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ABSTRACT In the hours leading up to the onset time of sepsis, the autonomic nervous system presents
sub-clinical indicators of disease that may not be observable to providers. The objective of this research is to
create an interpretable sepsis prediction algorithm utilizing continuous electrocardiography (ECG) signals,
with the aim of implementing it in patient monitoring systems for individuals in intensive care units (ICU).
We develop an early sepsis detection algorithm utilizing two datasets; in particular, the Medical Information
Mart for Intensive Care (MIMIC-III) Clinical Dataset and MIMIC-Waveform Database. We carry out a
systematic approach to selecting ECG segments of superior quality that are recorded in highly dynamic
intensive care unit environments. Later, we use the single-lead ECG waveform to investigate the potential of
heart rate variability (HRV) for continuous monitoring. In this study, 715 patients were included, of whom
65 are sepsis patients labeled with recent sepsis definition on an hourly basis. The predictive potential of the
critical features is visualized to assist the interpretation of the model in a clinical practice. Moreover, since we
are framing the early sepsis prediction as a supervised time series classification task, we evaluate the model
performance by implementing Temporal Convolutional Networks (TCN). Performance analysis reported
with varying prediction windows preceding sepsis onset time using area under the receiver-operating-
characteristic curve (AUROC) and area under the precision-recall curve (AUPRC). The deep learning model
delivers promising results by leveraging time series with the use of temporal convolutions. Our findings
reveal that the HRV characteristics of adults can be a valuable indicator for continuous sepsis monitoring
in an ICU. Finally, this research work adds to the field of early sepsis detection by providing an annotated
continuous waveform dataset from the MIMIC-Waveform Database, which is made accessible to the public.

INDEX TERMS Sepsis, temporal convolutional networks, ECG signal, heart rate variability, continuous
monitoring, clinical decision support.

I. INTRODUCTION
Sepsis is a life-threatening medical emergency that is often
caused by bacterial, viral, or fungal infections but can also
result from other sources of infection or inflammation. It can
rapidly lead to tissue damage, organ failure, and death if
not recognized and treated in a timely matter [1]. The
increase in sepsis incidence constitutes a growing public
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health concern. Despite recent promising medical advances,
sepsis is still recognized as a leading cause of death in
hospitals [2].

Recent studies have found that early intervention and
recognition of sepsis can significantly reduce the high
mortality and morbidity rates. This is addressed in recent
clinical and observational studies, which have revealed that
the risk of mortality rises with each hour of delay in
administering antibiotics [3]. However, indiscriminate and
prolonged use of antibiotics is the leading factor for the
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proliferation of antibiotic-resistant infections, a concern that
the World Health Organization (WHO) has identified as one
of the top ten global public health threats [4]. Hence, the
importance of timely recognition and initiation of treatment
has a fundamental role not only in reducing sepsis-related
mortality and morbidity, but also in preventing the adverse
impact of antibiotic usage.

Recently, the use of machine learning methods in this
space has gained momentum through the use of health
data [5]. It can naturally tackle the immense and complex
electronic health records by learning the correlation of the
patterns in data which in turn is applied for early sepsis
prediction [6], [7], [8]. For instance, authors in [6] built
a prediction model based on Weilbull-Cox proportional
hazards model employing clinical data. In their study,
Shashikumar et al. [7]) showed that features extracted
from multiscale time series of heart rate (HR) and mean
arterial blood pressure (MAP) achieved an Area Under the
Curve (AUC) of 0.80 in forecasting the onset of sepsis by
four hours. Furthermore, in [9], authors validated combi-
nations of six vital sign measurements and their temporal
changes using a well-established sepsis detection algorithm
called InSight. More recently, authors investigated the
PhysioNet/Computing in Cardiology Challenge 2019 data
[10] for early sepsis prediction [11]. As is typical in
clinical databases, this dataset displays a significant lack of
information, as up to 80% of the data contains missing values.
Consequently, considerable effort is dedicated to addressing
the challenges associated with handling missing data in order
to attain high prediction performances [12], [13], [14], [15].
As a result, identifying sepsis in its early stages with clinical
and laboratory data remains a challenging problem due to
their natural constraints.

Given the challenges associated with clinical data,
researchers have redirected their focus towards alternative
data sources, with the electrocardiogram (ECG) emerging
as a prominent choice [16]. In [17], the authors created
and trained multiple classifiers using extracted features from
continuous ECG and arterial blood pressure (ABP) signals.
The objective was to recognize the pathological condition
of sepsis by utilizing features extracted from physiological
waveform within the intensive care unit (ICU) environment.
Another study revealed a reduction in various heart rate
variability (HRV) parameters among septic patients who
did not survive [18]. More recently, the study presented
predictive monitoring of late-onset sepsis (LOS) in infant
patients by characterizing the prognostic potential of features
obtained from ECG recordings such as HRV, the respiratory
waveform, and lethargy scores [19]. Despite the limited size
of their dataset, their findings suggest that HRV features
exhibit promising potential for the early detection of sepsis.
Leon et al. [20] introduced a technique that incorporates HRV
features along with visibility graph indices into the feature
set. Their study demonstrated that the inclusion of these
physiological signal characteristics resulted in improved
predictive accuracy for LOS in neonates.

Convolutional Neural Networks (CNNs) have made sub-
stantial contributions to the healthcare field. Several studies
have demonstrated the effectiveness of CNNs, particularly
analyzing physiological signals, yielding notably accurate
and consequential results [16], [21], [22]. In [23], theMedical
InformationMart for Intensive Care (MIMIC)-III dataset was
used for the proposed method where the Gaussian process
adapter framework was combined with temporal convolu-
tional networks (TCNs) to evaluate predictive performance
of sepsis. For instance, Lombardi et al. [24] trained a
well-known CNN-based model called ResNet [25] utilizing
raw fingertip photoplethysmography (PPG) time-series from
MIMIC-III database. While discussing the importance of
physiological signals for continuous monitoring of sepsis
patients, this study is also investigating selection strategies
for dataset preparation based on the utilization of PPG data.
Recently, authors developed a method using 12 leads ECG
signals to demonstrate the outcomes of applying ECG to
predict infection in patients [26].

Similar to the efforts mentioned earlier, our research
focuses on predicting early sepsis. However, in contrast to
existing methods, our primary objective is to assess the
potential of ECG signals in introducing a novel technique
for predicting sepsis in the adult population. To our best
knowledge, this is the first study working with temporal
convolution networks and ECG signals for early sepsis
detection. The primary contributions of this work are as
follows.

• We propose a systematic workflow for selecting high
quality ECG segments applicable for training an early
sepsis detection system built on single-lead ECG
signals. The assumption is to remove the low-quality
ECG signals, thereby improving the performance of
predictive model through the elimination of outliers in
the waveform database;

• We extract the traditional HRV features to predict sepsis
in selected population. We report the feature attributes
to gain insights into which features change and impact
leading up to the sepsis onset;

• We present a sequence to sequence modeling by
implementing TCNs. The deep learning model realises
the temporal correlation between features owing to
its effective memory without any recursive layer.
Additionally, it results in superior performance;

• Finally, we provide an annotated ECG database for
the early detection of sepsis facilitating research in the
community focused on sepsis detection.

II. MATERIALS AND METHODS
A. DATASET DESCRIPTION
This work uses the MIMIC-III database, which is a publicly
available critical care database that consists of electronic
health records (EHRs) of over 40,000 patients who had been
admitted to critical care units of the Beth Israel Deaconess
Medical Center between 2001 and 2012. The database con-
tains a diverse information such as demographics, diagnoses,
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FIGURE 1. Illustration of Sepsis-3 criteria. First, suspicion of infection (SI)
time is calculated. According to [1], if antibiotic was administered before
the culture test, then the test must be ordered within 24 h. Conversely,
if the culture test is obtained first, then the antibiotic treatment has to be
started within 72 h. The window of -48h to 24h around first SI is used for
checking 2 points of deterioration in SOFA score. The time when the
condition is met, it is decided as the onset time of sepsis.

procedures, medications, laboratory tests, vital signs, and
other clinical data. It is publicly accessible on PhysioNet [27].
The MIMIC-III Waveform Database Matched Subset is
a companion to the MIMIC-III clinical database, which
carries various physiological signals such as ECG, ABP,
PPG, and respiration. It has been continuously recorded
in real-time from bedside monitors and time-aligned with
the MIMIC-III clinical database. The waveform records of
10,282 ICU patients are matched to the MIMIC-III clinical
database, making their corresponding clinical records also
accessible.

B. SEPSIS LABEL DEFINITION
In the context of sepsis diagnosis, there are standard clinical
scores to assess the severity of sepsis, namely SIRS, NEWS,
or MEWS [28], [29], [30]. However, these scores are not
for continuously evaluating the risk of developing sepsis.
Recently, Sepsis-3 criteria have been announced and updated
to the definition and diagnostic criteria for sepsis [1]. The
criteria determine the onset time of sepsis further; it requires
suspicion of infection time and Sequential Organ Failure
Score (SOFA). We follow the SI definition to calculate the
suspicion of infection time suggested in [31]. Sepsis-3 criteria
recommend that sepsis onset time be defined as when an
increase of at least 2 points in the SOFA score has occurred
in the suspicion of infection window. Figure 1 illustrates our
Sepsis-3 application. We slightly revise the clinical database
queries shared by [23] and [27] on an hourly basis in order to
define the sepsis onset time.

C. DATASET PREPROCESSING
It is important to mention that this work is accommodating
both the clinical database and the waveform database. Each
database is used for a specific task such as annotation
and training. The clinical database is utilized to determine
the onset time of sepsis by implementing Sepsis-3 criteria.

Afterwards, the available ECG recordings are annotated in
accordance with the calculated onset time. The main use
of the clinical database is to extract demographics, sepsis
onset time, and to cross-check for ICU admission and
discharge time. No features such as vitals, lab measurements,
or nurse/doctor notes are used as inputs to the prediction
model. The predictive model is solely trained with annotated
waveform database. The proposed preprocessing approach
consists of three main phases depending on the accessibility
and quality of the ECG recordings. Figure 2 depicts the detail
of the preprocessing.

1) PATIENT FILTERING
In our settings, we refine our cohort with the following
manner. First, patients who are under the age of 15 are
discarded. Secondly, patients with missing ICU admission
or discharge s are excluded. Additionally, we abandon the
patients listed with the CareVue system due to a lack
of lab measurements since we need lab measurements to
calculate the suspicion of the infection time. After filtering
the data, the sepsis onset time is calculated. ICD-9 is a
coding system to track diagnoses and procedures associated
with hospital utilization which is also provided for every
patient in the clinical database. Finally, we look into ICD-9
codes to further guarantee that the control patients are not
sepsis patients before ICU admission. The final population
in clinical database comprises 1725 sepsis patients and
17790 control patients. This query setting allows us to
annotate the waveform database and identify the patient
population.

We encounter many challenges during our analysis on
waveform database. The data set contains 10,282 distinct
ICU patients and each recording reported with a header
file. The header files are necessary to access the recordings.
However, we find that 187 patients do not have a header
file. The ECG recordings have a variable length, ranging
from hours to days. Since the waveform database is a
subset of the clinical database, only 447 sepsis patients’
waveforms are available in the waveform database. The
sepsis onset times and the code were made publicly available
https://figshare.com/s/ee778918d7b31c653fe2. Additionally,
we count 5319 patients who did not experience sepsis. Fre-
quently, there are multiple waveform record pairs associated
with a given patient’s record. The challenge is that even
though these record pairs belong to a particular ICU stay, they
have a long time gap between them. Therefore, if there are
multiple recordings for a certain ICU stay, we only consider
the first recording or the ones recorded closet to sepsis onset
time. It is found that the database contains at least one ECG
waveform for every patient but available ECG leads show
differences. Consequently, we restrict our cohort to patients
whose ECGwaveformwasmeasured by lead II. Furthermore,
some patients have been admitted to the ICU on more than
one occasion; therefore, we only consider one admission
for these patients. We also compare the ICU in-time and
out-time with record start and end times. It was discovered
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FIGURE 2. Block diagram of the signal processing and feature extraction. (a) An illustration of patient filtering. It starts finding sepsis and control
patients in the MIMIC-III clinical database, then finds the matching patients in the MIMIC-III Waveform database. Next, it selects patients involving ECG
lead-II recordings while searching for the minimum 6h recordings. It ends with the case-control sampling. (b) In block b, the elimination of non-ECG
segments is given. (c) Feature extraction flow starts with noise filtering and continues with HRV measurement extraction.

that even though subject_id is detected in both datasets, there
is a mismatch due to multiple ICU admissions. For instance,
subject_id=188was admitted eight times to the ICUs (MICU
and SICU). The patient underwent sepsis at the time when
his admission time was recorded as ‘‘2161-07-01 19:44:00,’’
but records for this stay are not available in the waveform
database. The available ECG record belongs to the admission
time was ‘‘2161-12-09-17-50.’’

At each hour of an ICU stay, our prediction model focuses
to predict whether a sepsis is going to happen during the next
-6h to 0h. Figure 3 illustrates the prediction windows settings
and label assignment.We assigned the label 0 for each hour of
controls. Including 12 hours after onset time can potentially
increase the chances of learning the significant features of
the sepsis. For the early prediction cases, we include the data
from beginning of the recording up to 12 hours after sepsis
onset. We follow the same approach as in [10] for labeling.
Labels are 1 if t ≥ tonset − tpred and 0 if t < tonset − tpred . tpred
stands for the prediction windows. Moreover, we eliminate
the patients developing sepsis earlier than 6 hours. In order
to reach similar maximal length of the ICU stay, we extract

FIGURE 3. Illustration of label composition for single sepsis and control
patient. For sepsis patients, we consider the early detection task of 0h to
6h preceding sepsis onset. For example, if the prediction task is 6h before
sepsis onset, we label time steps 6 hours before up until 12 hours after
sepsis onset as 1. The window is limited to a minimum of 6h.

up to 48 hours of recordings from the beginning of the
ECG recordings for the control patients. The overall sepsis
prevalence is roughly 10% in the clinical dataset. Hence,

3420 VOLUME 12, 2024



M. Apalak, K. Kiasaleh: Advancing Early Detection of Sepsis With TCNs Using ECG Signals

TABLE 1. Description of HRV features.

we apply the 1:10 ratio in our study of cohorts to maintain
realistic prediction problem. Table 2 summarizes the statistics
for the final population.

2) FILTERING NON-ECG SEGMENTS
Noise detection and quality assessment of ECG signals have
been intensively studied in [34] and [35]. Identification of
poor-quality ECG signals is essential, particularly in a highly
chaotic environment, such as ICUs, given that noisy ECG
signals may lead to false alarms and inaccurate diagnosis.
We point out that ECG recordings are impaired by a number
of issues, such as sudden signal disappearance, a high
number of missing values, bad electrode contact, and others.
We implement a pipeline to identify the ECG segments from
highly corrupted noisy segments.

• We start by dividing each recording into 2-minute seg-
ments. Next, if there are any missing values (indicated
by NaN) in the target segment, we discard that segment;

• Furthermore, segments with consecutive zero values
more than 400 ms are discarded;

• Additionally, some segments in the ECG waveform
suddenly disappear. These segments shows a low
variance for the 2-minute segments;

• Next, we realize that there are many inverted ECG
signals in the waveform database. We, hence, detect
them, then we correct the polarity of inverted ECG
signals.

Figure 4 depicts an example of the abrupt signal
change, which shows low variance for certain duration.
After considering all, there are some records still showing

FIGURE 4. 30 s sample recording illustrates the abrupt signal change for
Subject ID= 69339.

non-ECG waveforms. For these records, we perform a
manual inspection. In order to keep a track of time
steps, we monitor the non-ECG segment filtering for every
1 hour. If we are required to remove all the 2-minute
segments in the 1 hour window, we fill corresponding
time step with missing values to impute in the further
steps.

3) FEATURE EXTRACTION
First, we filter the data to remove typical artifacts due to
environmental or biological sources, such as power line
interference and baseline wander. We use a notch filter
at 50 Hz cutoff and a high-pass Butterworth filter at
0.5 Hz. Before calculating the HRV measurements, QRS
complexes are detected based on the steepness of the gradient
of the waveform. Once the QRS complex is located, the
R-peaks can be identified as local maxima within the QRS
complex.

VOLUME 12, 2024 3421



M. Apalak, K. Kiasaleh: Advancing Early Detection of Sepsis With TCNs Using ECG Signals

FIGURE 5. This is the block diagram of TCN model. Hourly calculated HRV features are fed to the TCN model and output of the TCN is
denoted by yt . Example for a d -dilated convolution is illustrated on the left hand side with exponential dilation factors d = 1, 2, 3 and
filter size of 3. This figure is adopted from [36].

HRV measures assess how the heart rate signal changes
in inter-beat intervals (IBIs). It commonly relies on three
main types of domain namely time, frequency, and non-
linear domain. Time-domain measurements demonstrate the
total variability of heart rate. Frequency-domain measure-
ments indicate the distribution of spectral power across
different frequency bands. Finally, non-linear measure-
ments estimates the unpredictability and complexity of
RR series.

Frequency domain related features are calculated based
on the two main bands which are high frequencies within a
frequency range of 0.15–0.4 Hz band, and low frequencies
within a frequency range of 0.04–0.15 Hz band [37].

In order to collect the HRV measurements, we first divide
ECG recordings into non-overlapping 5-minute segments.
Subsequently, we segment the time series into one-hour-wide
bins by calculating the mean of all HRV measurements taken
within each 5-minute window. We extract 25 features for the
training. Details on the feature description is given in Table 1.

D. SEQUENCE MODELING WITH TEMPORAL
CONVOLUTIONAL NETWORKS
This section describes the details of TCN which is a type
of CNN architecture used for time series modeling. In [36],

it has been adapted to sequence modeling for various types
of tasks and dataset while reporting superior performance
when comparison to recurrent architectures, such as LSTMs
and GRUs. It has been widely utilized to capture dynamic
patterns in the trajectory of disease progression [38], [39].
In this study, we employ TCN for its three effective
properties:

1) Variable input length: TCN generates an output that
matches the length of the input.

2) Causal convolutions: Outputs are only affected by
current and previous inputs therefore it emerges as
a favorable choice for sequence modeling due to its
capability of preventing information leakage from the
future to the past.

3) Long-range dependencies: TCN offers flexible recep-
tive size by increasing the dilation factor exponentially
with the depth of the network or choosing larger
filter sizes. As a result, it maintains large effective
history.

TCNs utilize 1D convolutions to capture both local and
global temporal patterns in the input data, without relying on
recurrent connections as used in recurrent neural networks
(RNNs). 1D convolution layer employs causal convolutions,
where at a given time t , inputs are limited to present and

3422 VOLUME 12, 2024



M. Apalak, K. Kiasaleh: Advancing Early Detection of Sepsis With TCNs Using ECG Signals

past. This is essentially preventing passing information from
the future into the past. Additionally, for the cases where
sequence length varies, zero-padding is applied to the left
side of the input sequence to maintain causality. The problem
with the simple causal convolution is that it can only consider
a history that is proportional to the depth of the network.
Using causal convolutions solely may not be effective on
sequences requiring longer history. To accomplish this point,
dilated convolutions are proposed [36]. In our settings,
we assume where we have Np patients, each denoted by an
index i ∈ {1, 2, ..,Np}. For each patient, xp is a multivariate
time series that signifies the observations of HRV variables
over time for patient p. A dilated causal convolution with
a filter h : {0, 1, 2, .., k − 1} is applied over the input as
follows.

F(t) = (xpv ∗d h)(t) =

k−1∑
l=0

h(l) · xpv (t − l · d). (1)

where F(.) denotes the output, xpv represents the observations
of HRV variable v over time for patient p, ∗d denotes the
dilated convolution where d is the dilation factor, k is the
filter size. The expression (t− l.d) demonstrates the direction
towards the past, and it ensures that the network output
at time t remains independent of any future information,
specifically, HRV observations at times t + 1, t + 2, . . . ,Nt .
When d = 1, it is simply a regular convolution. Increasing
d enables a longer effective memory. It was suggested
that one can increase d exponentially such that d =

2n at level n of the network [36]. Details are given in
Figure 5.
Furthermore, we structured the TCN with residual blocks,

where each temporal block comprises a sequence of opera-
tions (including causal convolutions, activation, normaliza-
tion, and dropout) that are applied to the input data. The
output of each block is then combined with the input of the
subsequent residual block. Figure 5 illustrates the details of
the layers used in the model.

E. EXPERIMENTAL SETUP AND IMPLEMENTATION
DETAILS
This section provides more details about the experimental
setup and model design after the elimination and the cleaning
process. We first start with imputing the time series by
implementing a carry-forward imputation. We then employ
an imputation scheme if the missing bins are encountered
due to the filtering process of non-ECG segments. Finally,
if there are still empty bins we apply mean imputation for
each patient. It is important to note that no augmentation
technique is used. 5-fold stratified cross validation is used to
train TCN wherein data is randomly split using 80% of the
data for training, 10% of the data for validation, and 10%
of the data for testing. For each split, the specific training
set is processed to normalize each channel of the time series
using z-score normalization. In our experiment, we employ
the zero-padding technique to ensure equal layer sizes across

TABLE 2. Demographic statistic of the final cohort.

TABLE 3. Details of the hyperparameter search.

the model. This allows variable-length data to be encoded
into a single 3-D tensor. (samples×features×times). The time
dimension corresponds to the length of the longest time
series. Particularly, shorter time series are padded with 0 until
reaching the same length as the longest time series in the
population.

For the hyperparameter tuning, we employ grid search on
10% of validation data. Grid search is an exhaustive and
expensive method. Therefore, we scale the hyperparameter
tuning process by integrating the Ray-Tune framework [40].
The hyperparameters of the TCN model is determined
through a random search on 500 runs. The Async Successive
Halving Algorithm (ASHA) is chosen for early stopping.
Additionally, hyperparameters and checkpoints are deter-
mined to maximize the sensitivity. After selecting the
best model parameters, they are used to evaluate the test
splits.

In the following sections, the model performance will be
evaluated based on two main metrics, namely area under the
receiver-operating-characteristic curve (AUROC) and area
under the precision-recall curve (AUPRC). We emphasize
that we will focus on AUPRC results due to the considerable
class imbalance.

III. RESULTS AND DISCUSSION
Table 2 outlines the final cohort demographics. After the
patient elimination, the final cohort involves 65 sepsis,
650 control patients. It is worth noting that the ICU length
of stay of sepsis patients is 2.3 times longer than that of
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FIGURE 6. The evaluation of median values in sepsis patients compared
to control patients during the 6-hour period leading up to sepsis onset.

the control patients. Hyperparameter search is done for five
model parameters, namely learning rate, filter size, batch
size, momentum and number of hidden layers. Optimal
hyperparameters and corresponding search space are reported
in Table 3.

In Figure 6, we provide a comparison between the median
values of sepsis and control patients for the selected HRV
measurements. The top one depicts changes in the median
value for the maxRR 6 hours prior to sepsis including
both patient groups. It can be observed that as sepsis
onset approaches, the median value of maxRR tends to be
consistently lower for sepsis patients. Furthermore, it is worth
noting that themedian value of SD2 is declining among sepsis
patients, which corresponds to the reduced HRV associated
with sepsis. Similarly, LFn indicates evidence of decreased
HRV in sepsis patients when compared to control groups.

It is critical to investigate the correlation and contribu-
tions of individual variables to the overall predictions in

FIGURE 7. Feature importance (top 20) in test dataset based on SHAP
analysis.

FIGURE 8. ROC curves for the 5 folds obtained from TCN model predicting
sepsis onset time.

applications of decision support systems. To quantify and
attribute the impact of individual features on model predic-
tions, we calculate Shapley values by using DeepExplainer
method. Positive SHAP values are often used to highlight
which features are driving the prediction in a positive direc-
tion (sepsis). We present the mean absolute Shapley values,
which are calculated and averaged on test data.Mean absolute
Shapley values are plotted in Figure 7. Notably, it illustrates
that SD1/SD2 and pnn50 are the primary contributors to
the model’s predictions. This also aligns with the results
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TABLE 4. The performance of the TCN model for identifying sepsis while
testing different time horizons.

depicted in 6, as we can see a gradual decrease in the SD2
feature. Nonetheless, we strongly recommend conducting
additional research into the calculation of Shapley values
for time-series data that has been zero-padded and varies in
length.

First, we display the ROC curve collected from 5-fold cross
validation for sepsis onset prediction in Figure 8. Table 4
presents the prediction performance of the TCN model in
our experimental setup. Note that the performance metrics
are reported on the test dataset (10%). As it is expected,
we received the best performance at the onset time of sepsis
with an AUC of 0.941 and 0.828 AUPRC. Specifically, for
early prediction tasks of 4h and 6h before sepsis onset, our
proposed method yields promising results with AUROC and
AUPRC scores of 0.818 and 0.713, respectively. We expect
to see gradual performance degradation with increasing
distance to the sepsis onset time. However, interestingly 2h
prior to onset does not show competitive results. While we
compare our findings with the recent research, we notice that
keeping the original sepsis to control ratio (10%) makes the
classification task considerably challenging. Authors in [41]
use the same database and report AUROC and AUPRC scores
of 0.92 and 0.90 respectively for identifying sepsis within the
first hour of admission. Note that authors [41] are only using
1h recordings in the first hour of intensive care stay and create
a balanced population involving 71 sepsis and 71 control
patients. The results may be optimistic given the fact that
clinical datasets are highly imbalanced in nature. Similarly,
they annotate the data based on using Sepsis-3 criteria.
However, the details of internally developed signal annotator
is not shared. In [24], authors utilize raw PPG signals in the
ResNet algorithm resulting in an AUC of 0.84 to classify
sepsis at onset time. Our results show superior performance
when compared with the results in [24]. In addition, authors
simply employ ICD-9 codes for the subject selection.
Considering the circumstances where multiple recordings are
collected for a particular ICU stay, using ICD-9 codes could
cause potential labeling problems without knowing the sepsis
onset time. The best practise would be using Sepsis-3 criteria
to identify the subjects with sepsis. Finally, we compare
our results with the Multi Branch TCN (MB-TCN) model,
where the PhysioNet/Computing in Cardiology Challenge
2019 data is used [13]. Authors announce the best AUROC
and AUPRC scores of 0.892 and 0.527, respectively, for
predicting 6 hour prior to onset. Note that MB-TCN paper
is putting effort on balancing the training dataset and
teaching model to missingness patterns. We note that the

clinical datasets tend to be irregularly-sampled. Further, it is
restricted to use for continuous monitoring for early sepsis
prediction.

A primary drawback in our study is the limited quantity
of sepsis cases. In spite of employing feature selection,
cross-validation, and early stopping techniques to prevent
overfitting, we notice that the TCN model tends to exhibit
signs of overfitting when we exceed 30 epochs. Additionally,
we notice early convergence behavior with the TCN model.
This encourages us to validate the proposed approach more
extensively using a larger dataset or to enhance our signal
elimination method in order to recover more data rather than
strictly eliminating it. Furthermore, we strongly recommend
external validation of the proposed model using data from
various medical centers to ensure its applicability across dif-
ferent settings. This concern has been raised in a recent review
paper which emphasizes the necessity for multicenter studies
to address the challenges related to data size, result validation,
resource utilization, and the inclusion of diverse patient
population. However, it is important to note that multicenter
studies also come with challenges, such as coordinating
efforts across different sites, managing data collection and
analysis, and addressing variations in local practices such as
therapeutic policies. Another constraint of our study is that we
exclusively analyze the first 48-hour recordings of patients in
the control group. In [42], it was reported that a significant
decrease in predictive performance of their initial work was
observed when they made a minor modification by imple-
menting case-control matching. The proposed case-control
alignment in [23] is an effective technique to explore greater
detail.

IV. CONCLUSION
This study established the groundwork for a more compre-
hensive data integration approach that can help clinicians in
their decision-making procedures for sepsis prediction. The
motivation behind this work stemmed primarily from our
interest in non-invasive and continuous early prediction of
sepsis. Consequently, we introduced a systematic workflow
aimed at automatically predicting sepsis in long-term ICU
ECG recordings sourced from the MIMIC-III waveform
database. As the primary result of this study, we observed
a gradual decrease in HRV features in the hours preceding
the onset of sepsis. Furthermore, especially for the early
detection task of 6h before sepsis onset shows promising
results with AUROC and AUPRC scores of 0.818 and 0.713,
respectively. This confirms that features derived by the ECG
models may play an important role in continuous early sepsis
prediction.
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