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ABSTRACT Vehicle-to-everything (V2X) communication is a pivotal technology for advanced driving,
encompassing autonomous driving and Intelligent Transportation Systems (ITS). Beyond direct vehicle-to-
vehicle (V2V) communication, vehicle-to-infrastructure (V2I) communication via Road Side Unit (RSU)
can play an important role for efficient traffic management and enhancement of advanced driving, providing
surrounding vehicles with proper road information. To accommodate diverse V2X scenarios, heterogeneous
traffic with varied objectives, formats, and sizes needs to be supported for V2X communication. We tackle
the challenge of resource allocation for heterogeneous traffic in the RSU-deployed V2X communications,
proposing a decentralized Multi-Agent Reinforcement Learning (MARL) based resource allocation scheme
with limited shared resources. To reduce the model complexity, RSU is modeled as a collection of virtual
agents with a small action space instead of a single agent selecting multiple resources at the same time.
A weighted global reward is introduced to incorporate traffic heterogeneity efficiently. The performance is
evaluated and compared with random, 5G NR mode 2, and optimal allocation schemes in terms of Packet
Reception Ratio (PRR) and communication range. The proposed scheme nearly matches the performance
of the optimal scheme and significantly outperforms the random allocation scheme in both underload and
overload situations.

INDEX TERMS Vehicle-to-everything (V2X), resource allocation, heterogeneous traffic, decentralized
multi-agent DQN.

I. INTRODUCTION
Autonomous driving is recognized as a solution for enhancing
road safety, traffic efficiency, and environmental sustain-
ability [1]. Modern autonomous vehicles are equipped with
advanced sensors like cameras, radar/LiDAR, and Advanced
Driver Assistance Systems (ADAS). These sensors are piv-
otal in enabling autonomous driving functions and ensuring
on-road safety. Nonetheless, they can be influenced by
adverse weather conditions, poor visibility, and obstructed
sightlines [2]. Thus, to foster information exchange and coor-
dination among road users and trafficmanagers, the European
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Commission (EU) introduced the Cooperative Intelligent
Transport Systems (C-ITS) [3] which has played a key role
in deploying diverse use cases and introducing advanced
mechanisms to elevate transportation systems. Among these
advancements, Cooperative Vehicle-to-Everything (C-V2X)
technology emerges as cutting-edge, encompassing vehicle-
to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-
to-pedestrian (V2P), and vehicle-to-network (V2N). In
particular, 5G New Radio (NR)-based V2X, introduced in
the 3rd Generation Partnership Project (3GPP) Rel. 16, offers
wider coverage and enhanced Quality of Service (QoS) com-
pared to its predecessors.

V2X communications encompass diverse communication
casting types: unicast, groupcast, and broadcast. These types
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cater to specific communication goals and settings. Unicast
and groupcast are utilized locally to enhance road safety
in specific scenarios. In contrast, broadcast serves broader
regions for comprehensive road safety. Our focus is on
enhancing road safety through V2X broadcast communica-
tion. Catering to diverse scenarios entails sending messages
with specific formats and sizes that match their objectives.
Incorporating a heterogeneous traffic model becomes crucial
for achieving authentic V2X communications. The prevalent
channel model employed in V2X broadcast communication is
outlined in the 3GPP document [4]. Furthermore, investiga-
tions into channel models for 6G and tera-Hz bands have been
conducted in [5] and [6], with the incorporation of MIMO
discussed in [7].
3GPP introduces two resource allocation modes for 5G

NR: mode 1 and mode 2 [8]. In mode 1, the base station
(BS) directly assigns wireless resources to user equipment
(UE) for sidelink (SL) via the Uu interface. A UE sends
a scheduling request (SR) to the BS using Physical Uplink
Control Channel (PUCCH), and the BS specifies the resource
through the Physical Downlink Control Channel (PDCCH).
Conversely, in 5G NR mode 2, UEs autonomously select SL
resources using sensed Reference Signals Received Power
(RSRPs) and the information from the 1st Sidelink Channel
Information (SCI) of other UEs. UEs sort unoccupied and
unreserved resources, randomly select the required amount
of resources, and reuse them repeatedly for a defined number
of cycles in a semi-persistent fashion. Despite their merits,
both modes have their own limitations. Mode 1 is geograph-
ically constrained by the BS’s coverage, limiting its scope.
In 5G NR mode 2, the performance suffers from random
resource selection, uncertainty, and potential interference.
Thus, an appropriate resource allocation scheme is imperative
for V2X environments.

The Roadside Unit (RSU) serves as a crucial infrastructure,
amplifying communication performance through extended
coverage, blind-spot detection, and multi-hop relay capabil-
ities. By directly broadcasting road information to nearby
vehicles, RSUs notably enhance road safety. RSUs also
function as multi-hop relays, as studied in [9], [10], and
[11], ushering in opportunities for improved communication,
expanded coverage, and heightened performance in V2X
systems. The concept of Smart RSUs, equipped with diverse
sensors like LiDAR and cameras, is actively explored to
gather comprehensive road data [12]. Additionally, Smart
RSUs can offload tasks and leverage Multi-Access Edge
Computing (MEC) technology, easing user computational
loads and enhancing their overall experience [13], [14].
Reinforcement learning (RL) offers a key advantage in

addressing intricate tasks and requirements that conven-
tional mathematical models struggle with. An adeptly crafted
RL model can account for diverse factors and optimize
actions accordingly, proving flexible in dynamic and uncer-
tain settings. This adaptability suits problems with multiple
objectives, crucial in rapidly changing V2X environments
where traditional models falter. Particularly in decentralized

multi-agent (MA) RL, each agent (e.g., vehicles or RSUs)
independently acts based on local observations, mirroring
real-world resource allocation behavior in V2X settings.

This paper introduces an RL-driven resource allocation
strategy for a mixed RSU-vehicle scenario. In this approach,
both RSU and vehicles transmit packets of varying sizes
using a shared resource pool. The framework employs a
decentralized Multi-Agent Deep Q-Network (DQN) model.
Each agent autonomously makes decisions based solely on
locally observed environment states, without sharing RSRP
values, thus minimizing resource consumption and exchange
delays. A shared global reward, informed by priority weights,
guides MARL model training. This encourages agents to act
cooperatively, optimizing not just individual performance but
also supporting diverse traffic efficiently.

The main contributions of this paper are as follows:
• In addressing diverse V2X traffic with varying packet
sizes, we initially compute individual rewards for
V2X entities. Subsequently, priority weights are
applied to generate a weighted global reward. Through
modulation of these weights for messages of differ-
ing sizes, we enhance the Packet Reception Ratio
(PRR) performance for larger messages, despite their
resource-intensive nature in comparison to smaller
messages.

• Our approach accommodates both overload and under-
load situations within the shared resource pool.
We showcase the efficacy of our resource alloca-
tion scheme across diverse channel congestion levels.
This ensures efficient resource utilization for adequate
communication range. The adaptability to fluctuating
resource demand and availability renders our approach
well-suited for real-world V2X settings marked by
dynamic resource demands.

• Our proposal involves deploying an RSU with multiple
virtual agents, each selecting a single resource. This
contrasts with a single agent choosingmultiple resources
simultaneously in the MA-DQNmodel. This implemen-
tation minimizes the action space size and enhances
learning efficiency compared to traditional approaches.

• In order to thoroughly examine the performance of our
proposed scheme, we carry out an extensive simulation
campaign and conduct a comparative analysis against
random, 5G NR mode 2, and optimal resource alloca-
tion schemes. Our MARL-based scheme demonstrates
remarkable superiority over the random and 5G NR
mode 2 schemes, and closely approaches the perfor-
mance of the optimal scheme.

• The evaluation of performance involves the consid-
eration of two distinct sizes for Decentralized Envi-
ronmental Notification Message (DENM), aiming to
underscore the influence of larger messages on PRR
performance. Additionally, an in-depth analysis of the
performance decline associated with larger messages is
conducted, delving into collision probability and SINR
distribution.
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TABLE 1. List of symbols.

• The computational complexities of both the optimal and
proposed MA-DQN schemes are assessed in terms of
the number of multiplications. Notably, the proposed
scheme demonstrates markedly lower execution com-
plexity, albeit with an associated increase in complexity
during the training phase.

The rest of the paper is organized as follows. Section II
presents the related works. Section III introduces the system
model and problem formulation. Section IV describes the
proposed MARL model and Section V provides the simula-
tion results. Finally, Section VI draws conclusions.

II. RELATED WORKS
A. 5G NR MODE 2 RESOURCE ALLOCATION SCHEME
The resource structure within 5G NR is comprised of two pri-
mary elements: frequency and time. In the realm of sidelink
communication, the smallest unit in the time domain is
referred to as a ‘slot,’ encompassing 14 OFDM symbols. The
duration of a slot varies based on the Subcarrier Spacing
(SCS). For example, with an SCS of 15k Hz, a slot lasts
for 1 ms. As the SCS increases to 30 kHz and 60 kHz, the
slot’s duration shortens to 0.25ms and 0.125ms, respectively.

Typically, the default SCS is set at 15 kHz, with higher values
reserved for applications necessitating low latency. In the
frequency domain, 12 sub-carriers with identical numerol-
ogy constitute a Resource Block (RB). The bandwidth of
this RB is dictated by the SCS. NRB RBs can be consecu-
tively aggregated to form a single subchannel, where NRB ∈

{10,12,15,20,25,50,75,100}. Ultimately, a Transport Block
(TB) can be composed of 1 slot × 1 subchannel. This
comprehensive structure ensures the efficient allocation and
utilization of resources in 5G NR communications.

In Release 16, 3GPP introduced an autonomous resource
allocation scheme for 5G NR sidelink, referred to as 5G
NR mode 2. Under this scheme, each UE is equipped with
its own sensing window, selection window, and Reselection
Counter (RC). The sensing window has a predefined size
ranging from 100 to 1100 ms. During this period, a UE
actively scans wireless channels, monitoring the resource
usage by neighboring UEs. The selection window, on the
other hand, spans from Tmin to the Packet Delay Budget
(PDB). Here, Tmin, a minimum duration determined by packet
priority and the numerology coefficient µ, takes values from
the set {1, 5, 10, 20} · 2µ. The size of the selection window
is constrained by the latency deadline, PDB. Within this win-
dow, specific resources are allocated based on information
gathered during the earlier sensing window. The RC is a
randomly chosen integer ranging from 5 to 15. Notably, the
UE consecutively utilizes the same allocated resource for a
number of RC times, providing a degree of resource stability.

The operational process unfolds in the following manner:
AUE employs the allocated resource for packet transmission,
decrementing its RC with each transmission. When the RC
reaches 1, the UE faces a decision point. It assesses whether
to persist with the current resource or allocate a new one,
guided by a predetermined probability,Pkeep. If the decision is
to maintain continuity with the current resource, the RC value
is duly updated. Alternatively, if the UE opts for a resource
change, it embarks on a selection process. Available resources
are scrutinized, filtering out those not in use by other UEs
and possessing a RSRP lower than a predetermined threshold.
Furthermore, the number of available resources should meet
at leastX%of the total resources within the selection window,
where X takes values from the set {20, 35, 50}. If this X%
criterion is unmet, the UE iterates the resource sorting process
by incrementing the RSRP threshold by 3 dB. This iterative
refinement continues until the X% requirement is satisfied.
Eventually, when the available resources are identified, the
UE randomly selects one from the pool while updating its
RC, completing the resource allocation process. This compre-
hensive framework in 5G NR mode 2 enhances autonomous
resource management, optimizing communication efficiency
for UEs.

B. RESOURCE ALLOCATION USING RL IN V2X
COMMUNICATIONS
Recently, numerous studies have proposed various RL-based
resource allocation schemes for V2X communications [15],
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[16], [17], [18], [19], [20], [21], [22]. These studies have
harnessed distinct RL models to pursue varied objectives
with different information availability in diverse V2X set-
tings. In [15], the authors utilized an MA-DQN model for
optimal resource allocation and discrete power level assign-
ment for V2V links in an intersection environment. In this
context, V2V and V2I links share the spectrum resource,
aiming to maximize the V2I link channel capacity while
satisfying V2V link latency and reliability constraints. How-
ever, this approach necessitated an extensive information
set including channel information for all the V2I and V2V
links, allocation details of neighboring vehicles, interfer-
ence power on resources, and remaining packet transmission
time constraints for V2V links. In [16] and [17], agent
decision encompassed mode selection alongside resource
and power allocation in underlay situations. For instance,
a decentralized MA actor-critic (AC) model deftly han-
dled continuous-valued channel information and transmit
power [16], while a federated Deep Reinforcement Learn-
ing (DRL) model facilitated distributed learning among
agents [17]. The latter model allowed agents to tap into
collective network knowledge while considering individual
observations and goals. Another contribution [18] combined
DQN and Deep Deterministic Policy Gradient (DDPG) to
craft an RL model. The DQN element determined optimal
resource allocation among vehicles, while DDPG enabled
agents to select power levels with continuous variability.
In [19], a model known as Double Dueling Deep Recurrent
Q-Network (D3RQN) was introduced. This model aimed to
address resource allocation and the assignment of discrete
power levels for V2V links within an underlay scenario.
In [20], the authors employed a multi-actor-attention-critic
(MAAC) algorithm. The primary goal was to mitigate packet
collisions that arose from the random resource selection
process in V2X Mode 4. Within this approach, each vehi-
cle takes into account factors like RSRP for each resource,
QoS requirements, latency considerations, and reliability
constraints when selecting a resource. In [21], a couple of
resource allocation strategies were proposed within a high-
way environment. One strategy involved incorporating Long
Short-TermMemory (LSTM) into a Deep Q-Network (DQN)
model, while the other strategy incorporated LSTM into an
Actor-Critic (AC) model. These strategies were designed to
leverage the predictive capabilities of RSUs regarding vehi-
cle mobility. This predictive information aided in allocating
resources based on the priorities of the vehicles. In [22] the
authors introduced the utilization of a centralized Reinforce-
ment Learning (RL) model for the BS. This model serves
the purpose of centralized resource allocation for V2I links,
encompassing a spectrum of varying QoS requirements and
numerological considerations.

Most previous studies on V2X communications share two
prevalent characteristics. Firstly, they adopted a decentralized
MARL model. It is noteworthy that in 5G NR mode 2,
each vehicle autonomously selects the resources. This makes
a decentralized multi-agent framework, where agents make

decisions based on their own observations and learning,
more fitting for capturing the V2X context than other RL
models. Secondly, they incorporated global rewards for RL
learning. The decentralized nature of MARL introduces
non-stationarity due to actions by multiple agents, which can
impair RL training performance. Nonetheless, supplying all
agents with an identical global reward feedback mitigates
this non-stationarity. Furthermore, global rewards shift the
focus from competitive agent-based resource allocation to
a fully cooperative endeavor, directed at improving over-
all network performance. This approach stands to enhance
the V2X network’s overall efficacy. In a prior study [23],
we introduced a decentralized MA-DQN strategy featuring
a global reward for resource allocation, aimed at maximizing
V2X communication performance, particularly throughput.
However, this study omitted RSUs and considered a homoge-
nous traffic environment, centered solely on Cooperative
Awareness Message (CAM) messages.

In this study, our focus lies on dedicated frequency bands
for Intelligent Transportation Systems (ITS), ensuring no
resource sharing with V2I links. Consequently, the need for
mode selection diminishes, and the role of power control
becomes less pronounced. This shifts the core emphasis of
resource allocation toward efficient distribution among road
entities. Additionally, we account for two traffic load sit-
uations. In cases of underload, where available resources
exceed required allocation, the focus of resource allocation
is to avert collisions. In contrast, during overload scenarios
where resources are scarce, the objective shifts to minimizing
interference stemming from collisions.

C. RSU
Numerous studies have underscored the pivotal role of
Roadside Units (RSUs) in V2X communications [24], [25],
[26], [27]. In one study [24], the authors underscored RSU
deployment as a crucial solution for addressing urban traffic
issues, particularly in densely populated and congested areas.
RSUs equipped with sensors like LiDAR and cameras can
collect road data and disseminate it to vehicles and pedes-
trians, thus ameliorating traffic congestion, enhancing safety,
and expediting emergency responses. In another work [25],
an overview of autonomous driving research directions and
challenges reiterated the importance of RSU deployment
to maximize road efficiency and elevate advanced driving
performance. Another study [26] introduced the use cases
and structure of Sensor Data Sharing Messages (SDSM),
emphasizing RSUs’ significant role in road sensor data shar-
ing. Moreover, research highlighted in [27] reveals plans by
China and South Korea to practically deploy RSUs in V2X
environments, showcasing active utilization of RSUs in both
academic and industrial contexts.

D. HETEROGENEOUS TRAFFIC
Several Standard Development Organizations (SDOs) have
been actively involved in shaping Intelligent Transportation
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TABLE 2. V2X messages and their characteristics.

Systems (ITS) implementation. Notably, the Society of
Automotive Engineers (SAE) initially established V2X com-
munication standards, harmonizing with Wireless Access in
Vehicular Environments (WAVE) communication based on

IEEE 1609.3 and IEEE 802.11p. These standards were later
adapted to accommodate C-V2X communication, a prod-
uct of 3GPP. The European Telecommunications Stan-
dards Institute (ETSI) contributed with standards for V2X
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communication, utilizing ETSI-ITS-G5 based on WiFi tech-
nology. Subsequently, ETSI embraced C-V2X from 3GPP
and amended its standards to encompass C-V2X as well. The
5G Automotive Association (5GAA), an international con-
sortium uniting communication and vehicle industry entities,
also plays a pivotal role in this landscape.

In diverse V2X environments, messages with distinct
objectives, formats, and sizes are defined [4], [28]. A compre-
hensive overview of key V2X messages established by SAE
and ETSI is presented in Table 2.We provide insight intomes-
sage characteristics encompassing continuity, casting type,
message size, V2X link type, and objective. As per 5GAA
classification [29], V2X messages fall into two categories:
continuous and event-triggered. Continuous messages, like
BSM and CAM, facilitate continuous information sharing
among road users and infrastructure entities through periodic
broadcasts. These messages share details such as heading,
speed, acceleration, and position. Conversely, event-triggered
messages serve to alert surroundings about specific incidents,
such as accidents, road obstacles, or vehicle-related issues
like engine trouble or low fuel. These messages also serve
as information requests or exchanges. Unlike continuous
messages, event-triggered ones can adopt unicast, groupcast,
or broadcast modes, contingent on the use case. Unicast
might be chosen for Emergency Stops, alerting a specific
road user; groupcastmay enable CooperativeAdaptive Cruise
Control (CACC) for platooning; and broadcast proves fitting
for Emergency VehicleWarning (EVW), notifying hazardous
road situations.

Message sizes fluctuate depending on the volume of infor-
mation they convey. A case in point is the MAP message,
which broadcasts intersection-based geographic data. Its size
varies based on factors like intersection count and detail level.
For extensively studied messages like CAM, the average size
approximates 350 bytes. However, it spans a range of 200 to
800 bytes due to optional data, such as vehicle category and
security content [30]. Manymessages are exchanged between
infrastructure and entities via I2V, I2P, and V2I links. This
owes to the infrastructure’s broader field of view and array of
sensors, enabling the transmission of information that might
pose challenges for standard road users to obtain.

The array of aforementioned messages can collaboratively
contribute to a singular use case. Consider the scenario
of Automated Intersection Crossing, where an autonomous
vehicle negotiates an intersection. Here, the vehicle draws
upon diverse messages to shape its driving plan. It acquires
SPAT and MAP messages from infrastructure, obtaining
insights into traffic light phase, timing, and geographi-
cal specifics. Simultaneously, it relies on CAM or BSM
messages from fellow vehicles to decipher their driving
intentions. This amalgamation of messages empowers the
autonomous vehicle to confidently traverse the intersection
and accomplish its crossing maneuver securely.

Beyond the V2X messages detailed in Table 2, several
supplementary messages are also established [31], [32]. SAE
remains actively engaged in formulating fresh messages to

suit diverse use cases. For instance, the most recent version
of the SAE J2735 document, released in November 2022,
introduces novel messages. These include the Road Weather
Message (RWM), facilitating the exchange of weather data,
the Pedestrian Safety Message (PSM) designed to bolster the
safety of vulnerable road users, and the Sensor Data Sharing
Message (SDSM) intended for the sharing of road hazard
information stemmed from vehicles and infrastructure, uti-
lizing their individual sensors for detection.

The existing resource allocation schemes have primarily
focused on managing singular traffic types, showing limited
interest in accommodating heterogeneous traffic. Therefore,
it becomes essential to incorporate the diverse nature of V2X
messages, particularly considering varying sizes, to offer
a more comprehensive solution that aligns with real-world
scenarios. This study delves into the resource allocation chal-
lenge posed by heterogeneous traffic with RSU-deployed
V2X communications. To address this, a novel multi-agent
reinforcement learning-based resource allocation scheme is
introduced. The scheme’s effectiveness is assessed based on
Packet Reception Ratio (PRR) and communication range.
In order to gauge its performance, the proposed scheme is
systematically compared against random allocation, 5G NR
mode 2, and optimal allocation schemes.

III. SYSTEM MODEL AND PROBLEM FORMULATION
Figure 1 illustrates a system model in a V2X network
deployed on a highway with an RSU. The RSU is located
alongside the road’s left side, proximate to the upper lane. The
highway accommodates N vehicles. In this scenario, a RSU
transmits a message with a large size, whereas K − 1 vehi-
cles are assumed to dispatch messages with a smaller size.
For simplicity, we designate DENM and CAM for messages
with large and small sizes, respectively, given that DENM
typically surpasses CAM in size [33], [34]. Both messages
sustain a default transmission interval of 100 msec.

In the NR frame structure, the smallest resource block is
a Physical Resource Block (PRB), encompassing 7 OFDM
symbols and 12 subcarriers. In this paper, we presume that
CAM necessitates a single TB, constructed from multiple
PRBs. Moreover, we assume DENM requires D TBs. The
required number of PRBs for a TB transmission hinges on
message size, Modulation and Coding Scheme (MCS), and
numerology. In our scenario, all entities on the road, including
the RSU, access a shared resource pool containing M TBs.
Among these, seven vehicles in red denote the receiving
vehicles, while the three blue vehicles signify the transmitting
vehicles requiring resource allocation.

On the left portion of Figure 1, both UE 1 and UE 2 share
the same TB (red), causing interference between them. Sim-
ilarly, UE 3 and the RSU employ the same yellow-colored
TB, resulting in interference as well. Consequently, the over-
all performance of the V2X network degrades. Each road
entity employs its individual DQN for autonomous decision-
making. The process heavily relies on RSRP measurements
across all TBs. For instance, analyzingUE 1’s RSRP indicates
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FIGURE 1. System model with heterogeneous V2X traffic in an underload situation (N = 10, K = 3, M = 5, and D = 2).

stronger reception on the red TB from nearby UE 2 com-
pared to the yellow TB, which receives signals from the
RSU and UE 3. Moreover, the violet TB, allocated solely
to the distant RSU, exhibits weak RSRP. Armed with this
RSRP data, each road entity reallocates resources. Follow-
ing reallocation, a global reward is computed, encompassing
average PRR performance and channel capacity for vehicles
experiencing reception failures. This global reward is then
furnished as feedback for DQN training. On the right side
of Figure 1, the scenario unfolds after resource reallocation
using trained MA-DQNs. UE 2 and UE 3 are reassigned to
untapped blue and green resources. This targeted reallocation
eradicates interference across all road entities, significantly
boosting overall performance.

We consider a large-scale fading component α, which
incorporates path loss and shadowing effects. By considering
a small-scale fading component g̃, the composite channel gain
h can be expressed as h= αg̃. The parameter g̃ follows a
Rayleigh distribution with zero mean and unit variance. Let
the channel gain between the k-th transmitter and the j-th
receiver is denoted as hk,j. Then, the signal-to-interference-
plus-noise ratio (SINR) received at the j-th receiver from the
k-th transmitter, γk,j can be expressed as

γk,j =
PTx · hk,j

PTx ·
∑M

m=1 ρk [m] ·
∑K
l = 1
l ̸= k

ρl [m] · hl,j + σ 2
,

(1)

where σ 2 is the noise power, PTx is the transmission power.
We introduce binary resource selection indicators, ρk [m] ∈

{0, 1} and ρl [m] ∈ {0, 1}, which are 1 if the k-th and l-th
transmitter use the m-th TB and otherwise 0, respectively.
To measure PRR, we utilize the SINR threshold γ ′,

i.e., the message reception is considered as successful if
the received SINR is equal to or greater than γ ′. We
introduce an indicator, ωk,j ∈ {0, 1}, which is 1 when

γk,j ≥ γ ′ and 0 otherwise. Let Nk be the number of receiv-
ing vehicles from the k-th transmitter. The PRR of the
k-th transmitter, Pk can be expressed as

Pk =
1
Nk

 Nk∑
j=1

ωk,j

 . (2)

Therefore, the resource allocation problem can be formu-
lated as

argmax
ρ

Pk (3a)

s.t.
M∑
m=1

ρk [m] = 1, (1 ≤ k < K ) (3b)

M∑
m=1

ρK [m] = D, (3c)

where ρ = {ρ1 [1] , . . . , ρk [m] , . . . , ρK [M ]} is the set of the
resource selection indicators. (3b) implies that only a single
TB is assigned for CAM transmission. (3c) means that the
last transmitter is an RSU that requires D TBs to broad-
cast DENM. The formulated problem (3) is a non-convex
combination and NP-hard problem, which is very difficult
to be directly solved. However, reinforcement learning may
offer an effective strategy to discover the optimal policy for
attaining the highest reward.

IV. MULTI AGENT REINFORCEMENT LEARNING MODEL
We first consider an independent Q-learning (IQL)-based
MARL model. The IQL is a decentralized policy-based
model in multi-agent RL [35], where each agent trains its
network with its own observations, considering other agents
as part of the environment. However, the IQL has a drawback
in that all agents learn in a non-stationary environment since
other agents also adjust their behavior during the learning
process. This drawback becomes more pronounced when
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FIGURE 2. Structure of MARL.

using the DQN structure, where the learning process relies
on past experiences stored in the replay memory. In a non-
stationary environment, the correlation between the current
state-action pair and the past state-action pair may be weak-
ened, leading to unstable learning [36]. Figure 2 illustrates
the structure of the proposed MA-DQN model with reward
sharing, where agent, state, action, and reward are defined as
follows.

A. AGENT
Each transmitting V2X entity is an agent, where the k-th
agent decides an action, ask based on the observed state, sk. For
transmission of a message, vehicle agents require 1 TB while
the RSU agent needs to select D TBs. This heterogeneity
incurs different action spaces for vehicle agent and RSU
agent. In the proposed MA-DQN model, a single RSU agent
is formed by a group of D virtual agents, each of which
allocates a single TB as a vehicle agent does.

B. STATE
We define the state based on the previous RSRP values on all
the TBs. By denoting RSRP as qk [m], which represents the
received signal strength on the m-th TB sensed by the m-th
transmitter, can be expressed as

qk [m] =

K∑
l = 1
l ̸= k

ρl [m] · PTx · hl,k . (4)

Then, the state of the k-th agent can be expressed as

sk = {qk [1] , . . . , qk [M ]} . (5)

C. ACTION
The action is defined as the selection of TB or TBs by each
agent. The size of the action space depends on whether the
agent is an RSU or a vehicle. For vehicles, they need to select
only one TB at a time. Thus, size of the action space for
vehicles is equal to M . On the other hand, the RSU has to
selectD TBs amongM available TBs. Thus, the size of action
space for RSU becomes MCD, representing the number of
combinations of selecting D TBs from M TBs. In this case,
we observe that the action space for RSU becomes larger than
the action space for vehicles, which hinders training of the
RSU agent. Tomitigate this problem, instead of a single DQN
model selecting D TBs at the same time, we implement an
RSU agent with D virtual agents, each of which only selects
an TB as in Figure 2. This approach ensures a more balanced
and manageable action space for the RSU agent, enabling
effective learning.

D. REWARD
An individual reward of the k-th agent, Rk is calculated based
on local observation of the k-th agent after execution of its
action. And then, a global reward, RG is calculated, which is
associated with the actions of all agents, and is commonly
applied to the learning of all the agents.

We introduce a penalty in reward calculation based on the
channel capacities of the vehicles experiencing reception fail-
ures. Then, a penalty of the k-th agent, Dk can be expressed
as

Dk =

N (f )
k∑
j=1

 1

max
{
Cmin,C

(f )
k,j

}
 , (6)
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where N (f )
k is the total number of receiving vehicles that

experience reception failures for the k-th transmitter within
its service area. And C(f )

k,j represents the channel capacity of
the j-th reception failed receiver. We introduce a minimum
threshold value for C(f )

k,j , denoted as Cmin, which ensures that
the penalty does not become excessively large, particularly in
the situations with extremely poor channel conditions. C(f )

k,j
can be obtained by

C(f )
k,j = Wk · log2

(
1 + γ

(f )
k,j

)
, (7)

where Wk is the bandwidth, and γ
(f )
k,j is the SINR at the j-th

receiver from the k-th transmitter. Then, the individual reward
Rk can be expressed as

Rk = λPPk − λDDk , (8)

where λP and λD are constant weights to balance the PRR
and penalty, respectively. For the resource allocation of het-
erogeneous traffic with different message sizes, we introduce
priority weights for the calculation of the global reward. Thus,
the global reward RG can be expressed as

RG = λV

(
1

K − 1

K−1∑
k=1

Rk

)
+ λRRK . (9)

In this case, λR and λV are priority weights for RSU and
vehicle, respectively. By increasing the value of λR, while
satisfying λR + λV = 1, the RSU can be controlled to have a
higher priority than the vehicle in the global reward.

Each DQN model is composed of three hidden layers
with a ReLU activation function and a 1-dimensional batch
normalization process. The DQNs are trained to select an
optimal policy π∗ that maximizes the expected reward Gk .
Here, considering the decaying component of the reward as
γ , Gk can be expressed as

Gk =

T−1∑
t=0

γ tRk , (0 ≤ γ ≤ 1) (10)

where Rk represents the individual reward of the k-th agent
obtained at each time step, and T is the total number of time
steps in an episode. The discount factor γ determines the
importance of future rewards relative to immediate rewards.
By maximizing the expected reward Gk , the agents aim
to learn an optimal policy that leads to higher cumulative
rewards over time. The action ask can be expressed as

ask = argmax
ask∈Ak

[
Q
(
sk, ask , θk

)]
, ∀k (11)

where Q
(
sk, ask , θk

)
, θk , and Ak denote output Q-value,

weights of Q-network, and action space of the k-th agent,
respectively. After all agents have taken their actions, the
global reward RG and the next state for each agent are deter-
mined. And then, each agent stores the state, action, global
reward, and the next state as a tuple in its own replay memory.
Subsequently, the k-th agent randomly selects a mini-batch of

experiences with a size ofD from its replay memory to com-
pute the loss function LDk (θk). LDk (θk) is defined based on
the difference between the Q-values of the Q-network and the
target Q-network. When we denote the target Q-network for
the k-th agent, as Q̃

(
sk, ask , θ̃k

)
, LDk (θk) can be expressed as.

Afterward, the weights θk are updated using stochastic

LDk (θk) =

D∑
i=1

[RG (i)

+ γ max
ask (i+1)

Q̃(sk (i+ 1) , ask (i+ 1) θ̃k )

− Q
(
sk (i+ 1) , ask (i+ 1) , θk

)
]2 (12)

gradient descent to minimize the loss function. Specifically,
the weight update is performed in the direction that minimizes
the loss function. Similarly, the weights θ̃k of the target
Q-network for the k-th agent are periodically updated to
match the weights θk . This synchronization ensures that the
target Q-network closely follows the learned Q-network and
stabilizes the learning process. Algorithm 1 summarizes the
learning process of the proposed MARL model.

V. PERFORMANCE EVALUATION
We consider a heterogeneous traffic environment in a high-
way, where a single RSU is deployed. Here, the RSU
and vehicles periodically disseminate DENM and CAM
messages, respectively, utilizing a shared resource pool con-
taining M TBs. Each TB has a 5.6 MHz bandwidth and a
time duration of 1 msec. Our simulation framework aligns
with the configuration outlined in 3GPP NR document, for
a highway environment, characterized by a six-lane layout
with a 4 m lane width and 2 km length [4]. The upper trio
of lanes accommodates rightward traffic, while the lower
trio caters to leftward traffic. The RSU is assumed to be
positioned 800 m from the center of the highway towards
the left side, and at a distance of 4 m from the top lane. N
vehicles are randomly generated on the highway, following a
spatial Poisson distribution. Among them, K −1 vehicles are
randomly selected as transmitting vehicles. When a vehicle
moves beyond the boundary of the highway, we set it to
reappear on the opposite side of the same lane.K−1+D TBs
are required for the V2X network, where K − 1 TBs for the
transmitting vehicles, and D TBs for the RSU. We consider
two situations with different levels of channel congestion;
(1) an underload situation where the required amount of
resource is equal to or smaller than the allocated amount of
resource, i.e., K − 1 + D ≤ M and (2) an overload situation
where K − 1 + D is larger than M , so some resources are
allocated overlapped.
For NLOSv channel, we adopt the knife-edge diffraction

model [37], [38]. The detailed parameters can be found
in Table 3. Our approach adheres to 3GPP guidelines for
calculating the SINR threshold γth, adopting MCS 6 and
numerology 1 [39]. With a 900-bytes DENM message, it is
determined that its transmission requires 2 TBs, i.e., D = 2.
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Algorithm 1 Learning Process of the Proposed MARL
Model
1: Generate N vehicles randomly and 1 RSU at the left

side of the highway;
2: Initialize Q-networks for all agents
3: for each position do
4: Update vehicle positions and large scale fading

component
5: for each step t do
6: for each agent k do
7: Observe sk
8: Choose action ask according to ϵ-greedy

policy
9: end for
10: Update small scale fading component
11: All agents take actions and receive global

reward RG
12: for each agent k do
13: Observe sk
14: Store

(
sk, ask ,RG

)
in replay memory

15: end for
16: end for
17: for each agent k do
18: Randomly sample mini-batches from replay

memory
19: Optimize error between Q-network and target

network using stochastic gradient descent
20: end for
21: end for

TABLE 3. Simulation parameters.

The SINR across D TBs is accessed using the equivalent
effective SINR mapping (EESM) method [40].

The architecture of each agent’s DQN is designed with a
fully connected structure, comprising a total of five layers,
including three hidden layers. The hidden layers consist of

TABLE 4. MARL parameters.

n1, n2, and n3 neurons, respectively, employing ReLU as the
activation function. To strike a balance between exploration
and exploitation, a ϵ-greedy policy is applied during training,
with ϵ linearly reduced. This approach permits each DQN to
explore a broad spectrum of action-state pairs through exten-
sive initial exploration. As training advances, the exploitation
ratio increases, enabling the agent to increasingly rely on the
acquired network knowledge. This strategy accelerates con-
vergence, fostering efficient learning. We train each agent’s
Q-network for a total of 20,000 episodes. The exploration
rate ϵ is reduced from 1 to 0 over the initial 10,000 episodes.
Afterward, the exploration rate remains constant. The spe-
cific parameters employed within the MARL framework are
detailed in Table 4.

The proposed scheme is compared with three schemes:
random, 5GNRmode 2, and optimal.With a random resource
allocation scheme, agents randomly select TBs for each
transmission. As an optimal resource allocation scheme,
all agents select TBs to maximize the PRR performance
across the entire V2X network. Achieving optimal perfor-
mance involves exploring all feasible resource allocation
combinations.

A. TWO CHANNEL CONGESTION LEVELS WITH D = 2
Figure 3 conducts a comparative analysis of four resource
allocation strategies: random, 5G NR mode 2, optimal, and
the proposed MA-DQN schemes, focusing on PRR perfor-
mance variation across transmitter-receiver distances. Two
congestion situations, involving 8 or 12 required TBs with
10 allocated TBs, are explored in Figures 3 (a) and (b),
respectively. At a 200 m distance in the underload situation,
the MA-DQN scheme closely approximates optimal PRR
performance, while the random scheme achieves a PRR of
0.88. Further, for the communication range satisfying a PRR
of 0.9, the proposed MA-DQN scheme attains 94.7% of
the optimal result extending up to about 270 m, which is
a 35% higher performance compared to the conventional
5G NR mode 2 scheme. Conversely, the random scheme’s
coverage is notably limited, spanning 155m. It is crucial to
emphasize that beyond a distance of 200 m, the 5G NR
mode 2 scheme exhibits inferior performance compared to
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FIGURE 3. PRR performance of random, 5G NR mode 2, optimal, and proposed MA-DQN resource allocation schemes. (a) Underload
situation with 6 transmitting vehicles and 1 RSU. (b) Overload situation with 10 transmitting vehicles and 1 RSU.

FIGURE 4. PRR performance of CAM and DENM messages of the proposed MA-DQN scheme with λR = 0.5. (a) D = 2. (b) D = 3.

the random scheme. In the 5G NR mode 2 scheme, a UE
filters out resources with low RSRP, minimizing the selection
of resources utilized by neighboring UEs in close proximity.
This advantageous feature contributes to achieving a com-
mendable PRR performance, especially when the transmitter
and receiver are within a short distance, such as less than
200m. However, as the distance increases, the 5GNRmode 2
scheme becomes more susceptible to resource collisions.
In contrast, the random scheme selects resources without
considering proximity, resulting in consistent collision prob-
ability irrespective of distance. Consequently, the resource
collision probability of the 5G NR mode 2 scheme surpasses
that of the random scheme when the distance exceeds 200 m.
The performance of the 5G NR mode 2 scheme degrades
rapidly and becomes inferior to the random scheme with
increasing distance.

Similar trends emerge within the overload situation illus-
trated in Figure 3 (b). However, it’s important to note that

performance in the overload situation is dampened due to
interference among network entities assigned the same TB.
For instance, the optimal scheme registers a PRR of 0.98 at
200 m in the underload situation, which drops to 0.92 in
the overload situation. In comparison, the MA-DQN, 5G NR
mode 2 and random schemes yield PRRs of 0.91, 0.8, and
0.78, respectively. Notably, the communication range dwin-
dles to 100 m under the random scheme, while the proposed
MA-DQN scheme dramatically extends it to 219 m. This
substantial decline in performance underscores the amplified
significance of a suitable resource allocation strategy under
overload conditions.

B. PRR PERFORMANCE OF CAM AND DENM
The specific PRR performance of CAM and DENM mes-
sages is subject to further examination in Figure 4. Notably,
the DENM message with D set to 3 is included in the
simulation under overload conditions. Figures 4(a) and 4(b)
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TABLE 5. Resource collision probabilities according to D and the number
of collided TBs.

illustrate the PRR performance of the proposed scheme for
DENM messages with D values of 2 and 3, respectively.

As anticipated, the PRR of DENM message is observed to
be inferior to that of CAMmessage, with the gap widening at
longer distances. Notably, as the size of the DENM message
(D) increases from two to three, the degradation in PRR
becomes more pronounced. Concerning the distance required
to achieve a PRR of 0.9, it is 250 m for CAM messages,
whereas for DENM messages with D = 2, it is only 200 m.
In the case ofD = 3, this distance further diminishes to 150m
for CAM messages and a mere 100 m for DENM messages,
as depicted in Figure 4(b). At a distance of 200 m, the PRR
of DENM messages stands at 0.6, underscoring a substantial
need for improvement to meet the performance demands of
V2X applications.

To delve into this phenomenon, we turn our attention
to the resource collision probabilities of CAM and DENM
messages, as detailed in Table 5. A collision occurs for a
transmitting vehicle when another vehicle selects the same
resource. Given that a DENMmessage occupies D Transport
Blocks (TBs), the collision probability is assessed even if only
one of the D TBs is selected by other transmitting vehicles.
The collision probability is further analyzed based on the
number of collided TBs, contributing to the overall collision
probability. For CAM messages, the collision probability
with D = 3 is 11% higher compared to that with D = 2,
resulting in a poorer PRR performance. Remarkably, colli-
sions occur almost consistently for DENM messages with
D = 3 in overload situations. Since the selection procedure
can exclude resources occupied by neighboring transmitting
vehicles, the PRR performance doesn’t significantly degrade
within distances less than 100 m. However, it deteriorates
rapidly with increasing distance due to the substantial col-
lision probability.

In Figure 5, the CDFs of SINR for CAM and DENM
messages at a distance of 100 m are presented. Evidently, the
SINR is higher in the case of D = 2 compared to D = 3.
As expected, the SINR of DENM messages is inferior to
that of CAM messages, and this difference becomes more
pronounced with D = 3 due to the heightened collision
probability. For instance, the gap between the median SINRs

FIGURE 5. CDF of received SINR of CAM and DENM messages at 100 m
for D = 2 and 3.

of CAM and DENM messages is approximately 7 dB for
D = 2, whereas it widens to about 13 dB for D = 3.
Moreover, in the case of D = 2, the tail probability at
γth (a specified threshold) is nearly identical for both CAM
and DENM messages. However, in the case of D = 3, the
DENMmessage exhibits a higher probability of SINR ≤ γth,
indicating a more challenging communication environment
for DENM messages with larger sizes.

C. IMPACT OF MESSAGE PRIORITY
Our analysis now extends to the PRR performance with vary-
ing priority weights for small and large messages, λR and
λV , respectively. In Figure 4 (a), λR and λV both stand at
0.5, indicating equal message priority. Conversely, Figure 6
confers a higher priority to large messages, with λR set at 0.7.
When messages carry equal priority, the PRR of DENMmes-
sages trails CAM messages. This discrepancy is attributed to
DENM messages necessitating more TBs for transmission
than CAM messages, rendering them more susceptible to
resource collisions. By elevating the priority of DENM over
CAM messages in Figure 6, we observe an enhancement
in the PRR of DENM messages, slightly surpassing that
of CAM messages. This outcome underscores the efficacy
of our MARL approach in accommodating heterogeneous
messages.

Figure 7 illustrates the communication ranges for CAM
and DENM messages within an overload scenario, spanning
diverse priority constants for λR. As the DENM priority
constant ascends from 0.5 to 0.7, the communication range of
DENM experiences a linear upsurge, albeit less pronounced
beyond 0.8. In contrast, increasing the DENM priority con-
stant adversely impacts the communication range of CAM.
Consequently, the selection of an apt value for λR assumes
significance, aiming to strike a harmonious performance
equilibrium between CAM and DENM messages.

D. ADVANTAGE OF VIRTUAL AGENTS
Figure 8 illustrates the global reward progression across train-
ing episodes in overload situation for the proposed scheme
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FIGURE 6. PRR performance of CAM and DENM messages with the
proposed MA-DQN scheme (λR = 0.7).

FIGURE 7. Communication range for CAM and DENM messages with
different DENM priority constant λR .

with and without adopting virtual agents. The lighter-colored
graph captures average rewards over every 10 episodes,
while the darker-colored graph averages rewards across
300 episodes. In the initial phase, where exploration is
emphasized, reward values show limited growth. However,
as exploitation takes precedence, rewards undergo a rapid
ascent. In the latter stages, marked by exploitation-based
actions, the model consistently sustains high rewards. This
progression indicates the proficient training of our MA-DQN
model. Through the implementation of virtual agents with
a reduced action space size, there is a notable enhance-
ment in the global reward, resulting in an approximate 11%
improvement. This, in turn, translates to a commendable
9% enhancement in PRR at 200 m. The integration of
virtual agents contributes positively to the overall system
performance.

E. COMPUTATIONAL COMPLEXITY COMPARISON
BETWEEN OPTIMAL AND PROPOSED MA-DQN SCHEMES
In the random scheme, a transmitting vehicle opts for a TB
or TBs through a random selection process, incurring no

FIGURE 8. Global reward per episode with and without adopting virtual
agents.

computational complexity. In the 5G NR mode 2 scheme,
after measuring RSRPs on each TB, a transmitting vehicle
randomly selects a specified number of TBs from those
with the X% lowest RSRP values. As a result, the primary
computational complexity arises from the sorting procedure.
While both schemes are computationally straightforward due
to their reliance on random selection, their performances are
deemed inadequate for handling the intricacies of heteroge-
neous V2X traffic environments.

The computational complexity is assessed in terms of the
number of multiplications for both the optimal and proposed
schemes. In the optimal scheme, actions for an agent are
determined by identifying the best-performing one among
all possible combinations. The complexity is calculated by
multiplying the total number of combinations by the number
of multiplications needed to compute the SINR per combi-
nation. In this context, there are K -1 vehicles transmitting
CAM messages, and each of them selects one TB out of
M TBs. The RSU transmits DENM messages and selects D
TBs among M TBs. The total number of possible combina-
tions can be given by MK−1

· MCD. The SINR calculation
involves 1 multiplication in the numerator and 2M · (K − 1)
multiplications in the denominator, resulting in a total of
2M ·(K−1)+1multiplications. Therefore, the complexity for
the optimal scheme in the overload situation is approximately
9 × 1013. The complexity of a DQN model is determined
by the sum of the number of multiplications across all lay-
ers, where the number of multiplications at each layer is
the product of the neurons in that layer and the previous
layer [41]. The complexity of the MA-DQN becomes the
number of agents times the complexity of a DQN model.
Consequently, in the overload situation, the complexity of the
proposed MA-DQN is approximately 9.2·106. It is evident
that the proposed scheme requires significantly lower exe-
cution complexity than the optimal scheme, even though it
may involve increased computational complexity during the
training phase.
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VI. CONCLUSION
This paper proposed a resource allocation scheme for
V2X broadcast communication, employing a decentralized
MA-DQN model with shared global rewards. The scheme
effectively managed a heterogeneous traffic environment
by incorporating prioritized global weights, expanding the
communication range for DENM messages while accom-
modating their larger resource demand compared to CAM
messages. Additionally, the paper proposed a virtual RSU
implementation where groups of agents each select a single
TB, optimizing learning efficiency. The MA-DQN model’s
performance was assessed and contrasted against random, 5G
NRmode 2, and optimal schemes across varying channel con-
gestion situations and different DENM message sizes. The
proposed scheme showcased superior performance over the
random and 5G NR mode 2 schemes, and nearly matched
the optimal scheme. For instance, in the overload situation
with D = 2, the communication range increased from 100 m
with the random scheme to 219 m with the proposed scheme,
representing 92.5% of the optimal scheme’s range.

The envisaged MARL-based resource allocation scheme
offers potential for expansion to accommodate various cast-
ing types, such as unicast and groupcast. This extension can
also facilitate energy-efficient provisions for pedestrians and
integration with a UAV-assisted network.
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