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ABSTRACT Electrocardiographic (ECG) signals have been successfully used in biometric recognition.
However, the accuracy of ECG-based biometric systems is generally lower than systems based on
other physiological traits. This study introduces a local feature learning method aimed at enhancing the
performance of ECG-based biometric recognition systems. Specifically, we first extracted the multi-scale
differential feature (MDF) for each point in the training ECG heartbeats using the difference between
each point and its neighboring points. Second, we learn feature mapping to project these MDFs into
low-dimensional descriptors in an unsupervised manner, where 1) the errors between the original MDF and
reconstructed MDF are minimized. 2) The total variation in the reconstructed MDFs is minimized. Third,
we represented each ECG heartbeat as a histogram feature using clustering and pooling descriptors. Finally,
we adopted global feature learning methods to obtain a representation of an ECG heartbeat. Experiments
on the MIT-BIH Arrhythmia, ECG-ID, and Physikalisch Technische Bundesanstalt databases verified the
performance of the proposed method over existing ECG biometric recognition methods using within-session
analysis. Moreover, we evaluated the performance of the proposed method using an across-session analysis
of the ECG-ID database.

INDEX TERMS Bag-of-words, ECG biometrics recognition, feature learning, total variation.

I. INTRODUCTION
Electrocardiogram (ECG) is an electrical signal reflecting
cardiac activity, which is a weakly nonstationary and quasi-
periodic signal. ECG signals, noninvasive and closely linked
to human health conditions, are adopted in a variety of
applications. This includes diagnosing cardiac-related dis-
eases, detecting sleep apnea, monitoring driver drowsiness,
estimating heart rate [26], and measuring blood pressure.
Recently, person identity recognition using ECG signals has
become a new topic in biometrics owing to the following
aspects: 1) ECG signals meet all the requirements of
biometrics, such as universality, uniqueness, collectability,
acceptability, and permanence [7], [8]. 2) Robustness against
circumvention and spoofing attacks. This lies in two facts.
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First, ECG signals can only be captured by human beings;
thus, real-time aliveness feedback is automatically provided
while capturing the ECG signals. Second, ECG signals
are based on physiological characteristics inherent to the
human body, making them difficult to alter or replicate. 3)
Continuous authentication can be provided by an ECG signal
because the ECG signal is quasiperiodic and is recorded by
sensors attached to the body [11]. Therefore, person identity
recognition based on ECG signals is a potential direction in
biometrics.

However, using ECG signals in biometrics can be chal-
lenging. 1) The quality of the ECG signal, when sampled,
is affected by several types of noise, such as power line
interference, electromyogram artifacts, muscle interference,
and electrode motion artifacts [25]. 2) The intra-variance
of the ECG signal is large. In other words, records from
the same person at different times may differ significantly.
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This is because the waveform of the measured signal
during capture is affected by numerous factors, such as
the health status, physical exercise, emotion, diet, and
posture of the person. Many efforts have been made to
overcome these challenges from different perspectives, such
as data acquisition, denoising, detection of fiducial features,
feature extraction, and matching. Among them, feature
extraction significantly affects the performance of the ECG
identity recognition system, and many distinctive features,
such as fiducial features [15], [16], [17], one-dimensional
local binary patterns(1DLBP) [9], [10], [11], autocorrelation
coefficients [29], [30], and discrete wavelet transforms [31],
have been proposed.

Among the above methods, the 1DLBP has been suc-
cessfully applied to ECG identity recognition owing to
its simplicity, efficiency, and effectiveness. Two operations
were required to construct the 1DLBP. One computes the
difference between the values of the current point and its
neighbors to obtain a difference feature (DF). The other
was to threshold the DF to a fixed value, finally forming
a 1DLBP at this point. The merit of the 1DLBP is that
it tolerates noise and preserves the morphology of ECG
waveforms [9]. However, 1DLBP has three limitations. 1)
The extracted code length is limited. This was because the
dimensions of the 1DLBP were equal to the length of the
DF. Although rich information from ECG signals can be
obtained when long codes are generated, the computational
cost and storage space increase. 2) Information redundancy
may exist in 1DLBP. This is because dimension reduction
is not involved when the DFs are binarized. 3) Information
on the amplitude of the DF is lost when a fixed value is
used to transform the DF into a 1DLBP. Moreover, these
shortcomings are also present in other local binary codemeth-
ods, such as one-dimensional multiresolution local binary
patterns [11], [45] and one-dimensional local difference
patterns [10].

To overcome the above problems of handcrafted local
features, several local feature learning methods [47], [48],
[49] have been proposed for other recognition domains(e.g.,
face recognition and finger vein recognition), and satisfactory
performance has been achieved. However, when we attempt
to use these local feature-learning methods for ECG identity
recognition, the recognition rates are considerably low. This
is because the ECG signal is a time-series signal, whereas
local feature-learning methods are designed for images.
Therefore, applying a local feature learning method to ECG
signals is the main task.

Additionally, after learning a map using these local feature
learning methods, we constructed a histogram of the sample
using a bag-of-words framework, and a global representation
of the sample was obtained through whitened principal
component analysis (WPCA) to reduce the dimensions
of the histogram representation. This dimension reduction
process does not use the label information of the training
samples, and we assume that the global representation using
these methods lacks discrimination. Fang et al. [46] proposed

a regularized label relaxation linear regression method
(RLRLR) for classification problems, which introduced a
nonnegative label relaxation matrix into linear regression to
fit the labels and construct a class graph based on manifold
learning as a regularization item to avoid overfitting. Their
experiments demonstrated that these novel ideas can enhance
the performance of classification tasks.

Motivated by the above works, in this study, we pro-
pose a total variation principal component analysis (PCA)-
based descriptor for ECG identity recognition, which we
call TVPCAD because it incorporates PCA with total
variation regularization when learning the local descriptor.
Specifically, considering that the multi-scale differential
features(MDF) are used successfully in the domain of ECG
identity recognition [10], [11], [12], [13], [14], we first
extract the MDF for each point of each ECG heartbeat
in the training set as the original local feature. Second,
to obtain compact features, we learned a map that projected
these MDFs into descriptors. In the learning process, two
main constraints are considered:1) the error between the
original MDF and the reconstructed MDF is minimized,
which is equivalent to the loss in PCA and is widely used to
reduce the dimension of the features. 2) The total variation
in the reconstructed signal is minimized to preserve the
piecewise smoothness property, which is a data-denoising
procedure that can improve the robustness of our algorithm
against noise. Therefore, our local feature-learning method
can extract a compact descriptor that preserves the principal
components of MDF and can handle noise. Once a map is
obtained, we can transform the MDF extracted from each
point in the ECG heartbeat into a real descriptor.

After obtaining the descriptor for each point in the ECG
heartbeat, and considering that the BoW framework has
achieved promising results in ECG identity recognition [23],
[24], we represent each ECG heartbeat as a histogram using
the BoW framework.

However, these histogram representations have high
dimensions and include a lot of redundancy, and we reduce
the dimension and remove the redundancy using WPCA
to obtain a global representation of the ECG heartbeat.
In addition, the processes of local feature learning and
reduction of histogram representation do not use the labels
of the training samples; these global representations may be
less discriminative. Therefore, we used the RLRLRmethod to
fuse the label information and obtain the final representation
of the ECG heartbeat.

Finally, experiments were conducted using three public
ECG databases to verify the proposed method. In addition,
we compared the performance of the proposed method with
those of other ECG identification recognition methods.

II. BACKGROUND
In this section, we briefly summarize the necessary back-
ground of this study, including the ECG identity recognition
methods, PCA, and total variation. These methods are most
relevant to the proposed method.
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A. ECG IDENTITY RECOGNITION
Depending on the features used, ECG identity recognition
methods can be roughly grouped into two categories: fiducial
and non-fiducial.

Fiducial methods first detect fiducial points and then
extract features. Several studies have investigated this topic.
Biel et al. [15] generated 20-dimensional features related to
the onset, duration, amplitude, and morphology of the P, T,
and QRS waves. Karimian et al. [16] extracted time-based
and amplitude features from the detected fiducial points and
adopted a hierarchical validation scheme for mobile envi-
ronments. Palaniappan et al. [17] extracted the R-R interval,
R amplitude, QRS interval, QR amplitude, and RS amplitude
from the QRS segment and utilized a neural network as
the classifier. Rezgui et al. [43] used interval and amplitude
as biometric features. However, there are several problems
associated with using fiducial methods for ECG identity
recognition. First, it is difficult to detect fiducial points
accurately because the quality of the ECG signal used in an
identity recognition system is typically low. In general, when
capturing an ECG signal, there is considerable noise from
different sources, such as power line interference, electrode
movement noise, muscle contraction noise, baseline drift,
and physical noise [25]. In addition, the physiological and
emotional variabilities of individuals when capturing ECG
signals can affect their waves of ECG signals. Second, the
fiducial features must be designed manually and require
expertise in the ECG domain. To address the shortcomings
of fiducial methods, non-fiducial methods for ECG identity
recognition have been proposed.

Non-fiducial methods generally do not use fiducial points
to generate features but typically need to detect the location
of the R peak for heartbeat segmentation. Srivastva et al. [29]
used the autocorrelation coefficient(AC) followed by one
of three transformation techniques, that is, discrete cosine
transform (DCT), discrete Fourier transform (DFT), and
Walsh–Hadamard transform (WHT), and found that the DFT
can achieve the best performance. Dar et al. [31] extracted
wavelet coefficients using a discrete wavelet transform
(DWT) and a single nearest neighbor classifier for person
identification. Yu et al. [44] performed dimension reduction
using PCA and optimized a neural network using resilient
propagation(PRROP). Wang et al. [12] extracted multiscale
differential features and used collective matrix factorization
for ECG biometric recognition. Xu et al. [32] proposed a
structural sparse representation algorithm, and learned a
class-specific dictionary for ECG biometric recognition.
Huang et al. [13] extracted multiple features and employed
a unified sparse representation framework for ECG iden-
tity recognition. Li et al. [21] presented an ECG biometric
method based on graph-regularized nonnegative matrix
factorization and sparse representation.

Currently, deep learning methods are used for ECG
identity recognition. Luz et al. [6] used convolutional neural
networks (CNNs) to extract features from raw heartbeat
signals and spectrograms. This work achieves state-of-the-art

results in two public off-the-person databases. Chu et al. [54]
proposed a multi-scale one-dimensional residual network
for ECG biometrics. Labati et al. [3] presented Deep-
ECG, which uses deep CNNs to extract features, produces
real and binary templates for matching, and achieves
better performance. Zhao et al. [4] transformed blind
segments into two-dimensional images and used a CNN
to learn discriminative features and representations for
ECG biometric recognition. Abdeldayem and Bourlai [7]
transformed the ECG segments into spectral correlation
images and fed them into the CNN. Li et al. [5] first
used a CNN to extract the features of ECG heartbeats and
then input the extracted features into a second CNN for
identification; strong generalization ability and significant
performance were achieved. Srivastva et al. [50] proposed
an ensemble of pre-trained deep neural networks (e.g.,
ResNet and DenseNet) for ECG biometric recognition.
Kim and Pyun [51] proposed a real-time system using a
bidirectional long short-term memory(LSTM)-based deep
recurrent neural network through late fusion, achieving
an accuracy of 99.8% accuracy in the MIT-BIH database
for ECG biometric recognition. Alduwaile and Islam [53]
input the time-frequency domain representation of a short
segment of an ECG signal around the R-peak into a small
CNN for biometric recognition and achieved better accuracy.
Jyotishi and Dandapat [52] designed a hierarchical (HLSTM)
model to capture the temporal variation of ECG signals at
different abstractions and used the attention mechanism to
identify ECG complexes with rich identification information.
However, the heavy computational and large database
requirements of deep-learning methods still need to be
overcome.

B. PCA AND TOTAL VARIATION
PCA is one of the most widely used exploratory data analysis
tools, and many pattern recognition tasks utilize it to reduce
the dimensions of features, such as face recognition [33]
and ECG biometric recognition [34]. Specifically, PCA
determines a linear transformation to seek a projection that
best represents the data in a least-squares manner, and can be
formalized as (1).

min
W

||X −WW TX ||
2
F

s.t. W TW = I , (1)

whereX ∈ Rd×n,W ∈ Rd×k , and ||·||F is the Frobenius norm
of the matrix. The objective in (1) can be solved efficiently
using a repeated method [35]. Using a simple derivation, (1)
can be written as (2).

max
W

(W TXXTW )

s.t. W TW = I . (2)

In other words, (1) is equivalent to maximizing the variance
of the original data and can be solved using the singular value
decomposition of XXT .
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Although PCA has been widely and successfully used
in image recognition and reduces the dimensions of global
features, the data are assumed to be independent when
PCA is used. However, many real-world data such as ECG
are sequential and exhibit a strong statistical dependence
among adjacent samples [18]. In this study, we used the
regularization of the total variation of the reconstructed signal
to address this problem.

Total variation (TV) has numerous useful applications
in signal processing, such as denoising [19], [20], [28],
reconstruction [22], and trend filtering [27]. TV regulariza-
tion assumes that the values of neighboring points change
slowly but can also exhibit abrupt level shifts. In this study,
we combined PCA with TV regularization to reconstruct the
original features; therefore, denoising was involved during
feature learning.

FIGURE 1. Architecture of total variation PCA-based Descriptor learning
and codebook clustering for ECG signal.

FIGURE 2. Raw signal and its corresponding filtered signal in MITDB
database.

III. METHODOLOGY
A novel ECG biometric framework is designed for ECG
identity recognition. First, data preprocessing was performed
to obtain high-quality ECG heartbeats. Second, a base
feature extraction algorithm is introduced to generate the
intermediate base feature, that is, MDF. Third, TVPCAD
was used to generate compact local descriptors for the ECG
signals. Finally, the representation of the ECG heartbeat
based on TVPCAD and the BoW framework is introduced,
and a matching procedure is performed for the testing

data. Fig. 1 shows the proposed framework for the identity
recognition systems based on ECG signals. In the following,
we introduce each component of the framework in detail, that
is, data preprocessing, extraction MDF, learning TVPCAD,
and representation of the ECG heartbeat based on our method
and matching.

A. DATA PREPROCESSING
The ECG signals captured by the developed device contain
severe noise and must be divided into ECG heartbeats. There-
fore, we must apply a preprocessing step. Data preprocessing
included three steps: denoising, heartbeat segmentation, and
outlier removal.

During denoising, the signal first passes through the filters
described in [1]. Fig. 2 shows the raw signal from the
MITDB (MIT-BIH Arrhythmia) database and its filtered
signals. However, the filtering process may remove important
information and destroy the original signal; thus, we used
the raw signal to experiment with the MITDB database.
However, the other two databases, the ECG-ID database, and
the Physikalisch Technische Bundesanstalt(PTB) database,
contain significant noise; therefore, we used the filtered
signal in the experiment.

FIGURE 3. All segments of class 100 in MITDB database.

FIGURE 4. All segments of class 100 after outlier removal in MITDB
database.

In the heartbeat segmentation process, first, the locations of
the R peak can be detected by the Pan Tompkin algorithm [1],
and then, taking 100 points forward from the R peak
and 159 points backward, therefore, an ECG heartbeat has
260 points of ECG sequence. Fig. 3 shows all heartbeats
extracted for recordings belonging to person 100 in the
MITDB database. We found that there were many outliers.
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In the outlier removal processing, we use an outlier
detection method [2] to eliminate outliers. Fig. 4 shows all
the heartbeats of person 100 after outlier removal for the
heartbeats in Fig. 3. The outliers shown in Figs. 4 are smaller
than those shown in Fig. 3.

B. EXTRACTION OF MULTI-SCALE DIFFERENTIAL FEATURE
Although one-dimensional multiresolution local binary pat-
terns(1DMRLBP) [12] have been widely applied to ECG
identity recognition, they still have some limitations. To over-
come these limitations, we extracted the base features,
namely MDF, in which only the amplitude of 1DMRLBP
is used; that is, no binarization is performed during the
extraction of 1DMRLBP. Specifically, The MDF is extracted
from the time sample y(t) can be defined as (3) and (4).

Si =

{
y(t + i− p− d − 1) − y(t) 1 ≤ i ≤ p
y(t + i− p+ d) − y(t) p+ 1 ≤ i ≤ 2p

(3)

xi = [S1, S2, · · · , S2p], (4)

where y(t) denotes the value of the heartbeat point at time t ,
p denotes the number of points to be calculated on each side
of y(t), d denotes the distance from y(t) to the desired time
sample. MDF preserves the amplitude of the 1DMRLBP and
captures multi-scale information with different p and d . Fig. 5
shows the extracted MDF with p= 4 and d = 2 for a point at
time t . However, MDFs are high-dimensional features that
contain considerable noise and redundancy. Therefore, the
next step is to learn a compact descriptor for MDF.

FIGURE 5. Extraction of multi-scale differential feature.

C. LEARNING TOTAL VARIATION PCA BASED
DESCRIPTORS
In this section, we introduce a learning method for total
variation PCA-based descriptors. This method aims to learn
a linear map for projecting MDF onto lower-dimensional
features.

Assume that X = [x1, x2, · · · , xn] ∈ Rd×n are the
MDFs extracted from the C class ECG segment, and W =

[w1,w2, · · · ,wK ] ∈ Rd×K is the learned map matrix that
can project xi into a low-dimensional descriptor. To learn a
desirable map matrix for the original features, we believe
that two principles must be considered:1) Information loss is

minimized. 2) Noise was removed. With these principles in
mind, we construct the objective function in (5).

min
W

λ1||X −WW TX ||
2
F + λ2||BWW TX ||1

s.t. W TW = I , (5)
where λ1 and λ2 are tradeoff parameters, || · ||1 is the l1-norm
of the matrix, B ∈ Rd×d is the first-order difference matrix.

The first term in the objective function (5) is the recons-
truction error, which is the same as PCA andminimizes infor-
mation loss during feature learning. The second term in (5) is
the one-dimensionaltotalvariation(1D-TV),whichisa widely
used denoising model in real applications where the neighbor
features of each reconstructed MDF change are small.

Optimization: While directly solving the objective func-
tion in (5) is intractable because of the l1 norm, we can
iteratively optimize using the alternating direction multiplier
method (ADMM).

First, we introduce Z and change (5) into (6).
min
W ,Z

λ1||X −WW TX ||
2
F + λ2||Z ||1

s.t. W TW = I , Z = BWW TX . (6)

According to the Lagrange,(6) is transformed into (7).
min
W ,Z ,Q

λ1||X −WW TX ||
2
F + λ2||Z ||1

+ 0.5µ||Z − BWW TX +
Q
µ

||
2
F

s.t. W TW = I . (7)
Eq. (7) can be easily solved using ADMM, where the vari-

ables are updated alternately by minimizing (7). Specifically,
the update of the variables includes the following steps. 1)
The other variables are fixed and solveW .When the other
variables are fixed, the solution to (7) can be written as (8).

min
W

λ1||X −WW TX ||
2
F + 0.5µ||Z − BWW TX +

Q
µ

||
2
F

s.t. W TW = I . (8)
Eq. (8) can be solved efficiently using the gradient descent

method with the curvilinear search algorithm proposed
in [35].

2) Other variables are fixed, and update Z . When the
other variables are fixed,(7) can be rewritten as(9).

min
Z

λ2||Z ||1 + 0.5µ||Z − BWW TX +
Q
µ

||
2
F , (9)

For convenience, we introduce the following soft-
thresholding operator:

Sϵ(z) =


z− ϵ z > ϵ,

z+ ϵ z < ϵ,

0, otherwise,

(10)

where z ∈ R and ϵ > 0. The soft-thresholding operator can be
extended to vectors and matrices by applying it elementwise.
Subsequently, (9) can be solved using(11).

Sϵ(Z ) = argminϵ||Z ||1 + 0.5||Z − H ||
2
F , (11)

where ϵ =
λ2
µ
, H = BWW TX −

Q
µ
.
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3) Update Q by (12).
Finally, the Lagrange multiplier is updated as

Qt = Qt−1
− µ(Z − BWW TX ), (12)

where Qt is Q for the current update, and Qt−1 is Q for the
last iteration.

Moreover, parameter µ is updated using (13).

µt
= min(ρ ∗ µt−1, µmax). (13)

where ρ and µmax are constants.
The detailed algorithm for solving the problem (5) is

summarized in Algorithm 1.

Algorithm 1 TVPCAD Algorithm
Require:

X= training dataset; ξ= number of iterations;
λ1 and λ2= parameters; K= length of the descriptor;

Ensure:
Optimized matrix W

1: Initialize W as random number, t as 1;
2: repeat
3: Obtain W by solving (8);
4: Obtain Z by solving (11);
5: Update Q using (12);
6: Update µ by (13)
7: Set t as t + 1;
8: until t > ξ or |W t

−W t−1
| < ϵ

9: return W .

D. ECG HEARTBEAT REPRESENTATION BASED ON TVPCAD
Having learned the feature map and extracted the descriptors
for each point in the ECG heartbeat, we represented the
entire ECG heartbeat. The bag-of-words model can utilize
local descriptors to capture high-level structural information
and has been successfully used in ECG biometric recogni-
tion [36], [37]; thus, we adopted it to organize the learned
local descriptors in this work. In addition, the heartbeat
of the ECG can be divided into three main complexes, P,
QRS, and T, and the different complexes have different
shapes; therefore, we segmented each ECG heartbeat into
several segments and learned a map for each segment. In the
following section, the proposed algorithm is described in
detail.

After obtaining the map matrix W , the MDFs extracted
from the training ECG heartbeats were projected onto low-
dimensional descriptors. The k-means method is used to
cluster the descriptors into a codebook. Subsequently, given
an ECG heartbeat, the descriptors obtained from the ECG
heartbeat are encoded as histogram features by pooling them
into a codebook. This histogram is a global representation of
an ECG heartbeat. The histogram features of the other ECG
heartbeats were extracted similarly. To further enhance the
performance of the system, we divided each ECG heartbeat
into many nonoverlapped segments and learned a map matrix

and codebook for each segment. Subsequently, the histogram
features extracted from the different segments were concate-
nated as the final representation of the entire ECG heartbeat.
The ECG heartbeat representation using the proposedmethod
is illustrated in Fig. 6. Because the histogram feature
representation of each ECG heartbeat includes redundancy
and does not utilize label information during local feature
learning and histogram feature construction, we first used
whitened PCA (WPCA) to reduce the dimensionality of
the representation and then utilized the RLRLR method to
fuse the category information to obtain the discriminative
representation for the ECG heartbeat.

After obtaining a compact and discriminative representa-
tion of the ECG heartbeat, we calculated the matching score
using the Euclidean similarity.

FIGURE 6. Flowchart of TVPCAD ECG representation and recognition.

IV. EXPERIMENTS AND RESULTS
In this study, we implemented the proposed method using
MATLAB R2018a and conducted experiments on a common
desktop PC with an i5 2.8GHZ CPU and 24 GB RAM.
Three public ECG databases are used to evaluate the
proposed method. To better demonstrate the advantages of
our proposed method, we compared it with three benchmark
methods.1) The objective function of the first benchmark
method is the same as that of PCA, and singular value
decomposition is used to solve it. For brevity, we refer
to this descriptor as the PCA descriptor (PCAD). 2) The
objective function of the second benchmark method is the
same as that of PCA but uses the iterative method to optimize
it. We call this the iterated PCA descriptor (IPCAD). 3)
The third benchmark method uses the proposed objective
function, which we call the TVPCAD-0. After obtaining the
histogram representation of each ECG heartbeat, the WPCA
was utilized to reduce the dimensionality of the histogram
representation for the three benchmark methods. In addition,
the proposed method was compared with several state-of-the-
art ECG identification algorithms. The recognition rate and
equal error rate (EER) were used to evaluate the recognition
performance of the ECG systems. The recognition rate is the
ratio of the number of correctly identified subjects to the
number of subjects in the database, and EER is the value
at which the false acceptance rate (FAR) is equal to the
false rejection rate (FRR). Within-session and cross-session
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analyses were performed. The within-session analyses used
heartbeats from one recording of one subject, whereas the
across-session analyses used heartbeats from two recordings
of one subject.

A. DATABASES AND EXPERIMENTAL SETTINGS
We conduct experiments on three public databases: MIT-BIH
Arrhythmia (MITDB) dataset [39], ECG-ID database [40],
and Physikalisch Technische Bundesanstalt(PTB)
database [38].

MIT-BIH Arrhythmia (MITDB) database: This
database contains 48 dual-channel recordings from 47 sub-
jects (25 males and 22 females), each of which had only
one recording available except for one subject that had
two recordings (records 201 and 202). The recordings
were digitized at 360 HZ. In our experiment, a within-
session analysis was performed using the MITDB database.
In other words, all heartbeats belonging to one recordingwere
obtained from a single subject. After using the Pan Tompkin
algorithm to detect the location of the R-peak, we took
100 points forward from the R-peak and 159 points backward
from the raw recording to construct an ECG heartbeat. The
total number of points for each ECG heartbeat was 260 in
the MITDB database. Twenty-four ECG heartbeats were
recorded for each recording, we took a total of 24 ECG
heartbeats. Twelve heartbeats were used to construct the
training set, and the remaining 12 ECG heartbeats were used
to construct the testing set.

ECG-ID database: This database contains 310 ECG
recordings from 90 subjects(44 males and 46 females),
digitized at 500 HZ. The number of recordings for each
person ranged from two (collected in one day) to 20 (collected
periodically over six months). Two recordings per subject
were used for the analysis because only a small subset
of subjects had over two recordings. Within-session and
across-session analyses were performed using this database.
In the within-session analysis, one recording was used and
the experimental setting was the same as that of the MITDB.
In the across-session analyses, the training set came from
one recording, and the testing set came from the other. The
training and testing sets comprised 12 heartbeats.

Physikalisch Technische Bundesanstalt(PTB) database
This database contains 549 records from 290 subjects(
209 men and 81 women). The recordings were digitized
at 1000 HZ. In our experiment, a within-session analysis
was performed using the PTB database, and the ECG signal
was downsampled at 500 HZ. Before extracting the ECG
heartbeats, the recordings were denoised using filters [1]. The
other experimental settings for the PTB database were the
same as those for the MITDB.

B. EVALUATION OF TVPCAD
This section discusses the effectiveness of the proposed
objective function. To demonstrate the effectiveness of our
method, we compared it with PCAD, IPCAD, and TVPCA-0

TABLE 1. Recognition rates of PCAD, IPCAD, TVPCAD-0 and TVPCAD on
MITDB, ECG-ID and PTB databases (average recognition rate).

TABLE 2. Equal error rates of PCAD, IPCAD, TVPCAD-0, and TVPCAD on
MITDB, ECG-ID and PTB databases (average recognition rate).

on the MITDB and PTB databases in the within-session as
well as on ECG-ID in the within-session and across-session.
In the experiments, we empirically set d to four and p to 25;
therefore, a 50-dimension MDF was obtained for each point
in the ECG heartbeat and projected onto K -bit descriptor
using the learning mapping functions. In all our experiments,
K was empirically set as 16. Using the cross-validation
strategy on the training sample of the MITDB database,
we determined the parameters λ1 and λ2 to be 1,000 and
10, respectively. The codebook size was set to 1280, and
we experimentally determined the number of segments for
an ECG heartbeat to be seven. Consequently, each ECG
heartbeat is represented as an 8,960-dimensional feature
vector (8,960=1,280*7). We utilized WPCA to reduce the
feature dimensions to 250 and applied the RLRLR method
with Euclidean similarity for ECG heartbeat matching. In the
ECG-ID and PTB databases, the parameter settings and
experimental process were the same as those in the MITDB
database within the session, whereas, across sessions in the
ECG-ID database, we empirically set λ1 and λ2 to 1 and 104,
respectively. In addition, for a fair comparison with PCAD,
IPCAD, and TVPCAD-0, the training and testing sets were
identical for all three databases. Performance was evaluated
using the recognition rate and EER, which are the most
common benchmarks in biometrics.

Tables 1 and 2 present the results of the comparison. The
results can be analyzed in terms of the following aspects:
First, PCAD was compared with IPCAD in the recognition
rate and EER. The difference between PCAD and IPCAD
is the process of solving the PCA problem. PCAD uses
singular value decomposition and IPCAD uses the iterated
method. Tables 1 and 2 show that the performance of PCAD
was approximately similar to that of IPCAD for the three
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databases. This is because the objective functions of PCAD
and IPCAD are the same. Second, TVPCAD-0 was compared
with PCAD and IPCAD in terms of recognition rate and
EER. Themain difference between them lies in their objective
functions. TVPCAD-0 contains a regulator that represents the
total variation in the reconstructed MFD, whereas PCAD and
IPCAD do not. Tables 1 and 2 show that TVPCAD-0 achieves
better recognition performance than PCAD and IPCAD on
the three databases. The main reason for these results is that
we adopted the total variation of the reconstructed MFD in
the objective function of the TVPCAD-0. Third, TVPCAD
was compared with TVPCAD-0 in terms of recognition
rate and EER. The main difference between them is that
the RLRLR method was adopted in TVPCAD but not in
TVPCAD-0. Tables 1 and 2 show that TVPCAD outperforms
better recognition performance than TVPCAD-0 for all three
databases. This occurs because the RLRLR method can
combine label information into the representation of the ECG
heartbeat, making our representation of the ECG heartbeat
more discriminative than that of TVPCAD-0.

Therefore, these results show that using the total variation
of the reconstructed MFD can enhance the discrimination
of descriptors, and utilizing category information when
reducing the dimensions of the ECG heartbeat representation
can increase the recognition performance of the system.

TABLE 3. Comparison with different conventional recognition methods
on two databases.

C. COMPARISON WITH EXISTING ECG RECOGNITION
METHODS
The key objective of this set of experiments was to evaluate
the ECG recognition performance of the proposed methods
(TVPCAD-0 and TVPCAD ) in comparison with some state-
of-the-art ECG recognition methods [21], [41], [42], [43],
[54]; the experimental settings were the same as those in
previous settings.

Table 3 lists the ECG recognition performance of the
proposed method compared to the state-of-the-art meth-
ods on the MITDB and ECG-ID databases. From these
results, we can draw the following conclusions: First, the
performance of TVPCAD-0 is slightly lower than that of
methods in [41] and [42] for the MITDB and ECG-ID

databases in terms of the recognition rate. These results
originate from the methods in [41] and [42] which fused
three heartbeats in the experiment, whereas we used only one
heartbeat in TVPCAD-0. Second, the fiducial method in [43]
achieved higher accuracy than TVPCAD-0 on the MITDB
database; however, the method in [43] used 44 subjects in the
experiment, whereas 47 subjects were used in our experiment.
Third, compared to the no-fiducial method [54], TVPCAD-0
achieved the best results on the MITDB dataset. However,
in the ECG-ID database, the method in [54] achieved a better
performance. Nevertheless, the above experiments proved
that the proposed local learning feature was valid. Fourth,
TVPCAD achieves better performance on the MITDB and
ECG-ID databases in terms of the recognition rate than
the state-of-the-art ECG recognition methods [41], [42],
[43], [54] in Table 3. The reason for these results lies in
two aspects: 1) TVPCAD is based on learning the local
features, which is more data adaptive than the other methods,
and 2) TVPCAD adopts a global feature learning method,
which utilizes label information during dimension reduction.
However, The recognition rate of TVPCAD on the ECG-ID
database is slightly lower than that of the method described
in [21]. This is because the method in [21] fuses the three
heartbeats as the test sample, whereas our method uses only
one heartbeat. Therefore, local and global feature learning
leads to a high recognition rate.

TABLE 4. Training time and matching time per heartbeat.

In an actual application scenario, the time required for ECG
biometrics should not be too long. Therefore, we recorded the
training and matching times to demonstrate the feasibility of
the proposed method. The training time contained the time
interval from the input of the training heartbeat database
(after preprocessing) to obtain the projection mapping and
to calculate the template representation, which was obtained
from the input of a test ECG heartbeat to obtain the matching
result.

A comparison of the results is presented in Table 4. The
results can be analyzed in terms of three main aspects. First,
the training time for the ECG-ID database was longer than
that for the MITDB database. These results are attributable
to the number of subjects in the ECG-ID database was 89,
whereas that in the MITDB database was 47. Second, the
matching time per heartbeat in the ECG-ID database is higher
than that in the MITDB database. This finding occurred
because the length of the heartbeat in the ECG-ID database
was 360, whereas that in the MITDB database was 260.
A longer heartbeat requires more time to calculate the local
descriptor. Third, a significant amount of time was consumed
during training, whereas the matching per heartbeat was
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performed considerably quickly in both databases. This
satisfies the requirement in an actual application scenario that
the training can be performed offline and the testing can be
executed online.

V. CONCLUSION AND FUTURE WORKS
This study proposes a novel feature learning method called
the total variation PCA-based descriptor (TVPCAD) for
ECG biometric recognition. It enhances the performance
of ECG identity recognition by introducing MDF and
our objective function into feature learning. To make the
proposed descriptor more effective, we utilized a global
feature-learning method to integrate category information
into the representation of the ECG heartbeat. The main
contributions of this work are as follows:1) We adopted MDF
as the base feature for the local feature-learning method. 2)
We combined PCA with the TV regulator to learn the local
features and experimentally showed that the TV regulator
is effective when learning the local features of the ECG
signal. 3) The ADMM approach was adopted to optimize the
objective function. 4) We learned descriptors and dictionaries
for different segments of the ECG heartbeat to enhance its
discriminative ability and obtain a more precise representa-
tion of the heartbeat. 5) To further enhance the recognition
performance, we adopted theWPCA and RLRLRmethods to
reduce the redundancy of the histogram representation of the
ECG heartbeat and increase its discriminative representation.
Moreover, within-session and across-session analyses show
that our method outperforms state-of-the-art ECG identity
recognition methods. In future work, we aim to learn the
binary local features of ECG signals.
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