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ABSTRACT The use of computer vision to estimate the Body Condition Score for cow has demonstrated
to be feasible. However, most research has been limited to fixed camera positions, which restricts the
technique’s usefulness. This research acquired cow data at various distances and angles to investigate the
impact of distance and different depth images restoration method on scoring accuracy. A U-Net neural
network-based model was employed for background segmentation. The model proposed in this study
performs best among SegNet, UNet, UNet++ and DeeplabV3, with significant performance improvement
and superior overall segmentation accuracy, and has stronger foreground object identification capability.
Additionally, we utilize the concept of human feature point localization to pinpoint the positions of cow
feature points. The results show that compared to Hourglass, CPN, and Hrnet, the model in this study
has significant advantages in three core indicators: accuracy, recall, and mAP. Moreover, we presented an
unsupervised depth image reconstruction model based on the Denoising Diffusion Probabilistic Model and
Unet++ Mode, facilitating the measurement and scoring of cow characteristics. Finally, the measurement
results of cow body size using the Lerp model, autoregressive model, GAN model, and the depth image
completion model proposed in this study were compared. The method proposed in this study was found to be
effective and feasible for meeting actual production requirements at a camera distance of 1-2 m from the cow,
achieving high accuracy with a coefficient of determination above 0.9. Additionally, the three models used
were effective in handling small-scale depth deficits, with a high degree of agreement between machine and
manual measurements. The DDPM-based depth image reconstruction model was found to produce the most
accurate results when the camera distance from the cow was between 1-3m. Therefore, this research makes
it possible to make flexible measurements in the near range using existing methods. Accurate measurements
at longer ranges are influenced by depth image quality and feature point localization accuracy, which require
more advanced techniques for further investigation.

INDEX TERMS Body condition score, feature point location, denoising diffusion probabilistic model.
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approving it for publication was Yudong Zhang .

I. INTRODUCTION
Precision animal husbandry has enabled producers to gain
valuable insights into the health and overall welfare of live-
stock through scientific feeding and precise management.
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In particular, the body condition score (BCS) of cows is
an indicator of body energy reserves, and it can be used
to assess whether cows are in appropriate condition at each
stage of the lactation. This information can aid in evaluat-
ing the feeding management and ensuring that nutritional
levels are appropriate, thereby predicting herd productivity
and providing a high reference value for farm management
and decision-making [1]. Traditional scoring methods for
BCS rely on tactile or visual methods, which are subjective
and prone to variations in interpretation among even well
trained scorers [2], [3], [4], [5]. Moreover, the manual scoring
processes is not only time-consuming and costly but also lead
to personal injury and affect scoring accuracy due to the stress
response of livestock during the measurement process.

In an attempt to overcome the limitations of traditional
BCS measurement methods, researchers have explored alter-
native approaches involving 2D imaging. Bewley [6] manu-
ally selected feature points from images to score BCS, while
Halachmi [7] predicted BCS by extracting the profile of cows
and calculating the average absolute error between the fitted
polynomial and the cow profile. Battiato [8] used statistical
shape analysis and regression machines to evaluate BCS
using top view images of cows, and found it is approach to be
feasible. Based on these methods, Huang [9] proposed using
the multi-box detector (SSD)method to evaluate cows by col-
lecting 898 images of cow tails. The experiment showed that
the classification accuracy of this approach for cow scoring
was 98.46%.

Although there have been advancements in the methods for
processing 2D images, the lack of 3D information due to the
2D projection limits further applications. However, in recent
years, 3D sensors have emerged, providing depth information
that can be useful for cow body condition scoring [10], [11].
Several studies have utilized 3D cameras to capture surface
information of cows, extract feature points, and predict BCS.
For instance, Fischer [12] selected four feature points man-
ually, while Alvarez [13] used the Squeeze-Net model to
predict BCS with high accuracy. Liu [14] proposed an image
processing algorithm that can extract features automatically
and has good performance in predicting extreme cow body
condition scores. Martins [15] collected 13 feature points
using the 3D camera and obtained the relationship between
BCS and body weight. Overall, 3D images contain depth
information that reflects the degree of body surface concavity
and is more strongly correlated with cow body energy storage
status. Therefore, 3D visual-based systems [5], [10], [12],
[13], [14], [15], [16] tend to be more relevant than 2D-based
systems [6], [7], [8] and have great potential for improve the
accuracy of cow body condition scoring.

Ferguson [17] established the high correlation between
cow body condition score and several anatomical regions,
such as the thurl region, ischial and ileal tuberosities,
iliosacral and ischiococcygeal ligaments, transverse pro-
cesses, and spinous processes of the lumbar vertebrae.
In practice, scorers determine the scoring range based on first
impressions and then consider the different body features of

cows in various regions to arrive at a result. However, current
research has only partially quantified these features [11],
[12], [13]. For instance, Spoliansky [10] used image pro-
cessing techniques and regression algorithms to extract the
cow tail data and automatically calculate the body condi-
tion score. Hansen [16] proposed a ‘‘rolling ball’’ algorithm
to precisely extract the cow spine from depth images and
detect cow weight, lameness, and body condition. Nonethe-
less, the quantification of cow body condition score features
remains incomplete, and further research is necessary to
understand the correlation between these features and cow
body conditions score.

Prior studies have discussed the effects of using cameras
at fixed distances for cow body condition scoring [18], [19],
[20], but have failed to consider the impact of camera-to-cow
distance on measurement accuracy. For example, Cozler [21]
fixed five cameras to complete the morphological characteri-
zation of cows, while Zin [22] fixed a 3D camera at a distance
of 1.8 meters from the back of the cow and achieved auto-
mated scoring of cows through image processing techniques
and regression models. Li [23] estimated BCS by using a
3D surface fitting method with a camera mounted at a fixed
distance of 2.4 m from the ground on a metal mount.

Furthermore, it is essential to acknowledge that the quality
of depth images can be significantly impacted by variations
in the distance between the 3D camera and the target, result-
ing in the presence of artifacts and voids. Previous research
efforts have sought to enhance the quality of depth images
through the application of depth map reconstruction meth-
ods [24], [25], [26]. However, these methods encounter a
notable constraint: the absence of authentic depth images of
actual livestock, rendering supervised learning approaches
infeasible for training depth image complementation mod-
els. Consequently, the predominant approach in existing
literature has been the utilization of filter-based method-
ologies to address gaps in depth maps. Nonetheless, it is
important to note that filter-based techniques exhibit opti-
mal efficacy in situations where the extent of missing depth
values is limited. Once the missing depth region surpasses
a certain threshold, the efficacy of filter-based depth image
complementation method diminishes.

Due to the difficulty of acquiring ground truth in many
production environments, unsupervised deep learning meth-
ods have received extensive attention in image reconstruc-
tion research. Unsupervised deep learning does not require
labeled data for training. By learning the inherent feature
representations within the data itself, it mines the hidden
patterns behind the data distributions to obtain more gener-
alizable feature representations. Compared with supervised
learning, unsupervised deep learning reduces manual anno-
tation workload, lowers over fitting risks, and achieves
better feature transferability, expandability and computa-
tional efficiency [27], [28]. In recent years, researchers
have proposed a remote sensing image super-resolution
method called E2GAN, which designs modules to extract
and enhance edge details to improve the edge and texture
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quality of the generated images [29]. To improve computa-
tional efficiency and reduce network complexity, researchers
proposed an efficient diffusion model based remote sens-
ing image super-resolution method built upon the ideas of
E2GAN, which achieves higher reconstruction quality by
finely controlling the diffusion rate to reduce parameters [30].

It is noteworthy that the evaluation metrics used in these
studies are mainly PSNR and SSIM, FID and visual subjec-
tive metrics. These metrics make judgments on the structural
similarity between real images and generated images. The
purpose of this study is to complement the missing depth
values of corresponding positions in depth images for calcu-
lating cow body measurements. Therefore, evaluations based
on structural similarity cannot determine the effectiveness of
the method proposed in this study. Hence, the evaluation met-
rics used in these studies are not applicable to this research.
Since no academic research has involved this aspect, there
is still a lack of research on the impact of different image
processing techniques on the depth values of cow keypoint
features, thereby affecting the accuracy of scoring cow body
conditions.

The aforementioned studies have demonstrated the theo-
retical foundation and operational simplification of using 3D
cameras for cow body condition scoring. However, the practi-
cal application of this technology is limited by the insufficient
quantification of features and the disregard for the impact
of camera distance and depth image quality on the accuracy
of scoring. To address these limitations, this study builds
on prior research and proposed a feature point localization
method for cow body condition scoring. Specifically, extract
the cow’s trunk from the background using the U-Net neural
network model to enhance robustness against environmental
factors. Then identify feature points based on the principles of
human feature point localization, and a combination of color
and depth images was utilized for scoring. Finally, we present
an unsupervised depth image completion method based on
Denoising Diffusion Probabilistic Model (DDPM) [31], and
subsequently, we investigate the influence of distance and
depth image quality on the process of assessing the body
condition of dairy cattle.

II. MATERIALS AND METHODS
A. ETHICS STATEMENT
This experiment does not involve animal slaughter exper-
iments. The data collection process of the relevant ani-
mals complies with the regulations of the Animal Ethics
Committee of Hebei Agricultural University.

B. DATA ACQUISITION
The present investigation involved collecting video data of
150 adult cattle (Simmental and Holstein Friesian cattle, age
>36 months of age) between April 2021 to August 2022.
The data was collected using Intel RealSense D415 depth
cameras (Intel™, Santa Clara, CA, USA) with a color hori-
zontal field of view (±69.4◦) and a depth horizontal field of

FIGURE 1. Schematic diagram of dairy cow feature point.

view (±69.4◦) at two different dairy farms(Luanzhou Jinshuo
Dairy Farming Co. and Qian’an Erniu Livestock Farming
Co). The cow was recorded while being gathered at the
feed fences, while being photographed counter-clockwise
around the cow from the highest point of the withers on the
left side until the highest point of the withers on the right
side. Notably, the quality of depth images was significantly
impacted by the distance and this was taken into consideration
during the collection process. During the collection process,
the camera was positioned at distances of 1m-2m, 2m-3m,
and 3m-4m from the cows, respectively, to ensure the feature
points were visible in the view of the camera. Each cow
was recorded for 30 seconds at a specific distance with a
video frame rate of 30 frames per second and a resolution
of 640 × 360 pixels for both the color and depth videos.
This research aimed to collect the body condition score of

150 cows using the 9-point scoring method of the Code of
type classification in Chinese Holstein (GB/T35568-2017).
Two trained technicians who had independently identified
over 5000 cows were asked to evaluate 20 features using
the aforementioned scoring method. In cases where there
were discrepancies in the scores assigned by the two tech-
nicians, a third assessment was conducted to mitigate human
measurement errors and obtain a final score.

This research investigation focused on analyzing a subset
of features with high degrees of measure, namely chest depth,
hip height, ischial width, parallelism of hind, hind leg curva-
ture, length of teat, and depth of teat. In order to obtain the
dataset of feature point localization for these features, manu-
ally screened 25200 images of cows captured by the camera
positioned at various distances. The dataset was divided into
training, validation, and test sets, with a 5:3:2 ratios being
employed for this purpose.

C. DATA ANNOTATION
Experienced technicians used the LabeLimg annotation tool
(version 1.8.6) to manually annotated color images. Figure 1
depicts the 19 feature point locations that were marked dur-
ing the annotation process. Point A represented the lumbar
point at maximum abdominal circumference. Point B was
the lowest point of the abdomen at the maximum abdominal
circumference. Point C was the highest point of the hip. Point
D and E corresponded to the left and right ischial points
respectively. Point F indicated the joint point of the left hind
leg. Point G and H represented the left and right hind hooves
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TABLE 1. Scoring criteria.

respectively. Point I, J, and K denoted the left leg hock point
along with its upper and lower points. Point L, M, and N
indicated the right leg hock point along with its upper and
lower points. Point O and P were the bottom and top points
of the teat respectively. Point Q referred to the joint point of
the left hind leg. Point R and S represented the left and right
front hooves respectively.

D. SCORING ITEMS AND CRITERIA
This study selected 7 out of 20 features based on their high
degree of measure for measurement and analysis. The scoring
features included chest depth, hip height, ischial width, par-
allelism of hind, hind leg curvature, length of teat and depth
of teat.

(i) Chest depth Chest depth refers to the ratio of the verti-
cal length from the lumbar spine to the bottom of the abdomen
at the maximum abdominal circumference to the vertical
length from the same point to the floor. This is equivalent to
the ratio of the length from point A to point B to the length
from point A to the plane composed of points R, S, G and H
in Figure 1.

(ii) Hip heightHip height refers to the vertical length from
the highest point of the hip bones to the floor. Correspond to
the length from point C to the plane composed of points R, S,
G and H in Figure 1.

(iii) Ischial width Ischial width refers to the length
between ischial tubercles. Correspond to the length from
point D to point E in Figure 1.

(iv) Parallelism of hind Parallelism of hind refers to the
angle of the connection between the joint point of the left and
right hind legs and the hind hoof. Correspond to the angle
between the line QG and the line FG in Figure 1.

(v) Hind leg curvature Hind leg curvature refers to the
Angle between the leg hock points and their upper and lower
points. Correspond to the angle between the extension line JI
and the extension line IK or the extension line ML and the
extension line LN in Figure 1.

(vi) Length of teat Length of teat refers to the length
between the Bottom and top of teat. Correspond to the length
from point P to point O in Figure 1.

(vii) Depth of teat Depth of teat refers to the Relative
length between the Bottom of teat and the hock. Correspond
to the relative length from point P to line QF in Figure 1.

In accordance with the guidelines outlined in the Code of
type classification in Chinese Holstein (GB/T35568-2017),

FIGURE 2. Depth image completion process.

whole numbers ranging from 1 to 9 were employed to reflect
the extent of variance in cow body shape features from one
extreme to another. Elaborated scoring criteria are depicted
in Table 1.

E. IMAGE PROCESSING
The objective of the image processing procedure is to extract
feature points from a color image and compute the cor-
responding score by incorporating the depth image. The
workflow comprises of the subsequent steps: (i) restoration
of the depth image by adopting distinct methods to minimize
holes and texture-copying artifacts. (ii) Segment the body
parts by combining the segmentation network from prior
studies with data augmentation techniques, which allows
automatic, remote and non-contact segmentation of the back-
ground. (iii) Localization and computation of feature points
by employing HR-Net to augment the precision of feature
point detection and produce the final scores.

1) DEPTH IMAGE RESTORATION
Depth cameras are capable of real-time depth information
acquisition. However, depth images are susceptible to noise,
missing regions, and other environmental factors, such as
illumination and distance, which can significantly degrade
their quality. To mitigate the impact of distance and illumina-
tion on the quality of depth images and enhance robustness
in handling missing depth values, this study introduces an
unsupervised depth image completion method based on the
DDPM model. This method relocates the missing depth
regions in depth images to their corresponding areas in
color images, leveraging the prior information from the color
images to progressively reconstruct the depth distribution
within the damaged regions. The depth image completion
process is illustrated in Figure 2.

The first phase involves the preparation of training data,
as depicted in Figure 3. The training dataset comprises
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incomplete depth images paired with corresponding color
images containing corresponding imperfections. In practical
agricultural settings, it is challenging to obtain depth images
of livestock with complete depth information. Therefore,
to maximize data utility and leverage the prior information
from RGB images, this study saves the coordinates of depth
value gaps in the depth images. Subsequently, based on
these coordinates, the corresponding RGB information in
the color images is removed, thus constituting the training
dataset for the model. In this setup, incomplete depth images
and their corresponding color images with position-based
imperfections serve as inputs for paired training using the
DDPM-based model.

FIGURE 3. Training data preparation phase.

The second section outlines an unsupervised depth image
reconstruction method based on the DDPM model. The
DDPM Model is a parameterized Markov chain trained
through variation inference. It diverges from the adversarial
design of GANs by introducing the concept of time steps,
enabling a smooth transition from simple to complex distribu-
tions. This gradual generation of samples from random noise
aligns naturally with our depth image reconstruction task.
The crux of DDPM lies in training a demising model. Given
that noise and original data share the same dimensionality,
we employ a U-Net model based on residual blocks and
attention blocks for demising model training, as illustrated
in Figure 4.

FIGURE 4. Noise prediction model U-Net in DDPM.

The U-Net architecture falls within the category of
encoder-decoder frameworks. In this architecture, the
encoder component is divided into different stages, each
comprising down sampling modules to reduce the spa-
tial dimensions of the features. Conversely, the decoder,
as opposed to the encoder, gradually restores the features

compressed by the encoder. Within the decoder module of
U-Net, skip connections are introduced, involving the con-
catenation of features obtained from intermediate stages of
the encoder. This inclusion of skip connections contributes
to the optimization of the network. The encoding-decoding
structure within U-Net aligns well with the concept of gen-
erating samples progressively from low-level to high-level
features. By propagating multiscale information through skip
connections, U-Net plays a pivotal role in refining structural
information within RGB images.

In the U-Net structure of DDPM, the orange part of the
Time Representation and Fully-connected Layers are utilized
to provide information on time steps and feature integration
respectively. Here, Xt denotes an intermediate state in the
diffusion process, while (t) represents a specific time step.
The Time Representation Layer ensures that the network can
identify the current diffusion step and adjust its denoising
behavior accordingly, and the Fully-connected Layers are
responsible for processing and transmitting data and features
within the network structure. Additionally, the formidable fit-
ting capacity of U-Net and its variants empowers the DDPM
to generate detailed and high-quality samples in an unsuper-
vised context. This quality makes it particularly well-suited
for recovering high-resolution depth images.

To further extract the correspondence between features in
depth and color images, enhance the quality of depth image
completion, and concurrently reduce model complexity, this
study adopts theUnet++model as a replacement for theUnet
model used in DDPM for denoising purposes. The Unet++

model is illustrated in Figure 5.

FIGURE 5. U-Net++ model.

The UNet++ architecture incorporates a deeper encoding-
decoding structure with an increased number of skip connec-
tions. This structural enhancement facilitates the capture of
global image information, contributing to effective denoising.
Furthermore, UNet++ employs recursive dense connection
modules, enabling the extraction of richer feature representa-
tions and enhancing the network’s expressive capacity. Addi-
tionally, UNet++ leverages advanced training techniques
such as residual learning and deep supervision, further aug-
menting the efficacy of network training. In comparison to the
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conventional Unet model, UNet++ employs more advanced
model compression and pruning techniques. It selectively
removes less relevant structures and parameters for denoising
tasks and fine-tunes training parameters to prevent parameter
inflation caused by over fitting.

The third phase corresponds to the stage of improving
depth image quality. Due to limitations in the number of
images available in the training dataset, the depth image
outputted in the second phase may still exhibit small areas
of depth gaps at the edges of the cow’s body, as depicted in
Figure 6. Compared to the original input depth image, these
areas of depth gaps are relatively small in size. Therefore,
in this stage, the Joint Bilateral Filtering (JBF) algorithm is
employed to rectify the depth gaps within the depth image,
thereby enhancing its overall quality. This step serves to
mitigate measurement errors resulting from missing depth
values at feature points.

FIGURE 6. Data quality improvement.

2) BACKGROUND SEGMENTATION
The U-Net is a deep learning model specifically designed for
image segmentation, characterized by its encoding-decoding
structure, which allows it effectively utilize information from
the input image by compressing it into smaller feature maps.
Furthermore, the bottom-up architecture of U-Net enables it
to identify details of larger objects. In a previous investiga-
tion, we optimized the U-Net neural network model using the
PyTorch framework (version 1.5.0) to achieve non-contact
background segmentation of livestock in the side-view. The
optimized U-Net neural network is depicted in Figure 7.

FIGURE 7. Segmentation model base on U-Net.

Initially, ReLU was used as the activation function for the
U-Net neural network. However, due to the inherent limita-
tion of ReLU, where the negative semi-axis value is always
zero, the neurons can become inactive when the input of
the model is at its minimum value. To overcome this issue,
the ReLU activation function after each convolutional layer

and batch normalization layer in the U-Net neural network
was replaced with the Mish activation function. The Mish
activation function avoids saturation due to function cap-
ping and the vanishing gradient and dead ReLU problem,
as the positive axis derivative of Mish is greater than one.
Moreover, the Mish algorithm has better generalization than
the ReLU algorithm because it is smoother. Additionally,
the DropBlock2D [32] module was incorporated into the
up sampling process of U-Net. The DropBlock module is
a regularization module for convolutional neural networks
that effectively removes certain semantic information by ran-
domly blocking out a portion of continuous regions. By acting
as an effective regularize, the DropBlock module forces the
network to learn other features of the object after several itera-
tions of training. Furthermore, previous research suggests that
appropriate cross-channel interaction could reduce the model
complexity while maintaining performance [33]. Hence, after
each down-sampling convolution module of U-Net, an atten-
tion module was added to enhance the accuracy of the
segmentation.

However, there are still some shortcomings in this method.
Specifically, the model was exclusively trained on cow data
captured from a side view, which may compromise its per-
formance when applied to images captured from different
angles. Furthermore, due to lack of necessary image aug-
mentation techniques, the ability of the model to segment the
background at varying distances and angles is also limited.
To address these limitations and improve the segmenta-
tion performance of the model, we employed the following
strategies, as depicted in Figure 8. Firstly, we increased the
number and variety of images in the training dataset, includ-
ing images captured from different angles and distances.
Secondly, we implemented a range of image augmentation
techniques, such as sharpening, affine transformation, ran-
dom pixel removal, and Gaussian noise addition during the
image pre-processing stage, to enhance the ability of the
model to extract salient features from images and improve
its generalization capacity.

FIGURE 8. Background segmentation process.

After many experiments, a set of optimal parameter
settings was determined to achieve more accurate cow seg-
mentation. First, the Batch size was set to 20. Secondly, this
study implemented a dynamic adjustment strategy, in which
the initial learning rate was set to 0.01, and then reduced to
0.001 during the first 60-90 rounds to refine the model train-
ing. After 90 rounds, the learning rate was further reduced by
a factor of 10 to prevent oscillation and slow convergence.
Finally, the Stochastic Gradient Descent method was used as
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the optimization algorithm, and the early stopping strategy
was employed to prevent over fitting.

3) FEATURE POINT LOCATION
Enhancing the precision of feature point localization holds
substantial importance in augmenting the accuracy of body
condition scoring. However, there is a multitude of obsta-
cles and intricacies, such as intricate scenes, modifications
in scale, and diverse poses. The excellent solution for fea-
ture point location is to convert the regression problem
to pixel-level classification problem based on heat map
response. Referring to this idea, the present research has
employed HRNet for feature point localization.

HRNet is a 2D human pose estimation network architec-
ture, which was proposed by Sun [34] of CSU and Microsoft
Asia Research in 2019. The current mainstream approach
for multi-scale feature extraction typically involves down
sampling high-resolution feature maps to low resolution,
then up sampling the low-resolution feature maps back to
high resolution [35], [36], [37]. However, traditional feature
extraction approaches that extract features from high to low
image resolutions lead to a loss of valuable information [23],
[38], [39]. To address this defect, HRNet employs parallel
sub-networks that maintain high-resolution feature image
representations throughout the feature extraction process.
At the end of each stage, the network fuses the feature maps
of different resolutions. The feature maps from all resolu-
tions are merged through a fusion layer to create the final
feature representation. Each body joint feature point has a
corresponding output channel, which produces a heat map
for that specific joint feature point. This research introduced
the Convolutional Block Attention Module (CBAM) [40] to
elevate the weight of significant features in the channel and
spatial axes while suppressing unnecessary features during
the extraction process. Figure 9 depicts the HRNet structure
based on the CBAM.

FIGURE 9. The structure of CBMA- HRNet.

HRNet is composed of four stages. In the first stage, the
resolution is reduced to 1/4 of the input image through two
convolutional layers with a 3∗3 convolutional kernel, and the
stride is set to 2. The regression heat map is represented
at this resolution. The high-resolution subnet, consisting of
repeatedly stacked Bottlenecks, is responsible for adjusting
the number of image channels. Subsequently, the second,
third, and fourth stages add subnets that comprise a series

of transition structures and stage structures. Each transition
structure introduces a new scale branch, doubling the number
of channels while decreasing the resolution. The number of
channels increases exponentially as the number of subnets
in the network increases. Simply adding channel information
directly ignores the correlation between channels. In addition,
a CBMA module was add after each channel number expan-
sion to enhance the weight of important features during the
extraction process. Different resolution subnets were parallel
connected, and repeated information fusion was performing
at various scales. Ultimately, the position of the feature point
was predicted through the high-resolution heat map.

CBAM is an attention mechanism module that integrates
both spatial and channel attention. It comprises the Channel
Attention Module (CAM) and the Spatial Attention Module
(SAM). The SAM can be utilized within HRNet to effectively
highlight significant spatial features within an image. HRNet
is distinguished by its utilization of multiple resolution fea-
ture maps, where low-resolution feature maps capture global
information, while high-resolution feature maps preserve
local details. By strategically applying spatial attention across
the various resolution feature maps in HRNet, it becomes
possible to accentuate positions within these maps, conse-
quently enhancing the precision of feature point localization.
Similarly, CAM can be employed in HRNet to emphasize the
significance of different channels. HRNet incorporates mul-
tiple branches, with each branch responsible for extracting
features at distinct scales. Through the application of chan-
nel attention on the diverse branch feature maps in HRNet,
it becomes feasible to highlight crucial channel features
across different branches, thereby bolstering the robustness
of feature point localization. The structure of CAM is shown
in Figure 10.

FIGURE 10. Structure of CAM.

Initially, the feature map with dimensions H∗W∗C was
computed utilizing the MaxPool and AvgPool method, lead-
ing to a feature with dimensions of 1∗1∗C. Subsequently, the
shared MLP with the ReLU activation function processed
the two feature maps. After the element-wise addition of the
two features, the resulting feature was subjected to a sigmoid
activation function to obtain the channel attention feature
Mc (F). The calculation formula for Mc (F) is expressed in
equation (1), where W0 ∈ Rc/(r∗c) and W1 ∈ Rc∗(

c
r ) are the

weight of the hidden layer and output layer, correspondingly.

Mc (F)

= sigmoid (MLP (AvgPool (F)) +MLP (MaxPool (F)))

= sigmoid(W1

(
W0

(
Fcavg

))
+W1

(
W0

(
Fcmax

))
) (1)
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The structure of SAM is shown in Figure 11. For the input
feature map, the SAM performs max pooling and average
pooling operations along the channel dimension, respectively,
to obtain a feature map with contextual information of differ-
ent scales. Subsequently, the processed result F savg and F

s
max

is stacked on the same dimension, and then a 1∗1 convolution
is used to adjust the number of channels to generate spatial
attention weights. Finally, use the sigmoid function to scale
to between 0 to 1 and obtain the final spatial attention feature
Ms. The formula for this feature is presented in equation (2).
The convolution kernel was set to 7∗7.

Ms (F) = sigmoid
(
f 7∗7 ([AvgPool(F);MaxPool(F)])

)
= sigmoid(f 7∗7([F savg;F

s
max])) (2)

FIGURE 11. Structure of SAM.

F. EXPERIMENTAL SETTING
This study conducted two experiments to assess the efficacy
of the proposed method and investigate the influence of
distance, depth image quality, and a various of depth image
restoration method on measurement precision.

Initially, the research aimed to evaluate the effect of dis-
tance on measurement accuracy, for which ten cow videos
were randomly selected. From these videos, three color
images and depth images were chosen for each feature point,
based on suitable postures and complete depth values at the
distances of 1-2 m, 2-3 m, and 3-4 m. The proposed method
was utilized to score each feature and the average machine
measurement was taken as the final feature score. Finally, the
difference between the machine measurement and the manual
measurement was computed to determine the measurement
error.

The second experiment aimed to address the issue of miss-
ing depth values in depth maps captured by depth cameras
due to factors such as distance, highlights, or shadows. As the
distance increases, the area of missing depth values also
increases, making such data unsuitable for use. To address
this limitation and evaluate the impact of depth image quality
and different depth image restoration methods on measure-
ment accuracy, the research selected three suitable color
images and corresponding depth images for 10 cows for each
feature at distances of 1m-2m and 2m-3m. The depth values
at feature points were processed using three methods outlined
in Section II-E1. Each feature was then evaluated using the
method proposed in this research, and the machine’s average
score was taken as the final result of the scoring feature at
the specific distance. The error between the machine score

and the manual score was then calculated to determine the
effectiveness of the depth image restoration methods.

III. RESULT AND DOSCUSSION
A. COMPARISON OF BACKGROUND SEGMENTATION
PERFORMANCE OF COW
To validate the effectiveness of the proposed method for cow
segmentation, this study selected five common performance
metrics in foreground segmentation: Accuracy, Sensitivity,
Specificity, Params and execution time. We compared our
model with four classic foreground segmentation models:
SegNet, UNet, DeeplabV3 and UNet++. The results are
shown in Table 2.

TABLE 2. Comparison of background segmentation performance.

Our model achieved the highest accuracy of 0.95, sub-
stantially outperforming the second best model UNet++ at
0.93. Among all comparing models, our model exhibited
the most significant performance gain, fully demonstrat-
ing its superiority in overall segmentation correctness. For
sensitivity, our model also attained the highest score of
0.96, exceeding the second best DeeplabV3 by a large
margin of 7 percentage points. This remarkable improve-
ment shows our model’s stronger capability in identifying
foreground objects. Sensitivity reflects directly the model’s
foreground recognition capability, so this metric’s prominent
enhancement further verifies the effectiveness of our method.
In terms of specificity, our model is on par with UNet++

at 0.95. This suggests that while improving foreground
recognition, our model also maintained strong distinction
for background regions. By integrating the CBMA module,
our model has slightly more parameters than other models.
Considering the significant segmentation improvement, this
increase is acceptable. Our model is also slightly slower than
other models, mainly due to the extra modules designed to
enhance performance. This trade-off is reasonable. Hardware
acceleration can be explored in the future to reduce time
consumption. In summary, compared with other segmenta-
tion models, our model achieved noticeable improvement
on all key metrics, with more accurate foreground detection
and substantial background interference reduction. This fully
demonstrated the validity and superiority of our proposed
model.

B. COMPARISON OF KEYPOINT LOCALIZATION
PERFORMANCE OF COW
To validate the effectiveness of the proposed method for
cow keypoint localization, this study selected five common
performance metrics: Precision, Recall, mAP, Params and
execution time. We compared our model with three classic
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keypoint localization models: Hourglass, CPN and Hrnet.
The results are shown in Table 3.

TABLE 3. Comparison of feature point localization performance.

Our model achieved a high precision of 0.94, outperform-
ing the second and third best models by large margins of
9.5% and 8.5% respectively. This demonstrates substantial
improvements in localization accuracy. For recall, our model
also notably exceeded the second and third best models,
indicating our model was able to cover and localize more
true keypoints while avoiding misses. In terms of the overall
metric mAP, our score of 0.95 also surpassed other models
by a large extent. This fully proves that our model attained
the most significant performance gains in comprehensive
keypoint localization quality. Regarding model complexity,
the number of parameters in our model is on par with others.
This means we realized remarkable performance gains with-
out increasing computational burden, which is noteworthy.
Our model also demonstrated state-of-the-art time efficiency,
further suggesting the effects come from genuine model
optimization instead of efficiency compromise. In summary,
quantitative analysis clearly shows that compared to exist-
ing advanced techniques, our proposed keypoint localization
model achieves noticeable improvements across all core eval-
uation metrics. This fully demonstrates the validity of our
method.

C. THE INFLUENCE OF DISTANCE ON MEASUREMENT
ACCURACY
The regression models and coefficient of determination (R2)
values for manual and machine measurements is present in
Table 4. At the camera distance of 1-2 m from the cow,
the R2 values for chest depth, hip height, ischial width,
parallelism of hind, hind leg curvature, length of teat, and
depth of teat were 0.9018, 0.9653, 0.9873, 0.9926, 0.9719,
0.9437, and 0.958, respectively. These R2 values all exceeded
0.9, indicating a high level of consistency between the two
measurement methods. At the camera distance of 2-3 m from
the cow, the R2 values for chest depth, hip height, ischial
width, parallelism of hind, and hind leg curvature ranged from
0.8 to 0.95. However, the R2 values for length of teat and
depth of teat were both less than 0.2. It is indicating a lack
of correlation between manual and machine measurements
for these two variables at this distance. At a camera distance
of 3-4 m from the cow, all the correlation coefficients for
bodymeasurements were less than 0.6, indicating a negligible
correlation between manual and machine measurements at
this distance.

The error box line plot of manual and machine measure-
ments at corresponding distances from the cow is present
in Figure 12. Results showed that the relative errors of

measurement for chest depth, hip height, ischial width, and
hind leg curvature ranged from−5.93% to 5.38% at a camera
distance of 1-3 m from the cow. However, for parallelism
of hind, the average relative error of measurement at 2-3 m
reached −9.84%, and the maximum measurement error was
−15.89%, which exceeded the acceptable range of normal
measurement error. Conversely, the relative error ranges for
length of teat and depth of teat were within the acceptable
range at 1-2 m, with an average relative error of 3.92% and
4.9%, respectively. But, the average relative error of measure-
ment for both lengths of teat and depth of teat was greater
than 200% at 2-3 m and 3-4 m, indicating that measurements
at these distances are not credible. The average relative error
was too large compared with other body scales, so they are
not show in the Figure 7. Furthermore, at a camera distance
of 3-4 m from the cow, the coefficient of determination for
manual and machine measurements of hip height and hind
leg curvature were 0.5196 and 0.5029, respectively. Themean
measurement errors for chest depth and parallelism of hind
were 10.61% and 31.25%, respectively, with coefficient of
determination values of 0.1366 and 0.4376, indicating that
measurements at this distance are also unreliable.

Figure 13 presents the heat map of manual and machine
scoring errors for various cow features, where the manual
and machine scores were transformed from the measurement
results against Table 1. At a camera distance of 1-2m from the
cow, the scoring accuracy for most features, except for hind
leg curvature and length of teat, was above 80%with a scoring
error of 1. Although the accuracy for hind leg curvature and
length of teat was lower compared to other features, the
error was limited to 2. The high correlation between manual
and machine measurements for each feature, as indicated
by the coefficient of determination of 0.9719 and 0.9437,
could reduce the scoring error via linear fitting. Similarly, at
2-3 m camera distance, the overall error range was within 1-2
points except for length of teat and depth of teat. The high
correlation between the manual and machine measurement
results for each feature indicates that they could serve as a
reference basis. However, as shown in Figure 8(c), the scoring
error was significant and unevenly distributed at a camera
distance of 3-4 m from the cow, making it difficult to adjust
the scoring accuracy using other means. The scoring results
at this distance were not suitable as a reference basis.

Based on the experimental findings, when positioned the
camera at a distance of 1-2 meters from the cow, the pro-
posed method exhibited accurate measurement of all seven
features. It proved that this method is satisfied actual produc-
tion requirements. Similarly, at a distance of 2-3 meters, the
scoring accuracy of all features except hind leg curvature and
length of teat was deemed satisfactory. Which demonstrated
the effectiveness and feasibility of the proposed method. The
study further revealed a decrease in scoring accuracy with
increasing distance, given that the depth camera relies on
structured light technology to measure depth by calculating
the time for infrared laser light to reflect back from the camera
to the object. Consequently, both manual and machine-based
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TABLE 4. Linear Regression Analysis of body measurement.

FIGURE 12. Error box line plot of manual and machine measurements at
different distances.

measurements experienced a decline in accuracy in feature
point localization and depth information acquisition, particu-
larly when the cow’s body size was reduced or the skeleton
was unclear at larger distances. Specifically, measurements
for hind leg curvature and length of teat required feature
point P’s localization and depth values on the color and
depth images, respectively. Despite the localization accuracy
of feature point P being satisfactorily determined through
extensive annotation work.

The performance limitation of the depth camera led to
weakened surface texture information at point P, thereby
affecting the depth camera’s ability to discern the depth of
point P and the background, leading to distortedmeasurement
results at distances ranging from 2-4 meters.

D. IMPACT OF DEPTH IMAGE RESTORATION METHODS
ON MEASUREMENTS
Current depth image restoration methods can be broadly
categorized into filtering, interpolation, function optimiza-
tion, and deep learning approaches. Due to the absence of
ground truth depth images of cows in practical production
settings, supervised deep learning-based depth image com-
pletion methods are not applicable to this study. Therefore,
this research opts to compare the proposed method with
the Adaptive Autoregressive Model (AR) [41] based filter-
ing, linear interpolation algorithm [10] and unsupervised
GAN [42] to validate the reliability of the proposed approach.

The linear regression equations obtained from the man-
ual and machine measurements of cow body features after

FIGURE 13. Heat map of manual scoring and machine scoring errors. (a),
(b) and (c) are the error heat maps of 1-2 m, 2-3 m and 3-4 m camera
distance from the cow, respectively.

utilizing depth image restoration method at a camera dis-
tance of 1-2 meters is presents in Table 5. As the feature of
parallelism of hind and hind leg curvature were calculated
by the special angle calculation of the line of sight points
in the color image, their measurement results were solely
dependent on the accuracy of feature point localization and
not on the depth value of feature points. Therefore, these
two features were excluded from the experiment. For the
measurements of the remaining five cow body scales, namely,
chest depth, hip height, ischial width, length of teat, and
depth of teat, the correlation between manual and machine
measurements exceeded 0.8 after applying the four restora-
tion methods. This indicates that the missing depth regions
near the feature point were small, and the three restoration
methods provided consistent results in filling the small-scale
depth deficiencies. A correlation of more than 0.75 signifies
a high degree of interpretability and a good model fit. These
results demonstrate the effectiveness of the proposedmethods
in achieving accurate measurements, even in the presence of
depth deficiencies.

Table 6 presents the linear regression equations for
machine and manual measurements after restoring the depth
values of feature points of the depth imagewith three different
methods for a camera distance of 2-3 m from the cow. In this
research, parallelism of hind and hind leg curvature are not
associated with depth values, so they were not calculated.
Moreover, the length and depth of the teat features had low
accuracy and high error rates in full depth image measure-
ments when the camera was 2-3 m. As the camera distance
increased to 2-3 meters, the overall fitting performance of
the four methods in measuring key body dimensions of dairy
cows decreased compared to the 1-meter distance condition,
which is expected. Notably, the chest depth prediction of the
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TABLE 5. Linear regression analysis of camera distance of 1-2 m.

TABLE 6. Linear regression analysis of camera distance of 2-3 m.

Lerp method deteriorated the most drastically, with the R2

dropping from 0.8256 to 0.2631, indicating its weak gen-
eralization capability. The results of the GAN method also
showed some degree of performance decay at the 2-3 meter
range, but our method demonstrated the strongest robust-
ness. This implies the inadequacy of the three benchmark
algorithms for regression tasks. Despite the adverse impact
of lower image quality caused by the greater distance, our
approachmaintained chest depth, hip height and ischial width
measurement accuracy with R2 scores of 0.8263, 0.9604 and
0.9244 respectively, which were consistently higher than
the other methods. Our framework could effectively learn
descriptive features from the data, empowering the system
with enhanced adaptability to the challenges of long-range
imaging scenarios.

Figures 14(a) and 14(b) depict the accuracy of manual and
machine measurements at two different camera distances,
namely 1-2 m and 2-3 m, respectively. The depth images,
which have undergone restoration using the Lerp model, the
AR model, GAN and the method proposed in this study,
exhibit relativemeasurement errors within the range of−10%
to 10% for parameters including chest depth, hip height,
Ischial width, Length of teat, and Depth of teat. The aver-
age relative errors of chest depth measurements using Lerp
model, the AR model, GAN and the method proposed in this
study were 2.63%, 1.40%, −1.14% and 1.75, respectively,
and the average relative errors of hip height measurements
were −0.98%, −0.81%, −0.28% and z0.40. Although the
relative errors of length of teat and depth of teat measure-
ments were larger compared to other features, considering the
distortion of the measurements of these two features at other
distances, and the correlation between manual and machine
measurements of length of teat and depth of teat at 1-2 m
using the four complementary methods was high. There-
fore, the measurement results of cow body size features at
1-2 m using the depth images after the three complementary
methods are acceptable.

The present research investigated the measurement errors
of cow body features, including chest depth, hip height, and
ischial width, using depth images processed by three different
algorithms, at a camera distance of 2-3 m from the cow.

The average relative errors of chest depth measurements
using Lerp model, the AR model, GAN and the method
proposed in this study were 24.68%, 14.58%, −10.93% and
7.33%, respectively, while the relative errors of hip height
measurements were −4.65%, −2.61%, −1.81, and −1.61%.
The mean relative errors for the ischial width measurements
were −8.92%, −8.98%, 7.90%, and −6.09. It was observed
that the measurement error increased with the distance. The
results indicated that the Lerp model and the AR model
were not suitable for measuring features when the camera is
2-3 m away from the cow. Although the GAN and the method
proposed in this study showed a good fit for measuring chest
depth and ischial width, the relative errors ranged from ±5%
to ±10%, which was still not as accurate as the measurement
results obtained at a camera distance of 1-2 m. Finally, for
the measurement of hip height at 2-3 m, although there is a
slight difference in measurement accuracy and fit compared
to 1-2 m, the use of depth images processed by AR model,
GAN and the method proposed in this study can still meet
actual production requirements.

FIGURE 14. Error box line diagram for manual and machine
measurements. (a) Is results for camera distance of 1-2 meters from the
cow; (b) Is the result of the camera being 2-3 meters away from the cows.

As the distance increases between the camera and the cows,
the areas of depth gaps in the depth images also expand.
From the results above, it is evident that the AR algorithm,
being based on filtering techniques, can only provide sim-
ple depth restoration for peripheral edges when faced with
extensive depth gaps. The Lerp algorithm exhibits significant
errors when dealing with functions with substantial curvature
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or slope variations. Furthermore, Due to the limitations of
the GAN network structure, it is difficult to capture high-
frequency information, resulting in blurry generated outputs
and ineffective recovery of detailed textures. Additionally,
it has a notable impact on the smoothness of the depth image
when non-uniform interpolation is employed. Therefore, con-
strained by the depth range within the depth image, when
there are significant differences in depth, there is limited
capacity for repair in the central vicinity of the missing depth
areas.

Hence, as the distance increases, compared to the AR,
Lerp and GAN model, the algorithm proposed in this study
proves to be effective in handling extensive depth value gaps.
The majority of feature points in this study are positioned
near the edges of the cow’s body. However, the depth image
reconstruction algorithm proposed in this study establishes
a framework for reverse sampling from a simple distribution,
implements smooth transitions with the concept of time steps,
and progressively controls noise removal. This method not
only leverages the guidance of prior information from RGB
images but also combines its own generative capabilities to
achieve unsupervised high-quality depth image restoration.

Therefore, whether at distances of 1-2 meters or
2-3 meters, the measurement results obtained using the
algorithm proposed in this study are superior to those of the
other algorithms.

IV. CONCLUSION AND FUTURE STUDIES
This research presents a novel method for measuring body
condition score for cow, which involves measuring and scor-
ing seven features at various distances. The methodology of
this research consists of three primary components.

Firstly, 19 feature points were localized using the HR-Net
and the positioning locating correction method, coupled with
an attention mechanism, based on the concept of human
feature point localization; Secondly, employed a self-built
database and image augmentation technique to segment
background at different angles and distances; Thirdly, the
measurement and scoring of seven cow features were com-
pleted. Additionally, we investigated the effects of distance,
depth image quality, and different depth image restoration
method on measurement and scoring accuracy.

The research evaluated the accuracy of a proposed method
for measuring seven features of cows using depth images
with complete depth values. Results indicated that chest
depth, hip height, ischial width, parallelism of hind, hind
leg curvature, length of teat, and depth of teat measurements
achieved a coefficient of determination above 0.9 and relative
measurement errors ranging from−5.93% to 8.33%when the
camera distance of 1-2 m from the cow. After conversion into
scores, the accuracy of feature scores exceeded 80%. These
findings demonstrate the effectiveness and feasibility of the
proposed method for meeting actual production requirements
at this camera distance. For camera distances of 2-3 m, the
coefficient of determination was greater than 0.8, and the
average relative measurement error ranged between −9.84%

and 1.26%, except for the length and depth of the teat. Over-
all, these results suggest that the proposed method is reliable
at this distance and can apply to practical production.

In this study, the AR algorithm, Lerp algorithm, GAN and
depth image completion method proposed in this study were
evaluated for their ability to complete and measure depth
values of cow feature points in the presence of missing data.
The results showed that all four algorithms could effectively
handle small-scale depth deficits for features such as chest
depth, hip height, ischial width, length of teat, and depth of
teat. Which a high degree of agreement between machine and
manual measurements (coefficient of determination >0.8,
and relative measurement error controlled within −10% to
10%) at a camera distance of 1-2 m from the cow. How-
ever, when the camera was 2-3 m away from the cow, the
AR algorithm, GAN and Lerp algorithm algorithms showed
larger differences in measurement accuracy than the method
proposed in this study, which was able to effectively handle
large-scale depth missing. Therefore, the method proposed in
this study is the most suitable for completing measurements
at both 1-2 m and 2-3 m distances, as it can meet the actual
production requirements and ensure accurate results.

The present research successfully utilized deep learning
methods to measure seven features. However, given that
there are 20 scoring items for cows, there is room for future
improvement by expanding the measurement and scoring
scope to include additional items. Additionally, future studies
should explore more advanced techniques for segmenting and
localizing the hoof and udder of cows. Currently, the mea-
surement and scoring process only utilizes image processing
techniques, but future research will explore video streaming
techniques to improve accuracy and completeness.
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