithms. Meanwhile, [90] proposed a deep
learning model for IoT IDS consisting of only convolutional
and dense layers. Others have applied a focal loss function
to IDS to address the data imbalance problem [93]. In the
future, we may see more research on how to effectively inte-
grate multiple deep learning models, and future deep learning
models may focus more on the ability of multimodal and
cross-modal learning to understand better and utilize complex
data. Furthermore, the use of datasets in IoT environments
highlights the specialization, and there will be more datasets
used specifically for IoT environments such as Bot-1oT [83],
[92], [93], [94], 10T-23 [78], [91], ToN-IoT [95], and so on.

The research in IoT also focuses on the feature selection
of data [91] and uses HHO-EFDM, a wavelet-based feature
selection algorithm, to enhance deep learning models for
intrusion detection. Reference [92] proposed an MGO fea-
ture selection algorithm combining WOA and GO applied in
cloud and IoT environments. In [93], the authors compare the
performance of three feature selection algorithms, GMDH,
MI and Chi-Square Statistic and propose a fog-cloud-based
IDS for IoT. Reference [94] combines the CapSA feature
selection technique with CNN to design an IDS for cloud and
IoT environments.

Recently, the conjunction of blockchain technology and
the IoT has sparked increased interest among researchers.
This synergy presents significant security challenges that
have drawn attention from experts. Intrusion detection tech-
nology has emerged as a promising solution for securing
blockchain IoT systems, as evidenced by researchers’ adop-
tion of it. Reference [77] proposed a deep learning IDS
model for malicious users and smart contracts in blockchain-
based IoT. The study evaluated the model’s performance and
effectiveness using the corresponding malicious user detec-
tion dataset X-IIoTID and the intelligent contract detection
dataset. Meanwhile, [95] employed the ALO feature selection
algorithm and FPA superparameter optimization algorithm,
fused with the CNN-LSTM model to create an IDS for a
blockchain-assisted IoT healthcare system.

VI. CONCLUSION

This paper provided a detailed analysis of current deep
learning methods used for IoT security, covering prevalent
algorithms and architectures, intrusion detection datasets,
data preprocessing and feature extraction techniques, and
various classifiers. This research addressed the use of deep
learning in detecting anomalies and analyzing behavioral
patterns, which has demonstrated the potential to improve
detection accuracy and reduce false alarms and the data
imbalance issue in intrusion detection datasets. We also pro-
vided a detailed comparative analysis of various solutions
to this problem. The primary importance of this study’s
outcomes is to recapitulate the present research on deep
learning in intrusion detection for 10T, providing meaningful
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perspectives for IoT security analysts and practitioners on
selecting appropriate deep learning models, datasets, numeri-
cal encoding methods, and strategies to tackle data imbalance.
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