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ABSTRACT As a very prominent research application of the theory of rough sets, attribute reduction
technique has made significant strides in a lot of fields, including decision making, granular computing,
etc. In particular, fuzzy attribute reduction approaches contribute greatly in the presence of uncertain data.
However, most of fuzzy relations used in these approaches lack the discriminant ability to sample similarity,
failing to identify the feature significance satisfactorily. In this article, a novel scheme using the shared
neighborhood fuzzy uncertainties is proposed. Firstly, the concept of shared neighborhood is formulated,
and then employed to establish the fuzzy similarity relation that effectively captures the sample similarity.
Secondly, two fuzzy uncertainty measures named joint entropy and discrimination index based on shared
neighborhood fuzzy relation are defined, which can quantify the feature’s significance to the uncertainty
characterization. Finally, two heuristic searching algorithms are designed to identify reducts aimed at
minimizing the fuzzy uncertainties. Some comparative studies are investigated to examine the advantage
of the designed reduction algorithms in classifier modeling. The reported analyses on public data sets verify
that the designed algorithms outperform some representative and latest algorithms.

INDEX TERMS Attribute reduction, fuzzy neighborhood rough set, granular computing, rough set theory,
uncertainty measure.

I. INTRODUCTION
In 1982, Professor Z. Pawlak coined the rough set theory
which is generally acknowledged as an efficient and relatively
new mathematical implement to process the incomplete,
inaccurate, and undefinable data [1], [2], [3]. In rough set
theory, no extra information is needed, thus it has gained
huge attention from considerable number of researchers
across a lot of fields, to name a few, artificial intelligence,
decision making, machine learning, granular computing, data
mining [4], [5], [6].

Toady, the rapid developments of information technologies
have resulted the exponential growth of data attributes. That
lies some core challenges ahead machine learning modeling.
Consequently, over the past thirty years, more and more the-
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ories, methodologies and techniques of rough set are devoted
to the exploration and exploitation of attribute reduction [7],
[8], [9]. As a crucial application of rough set theory, attribute
reduction is also termed as variable selection or feature
reduction, and it is a common but significant pre-processing
way for big data analysis [10]. Its prime target is to define
and find a minimal subset of condition attributes termed as
reduct with higher dependency and lower redundancy [11].
As we know, an ideal reduct enables to maintain physical
semantics, boost learning accuracy, accelerate computational
speed, provide model interpretability, etc [12], [13], [14].
Up to now, various approaches have been developed for
different marching learning problems. For instance, con-
sidering the technique of attribute reduction in multi-label
problem, Liu et al. [15] designed a neighborhood granulation
attribute reduction algorithm that fuses various concepts;
Chen et al. [16] used label specific features algorithm and
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sample section strategy with randomness to devise a new type
of algorithm of feature reduction. Considering the ensemble
learning problem, Wang et al. [17] introduced the forest
optimization algorithm into the process of picking up reduct
which can return multiple reducts, and used these reducts
to develop an ensemble framework for executing voting
classification over testing samples. Considering the mono-
tonic classification problem, Zhang et al. [18] applied the
matrix approach for lower approximation in an inconsistent
decision system to give the discriminative concept tree with
the relations by dominance, and then fused the evaluation
functions by tree approach to establish an efficient algorithm
of searching lower approximation reduct. Considering the
semi-supervised learning problem, Liu et al. [19] proposed a
semi-supervised attribute reduction approach that can handle
the partially labeled data with label propagation algorithm
and ensemble selector.

Recently, due to the capability of analysing fuzzy, real-
valued, and even mix-valued data, fuzzy rough attribute
reduction approaches become popular by the assistance of
fuzzy rough techniques. The existing methods mainly focus
on how to establish the fuzzy rough models, e.g., some
operators for computing fuzziness and fitness functions for
estimating features. However, less attention has been paid
to the adaptative generation of fuzzy similarity relation.
This oversight can lead to inadequacies in the selected
reducts for constructing learning models. To address this
issue, a novel scheme based on shared neighborhood fuzzy
uncertainties are presented. Firstly, we introduce the concept
of shared neighborhood, using it to obtain the fuzzy similarity
relation. The shared neighborhood aims to extract the samples
located within the neighborhoods of two given samples
simultaneously, which allows us to capture the sample simi-
larity precisely. Secondly, as the shared neighborhood fuzzy
relation is defined, fuzzy granulation technique with stronger
discriminating ability can be induced, and then two fuzzy
uncertainty measures named joint entropy and discrimination
index based on shared neighborhood fuzzy relation are
defined, which can quantify the feature’s significance to the
uncertainty characterization. Finally, two heuristic searching
algorithms are designed to find the reducts which are required
to minimize the fuzzy uncertainties, respectively.

In what follows, the contributions of this article are
clarified.

1) A novel fuzzy granulation technique using shared
neighborhood fuzzy relation is proposed, which lever-
ages the concept of shared neighborhood to distinguish
the sample similarity.

2) Two uncertainty measures of joint entropy and dis-
crimination index on the basis of shared neighborhood
fuzzy relation are defined. These measures are applied
to exploit the inherent relationship between condition-
to-decision attribute. Notably, such two measures are
different from the previous expressions, their utiliza-
tion of shared neighborhood fuzzy relation instead of

crisp neighborhood relation enhances the capacity to
identify feature quality.

3) An attribute reduction framework aimed at minimizing
the aforementioned uncertainty measures is devised.
And the reported analyses suggest the superiority of our
designed attribute reduction algorithms over several
competing approaches.

II. RELATED WORK
Attribute reduction is a vibrant research problem that
attracts numerous techniques to solve it. Specially, fuzzy and
fuzzy-rough approaches provide powerful solutions to this
problem from the perspective of uncertainty [20], [21]. This
section mainly reviews methods closely related to fuzzy and
fuzzy-rough attribute reduction.

To the best of our knowledge, there are two categories of
fuzzy and fuzzy-rough attribute reduction approaches.

1) One way is to create new fuzzy measurement as fea-
ture evaluation metric. For example, Hu et al. [22] adjusted
the fuzzy rough approximation with probability, and then
proposed a theory about fuzzy probabilistic approximation
spaces that develop fuzzy information measures for attribute
reduction. Rao et al. [23] presented a very quick scheme
of feature reduction through taking multiple Gaussian
kernels into account in which multiple levels of granularity
by different scales of fuzzy granules were considered.
Liu et al. [24] used fuzzy technique for fuzzy relevance and
redundancy to appraise the importance of semi-supervised
features in partial decision system also called partially labeled
data, and developed a semi-supervised feature selection.
Deng et al. [25] realized a feature reduction method based
on dual-granulation in both feature and label space for label
distribution decision system by fuzzy rough information
measurements. Guo et al. [26] proposed a new attribute
evaluation function named double fuzzy consistency that
characterizes the uncertainties together in both fuzzy upper
and lower approximations for attribute reduction.

2) The other way is to follow the original expression
of approximations while promoting the fuzzy and fuzzy-
rough models. For instance, Jensen et al. [27] revisited
the metric function of similarity, and devised several
fuzzy rough set-based ways of feature evaluation. Wang et
al. [28] redefined the space of fuzzy rough approximations
by irreflexive and symmetric structure, and presented a
concept of approximation quality degree for characterizing
the decision error rate and gave a new evaluation fitness
function to assess the goodness of the observed features.
An et al. [29] designed a new metric called relative distance
and used it to define the relative fuzzy similarity relation in
the lower and upper approximations for attribute reduction.
Such an approach can successfully fit a complex data
distribution where class densities have huge differences.
Tan et al. [30] created a new approximation model driven by
roughness and fuzziness, and induced significance measures
to evaluate the identification ability for attribute reduction.
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An et al. [31] developed a robust fuzzy rough set based
on kNN granules and then followed the approximation
expression to design a fuzzy-rough-uncertainty-based semi-
supervised feature selection. More information can be found
in [32] that recalled several important foundations related to
the model of fuzzy rough theory, and then investigated so
many advanced corresponding attribute reduction schemes
comprehensively.

III. BASIC KNOWLEDGE
Subsequently, we will recall some useful and necessary
notations in fuzzy rough set theory, some of which are
meaningful for introducing our approach.

Let S and A be a set of samples (always called the universe)
and a set of attributes which are often used to describe
the samples, respectively. The pair of (S,A) is called an
information table or system. Specially, if A = C ∪ D and
C ∩D = ∅ where C is a set of condition attribute, and D is a
decision attribute, then this special type of information table
or system is more often termed as a decision table or system
written as T = (S,C ∪ D) [33].
Let T be a supervised and complete table. Herein, let RC ′

be a fuzzy binary relation obtained via a subset of condition
attributes such that C ′ ⊆ C . Usually, we write it as a n × n
matrix denoted by

M (RC ′ )

=


RC ′ (s1, s1) RC ′ (s1, s2) . . . RC ′ (s1, sn)
RC ′ (s2, s1) RC ′ (s2, s2) . . . RC ′ (s2, sn)

. . . . . . . . . . . .

RC ′ (sn, s1) RC ′ (sn, s2) . . . RC ′ (sn, sn)

 (1)

where RC ′ (si, sj) indicates the relation value between each
two samples such as si, sj ∈ S. In this article, we discuss
the fuzzy similarity relation. That means, RC ′ meets the
conditions of symmetry and reflexivity. Formally, 1) reflex-
ivity: ∀si ∈ S, RC ′ (si, si) = 1; 2) symmetry: ∀si, sj ∈ S,
RC ′ (si, sj) = RC ′ (sj, si) [34].
Such a fuzzy relation shown in Eqn. (1) allows S/RC ′

which are called a collection of fuzzy granules [34]. ∀si ∈ S,
its fuzzy granule is mathematically represented as

[si]C ′ =
RC ′ (si, s1)

s1
+
RC ′ (si, s2)

s2
+ . . .+

RC ′ (si, sn)
sn

. (2)

Similar to the generation of fuzzy granule, using informa-
tion by D, a fuzzy collection of sample si is expressed as

[si]D =
D(si, s1)

s1
+
D(si, s2)

s2
+ . . .+

D(si, sn)
sn

, (3)

where D(si, sj) = 1 if si is assigned with the same decision
attribute to si; otherwise, D(si, sj) equals to 0.
Specially, we can calculate the cardinality of Eqns. (2)

and (3) such that

|[si]C ′ | =
∑
sj∈S

RC ′ (si, sj). (4)

|[si]D| =
∑
sj∈S

D(si, sj). (5)

IV. OUR METHOD
How to generate an appropriate fuzzy relation to describe
the sample similarity is always an open line, inviting
researchers to develop a number of methods. Towards this
end, we develop a novel approach in this section.
Definition 1: Considering that dC ′ (si, sj) is a distance

metric, as the Euclidean function is always used, it denotes
the Euclidean distance between samples si, sj ∈ S related to
C ′ ⊆ C in this work, and δ be a radius. ∀si ∈ S, the δ-based
neighborhood of si can be calculated by

N δ
C ′ (si) = {sj ∈ S : dC ′ (si, sj) ≤ δ}. (6)

Based on the concept of radius-based neighborhood,
we present the concept of shared neighborhood. In the fol-
lowing, The detailed formulation and definition is exhibited.
Definition 2: Let T be a supervised and complete table.

Assume that radius δ is assigned, ∀si, sj ∈ S, the shared
neighborhood of si and sj according to C ′ ⊆ C is defined
as

SN δ
C ′ (si, sj) = N δ

C ′ (si) ∩ N
δ
C ′ (sj). (7)

Theorem 1: Let T be a supervised and complete table,
and B1 ⊆ B2 ⊆ C . And then we can have SN δ

B2
(si, sj) ⊆

SN δ
B1
(si, sj).
Proof of Theorem 1: ∀si, sj ∈ S, it is simple to get

dB1 (si, sj) ≤ dB2 (si, sj) if B1 ⊆ B2 ⊆ C . Correspondingly,
with a fixed radius δ, N δ

B2
(si) ⊆ N δ

B1
(si). Similarly, N δ

B2
(sj) ⊆

N δ
B1
(sj). So, we can know that SN δ

B2
(si, sj) ⊆ SN δ

B1
(si, sj).

Theorem 2: Let T be a supervised and complete table.
Assume that δ1 ≤ δ2 are two different radii assigned to the
samples si, sj ∈ S, then SN

δ1
C ′ (si, sj) ⊆ SN δ2

C ′ (si, sj).
Proof of Theorem 2: ∀si, sj ∈ S, with a fixed attribute

subset C ′ ⊆ C , we have N δ1
C ′ (si) ⊆ N δ2

C ′ (si). Similarly,
N δ1
C ′ (sj) ⊆ N δ2

C ′ (sj). It follows that SN
δ1
C ′ (si, sj) ⊆ SN δ2

C ′ (si, sj).
Compared with the traditional neighborhood expression

in Eqn. (6), the shared neighborhood may be better for
describing the proximity. Not only that, the fuzziness
in neighborhood should be exploited. For such purpose,
a new fuzzy relation Rδ

C ′ using shared neighborhood can be
constructed, in which the fuzzy relation value is specifically
computed.
Definition 3: Let T be a supervised and complete table.

Assume that radius δ is assigned, the shared neighborhood
fuzzy relation value related to C ′ ⊆ C can be computed by

Rδ
C ′ (si, sj)

=


1 si = sj
0 SN δ

C ′ (si, sj) = ∅∑
sk∈SN δ

C ′
(si,sj) w(sk , si)+ w(sk , sj)

2 · |SN δ
C ′ (si, sj)|

otherwise

(8)
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where w(si, sj) indicates the similarity of si and sj formulated
by

w(si, sj) =
1

1+ dC ′ (si, sj)
. (9)

Theorem 3: The proposed shared neighborhood fuzzy
relation Rδ

C ′ satisfies reflexivity and symmetry.
Proof of Theorem 3: Theorem 3 is direct to prove.
Obviously, Rδ

C ′ is a fuzzy similarity relation. Furthermore,
we use this shared neighborhood fuzzy relation to explore
the underlying relationship of condition-to-decision attribute.
Herein, the uncertainty between fuzzy granule and fuzzy
decision class are focused on. Specifically, twomeasures, i.e.,
shared neighborhood fuzzy joint entropy and discrimination
index are developed to quantify the uncertainty. The detailed
definitions and formulas are given.
Definition 4: Let T be a supervised and complete table.

The joint entropy in terms of C ′ ⊆ C is defined as

JE(C ′) = −
1
|S|

∑
si∈S

log
|[si]Rδ

C ′
∩ [si]D|

|S|
. (10)

where

|[si]Rδ
C ′
∩ [si]D| =

∑
sj∈S

min(Rδ
C ′ (si, sj),D(si, sj)). (11)

Theorem 4: Let T be a supervised and complete table.
Assume that B1 ⊆ B2 ⊆ C , then we can have JE(B1) ≤
JE(B2).

Proof of Theorem 4: According to Proof 1, we know
that SN δ

B2
(si, sj) ⊆ SN δ

B1
(si, sj), it is easily known that

Rδ
B2
(si, sj) ≤ Rδ

B1
(si, sj). Therefore, as [si]D does not change,

[si]Rδ
B2
∩ [si]D| ≤ [si]Rδ

B1
∩ [si]D|. It follows that JE(B1) ≤

JE(B2).
Definition 5: Let T be a supervised and complete table.

The discrimination index in terms of C ′ ⊆ C can be
expressed by

I (C ′) = log
|S|2

|Rδ
C ′ |

, (12)

where

|Rδ
C ′ | =

∑
si∈S

|[si]Rδ
C ′
|. (13)

Theorem 5: Let T be a supervised and complete table.
Assume that B1 ⊆ B2 ⊆ C , then we can have I (B1) ≤ I (B2).

Proof of Theorem 5:As proven in Proof 1, SN δ
B2
(si, sj) ⊆

SN δ
B1
(si, sj), it is easily known that |Rδ

B2
| ≤ |Rδ

B1
|. It follows

that I (B1) ≤ I (B2).
Obviously, as the discrimination index is monotonous

according to the changes of feature subset, I (C ′) ∈

[0, log |S|]. Specially, max I (C ′) = log |S| if |Rδ
C ′ | = |S| and

min I (C ′) = 0 if |Rδ
C ′ | = |S|

2.
Definition 6: Let T be a supervised and complete table.

The discrimination index in terms of C ′ ⊆ C related toD can

TABLE 1. A synthetic supervised and complete decision system.

be expressed by

DI (C ′) = log
|Rδ
C ′ |

|Rδ
C ′ ∩ RD|

, (14)

where

|Rδ
C ′ ∩ RD| =

∑
si∈S

|[si]Rδ
C ′
∩ [si]D|. (15)

Usually, a satisfactory condition attribute subset is sup-
posed to granulate samples with high similarity into the
same class. Such a subset can guarantee a consistency
between fuzzy granule described by condition attributes and
fuzzy class described by decision attribute. Ideally, samples
located in a fuzzy granule are assigned with the same
decision attribute. That means, we expect that the condition
attribute subset would make |[si]Rδ

C ′
∩ [si]D| in Eqn. (10)

and |Rδ
C ′ ∩ RD| in Eqn. (12) as high as possible. It should

stress that, unlike the original expressions of entropy and
discrimination index, the redefined measures in Eqns. (10)
and (12) use the proposed shared neighborhood fuzzy relation
instead of traditional neighborhood relation. Therefore, these
new measures allow fuzzy operation for the evaluation of
feature quality, and enable better discrimination ability in
uncertainty.
To enhance the comprehension of these proposed mea-

sures, the detailed calculation processes are outlined in the
following.
Let us compute the joint entropy and discrimination index

on the whole condition attribute set in a synthetic supervised
and complete system as exhibited in Table 1.
As shown in Tab. 1, we need to compute on five samples

described by five condition attributes, i.e., {c1, c2, c3, c4, c5}.
In the following, neighborhood radius δ is appointed as
0.2. Firstly, N 0.2

C (s1) = {s1, s3}, N 0.2
C (s2) = {s2},

N 0.2
C (s3) = {s1, s3}, N 0.2

C (s4) = {s4, s5}, N 0.2
C (s5) =

{s4, s5}. Then, we can obtain the shared neighborhoods,
such as SN 0.2

C (s1, s1) = {s1, s3}, SN 0.2
C (s1, s2) = ∅,

SN 0.2
C (s1, s3) = {s1, s3}, SN 0.2

C (s1, s4) = ∅, SN 0.2
C (s1, s5) =

∅. According to Eqn. (8), we can induce the similarities,
such as R0.2C (s1, s1) = 1, R0.2C (s1, s2) = 0, R0.2C (s1, s3) =
(1 + 0.8695 + 0.8695 + 1)/4 = 0.9347, R0.2C (s1, s4) = 0,
R0.2C (s1, s5) = 0. Finally, it is easy to compute the joint
entropy and discrimination index: JE(C) = 1.5470,DI (C) =
log 1+0.9370+1+0.9370+1+1+0.9795+0.9795+1

1+0.9370+1+0.9370+1+1+0.9795+0.9795+1 = 0.
Correspondingly, it is plain to see that, if the candidate

subset of condition attributes could provide us with the lower
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the value of the uncertainty measure, then we would regard it
as a better one with more discriminate ability.

Moreover, we use these two evaluation measurements for
attribute reduction. The general flowchart is provided in the
following.

FIGURE 1. Flowchart of the proposed algorithms.

Correspondingly, the complete algorithm, i.e., pseudo
codes clarifying the detailed searching process is given.

Algorithm 1 SNFJE (and SNFDI).
Input: A supervised and complete decision system T , radius

δ, a predefined selected number k .
Output: A qualified reduct RED.
1: RED← ∅, REM ← C
2: while |RED| ̸= k do
3: for all c ∈ REM do
4: case 1: Calculate JE(RED ∪ {c})
5: case 2: Calculate DI (RED ∪ {c})
6: end for
7: case 1: Select the best feature cbest that provides the

minimal value of JE(RED ∪ {c})
8: case 2: Select the best feature cbest that provides the

minimal value of DI (RED ∪ {c})
9: RED← RED ∪ {cbest }, REM ← RED− {cbest }
10: end while
11: return RED.

Our proposedmethod consists of two stages: the evaluation
of candidate features and the selection of qualified features.
The first stage (steps 3-6) is to query the significance or
quality of each feature, while the second stage (steps 7-9)
is to compare them, and determine the most important one.
In each iteration of these steps, qualified feature is added into
selected pool one by one, and these steps are iterated until the
termination condition is satisfied, i.e., k condition attributes
are selected. Notably, if the criterion of joint entropy is used,

TABLE 2. Characteristics of the used data sets.

then the case 1 of Algorithm 1 is chosen, and we call the
designed algorithm SNFJE; if the criterion of discrimination
index is used, then the case 2 of Algorithm 1 is executed, and
the corresponding algorithm is named SNFDI. Furthermore,
our algorithm adopts a forward greedy searching mode,
leading to a computational complexity of Algorithm 1 similar
to that of other sequential selection approaches, i.e.,O(|S|2×
|C| × k).

V. EXPERIMENTS
Naturally, it is necessary to make the simulation experiments
to test the proposed SNFJE and SNFDI. For this purpose,
we do the experiments on MATLAB. In what follows, the
received results are reported and analyzed.

A. CONFIGURATIONS
Twelve public data sets are employed from UCI. Some useful
and necessary descriptions are exhibited.

In the following experiments, we mainly compare SNFJE
and SNFDI with

1) ALL: It is the naive approach using all the original
features of data sets.

2) HANDI [34]: It is a heuristic reduct searching approach
using the neighborhood discrimination index as feature
evaluation function. It is more efficient in time
cost as compared with traditional neighborhood-based
attribute reduction since it only computes the cardi-
nality of a neighborhood relation instead of multiple
neighborhood similarity classes. The used neighbor-
hood relation is still crisp which may fail to reflect the
actual certainty in data.

3) NSIFS [35]: It is a forward greedy approach that
applies the neighborhood self-information and entropy
measures. It extends some information measures to
neighborhood-based ones and can describe the feature
significance from an uncertain perspective. Nonethe-
less, its time efficiency is poor because it requires to
calculate the neighborhood classes of all samples.

4) PLAQR [36]: It is a pseudo-labelling decision-theoretic
rough set-based reduction algorithm. It mainly uses
K-means clustering to produce the pseudo labels
which is helpful for supporting the generation of
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indistinguishable relation. However, K-means-based
pseudo-labelling is not always stable, which may
deteriorate the reduction process.

5) SGNRS [37]: It is a neighborhood rough set-based
strategy using the supervised granulation. Its neigh-
borhood relation or granule can be more accuracy as
supervised neighborhood granulation is able to filter
out more negative samples. But such an approach may
be easily influenced by the weak supervision like noisy
labels in real-world applications.

6) N3Y [38]: It is a neighborhood uncertainty-based
feature selection procedure that applies relevancy,
redundancy, and granularity interactivity to evaluate
feature jointly. It can better alleviate the bias resulted
by a fixed neighborhood radius. However, it evaluates
features individually, which ignores the overall perfor-
mance of the selected subset.

For a fair comparison, radius is set as 0.15 in these
approaches. To avoid random influences, we utilize the
strategy of 10-fold cross-validation. That means, we average
these values, and report them in the following.

B. COMPARISONS ON CLASSIFICATION
We adopt the ranking strategy to critique the goodness or
quality of selected features by observing CART, KNN and
SVM classification performance. Specifically, we feed 10%,
20%, 30%, . . . , 100% ratios of top-ranking features selected
by algorithms to these three classifiers, and the corresponding
classification metrics are averaged to report.

In Figure 2 to 4, the comparisons of these algorithms
on obtained results classification accuracies are presented.
In detail, three types of classification accuracies are focused
on.

FIGURE 2. Comparison on CART accuracies.

As exhibited in Figure 2 to 4, algorithm with better
performance intends to be closer to the boundary of radar
chart. So, we can see that SNFJE or SNFDI always achieves
the best classification performance. Specifically, in Figure 2,
for CART classification accuracies, SNFJE and SNFDI attain

FIGURE 3. Comparison on KNN accuracies.

the maximal accuracies in 8/12 data sets (i.e., Data set 1, 2,
4, 5, 6, 8, 9, 12); for KNN classification accuracies, SNFJE
and SNFDI attain the maximal accuracies in 8/12 data sets
(i.e., Data set 1, 2, 4, 6, 7, 8, 9, 12); for SVM classification
accuracies, SNFJE and SNFDI attain the maximal accuracies
in 8/12 data sets (i.e., Data set 2, 3, 4, 7, 8, 9, 12). It should be
noticed that, although our proposed methods are sometimes
defeated by ALL (i.e., all the original features), it is still
evidently superiority to other attribute reduction algorithms.

Specially, although HANDI and SGNRS use the discrimi-
nation index and joint entropy, SNFJE and SNFDI are more
effective. Such result demonstrates that shared neighborhood
fuzzy relation is better than neighborhood relation used in
HANDI and SGNRS, mainly because it is more suitable for
describing the similarity and fuzziness in neighborhood.

FIGURE 4. Comparison on SVM accuracies.

In Tables 3 to 5, the obtained results of CART, KNN and
SVM recalls are presented. It should be pointed out that due
to the multi-class data sets, the metric of macro-recall is
employed. Similar to the results of classification accuracies,
SNFJE or SNFDI always achieves the best classification
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TABLE 3. Results of CART macro-recalls.

TABLE 4. Results of KNN macro-recalls.

TABLE 5. Results of SVM macro-recalls.

performance with respect to macro-recalls. Specifically, for
CART macro-recalls, SNFJE and SNFDI attain the maximal
accuracies in 7/12 cases; for KNN macro-recalls, SNFJE
and SNFDI attain the maximal accuracies in 8/12 cases; for
SVM macro-recalls, SNFJE and SNFDI attain the maximal
accuracies in 8/12 cases. All the compared algorithms depend
on the fundamental concept of neighborhood, while the
description techniques are different.

On the whole, SNFJE generally producesmore satisfactory
classification performance than SNFDI. Hence, we hypothe-
size that concerning the problem of feature evaluation and
selection, the concept of shared neighborhood fuzzy may be
more suitable for the formulation of joint entropy instead
of discrimination index. Such a phenomenon impels us to
explore a more applicable fuzzy relation to improve the
discrimination index.

In summary, it is easily known that SNFJE and SNFDI
beat the other four algorithms as they yield the outperforming
classification results in most data sets. As they are able

TABLE 6. Comparisons on time complexity.

to identify informative features which are more helpful for
constructing classification models, it may be a promising
tool in several practical applications of high-dimensional data
analysis, including: 1) gene selection for microarray data; 2)
band selection for cancer classification by pixel classification
in hyperspectral imagery data.

C. COMPARISONS ON TIME COMPLEXITY
As shown in Table 6, the time complexities of these compared
algorithms are listed. Evidently, their time complexities are
similar, because all of these compared algorithms employ
the same searching framework, i.e., sequentially forward
greedywhich is themost popular and efficient basic searching
strategy. In addition, accelerated methods are expected for a
fast version of our proposed methods.

VI. CONCLUSION
This paper introduces a novel fuzzy similarity relation for
attribute reduction. This relation allows the concept of shared
neighborhood to characterize the sample similarity, thereby
enabling the realization of an effective fuzzy granulation
technique. Then, the shared neighborhood fuzzy relation is
applied to engage with the fuzzy decision class to explore
the uncertainty of candidate condition attribute subset.
Furthermore, two uncertainty measures called joint entropy
and discrimination index are defined. Aiming at minimizing
such two measures, two forward sequential searching based
attribute reduction algorithms are devised.

The reported experimental results underscore that the
proposed SNFJE and SNFDI are superior to various repre-
sentative and latest attribute reduction algorithms. However,
specific limitations remain to be addressed:

• Only simulation experiment is performed to demonstrate
the advantage of the proposed SNFJE and SNFDI, but
theoretical analysis is lacked.

• Computing shared neighborhoodmaybe time-consuming,
some accelerated methods such as parallel or distributed
computing like various equipment and instruments can
be applied.

• The proposed algorithms are verified on conventional
structured and real-valued data, but it cannot process het-
erogeneous, multi-source, multi-view and even multi-
label data. It is desirable to develop and extend them to
a generalized framework.
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