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ABSTRACT Ultrasound plane wave imaging is an ultrafast technique to obtain the reconstructed images in
real-time. However, identifying the point targets (such as microcalcifications) is challenging in this imaging
technique due to the presence of strong acoustic clutter. In this paper, a compressive sensing (CS)-based
algorithm, named modified-CS (M-CS), is proposed which can be used to accurately identify the point
targets. In the proposed algorithm, the processing matrix is divided into some non-overlapping sub-matrices,
and each part is processed separately. Then, the output passes through the thresholding and localization
processes to obtain the locations of the point targets. Compared to the conventional CS algorithm, identifying
the point targets in deeper regions of the imaging medium is provided using the M-CS algorithm. Also, due
to the usage of smaller sub-matrices, the proposed M-CS algorithm speeds up, and also, needs less memory
compared to the conventional CS algorithm. The simulation results confirm the good performance of the
proposed algorithm.

INDEX TERMS Ultrasound, ultrafast imaging, sparsity, point detection.

I. INTRODUCTION
Ultrasound imaging is a commonly used technique in the
medical field that attracts a lot of attention due to its non-
ionizing and real-time properties. This imaging technique is
used in diagnosis and treatment applications [1]. In particular,
ultrasound imaging can be used in the early detection of
breast cancer; identifying the microcalcifications, i.e., point-
like calcium particles that are distributed in the breast
tissue, is helpful in diagnosing whether the breast cancer
is benign or malignant. Note that the microcalcifications
reflect strong waves due to their large impedance differences
compared to their surrounding soft tissue. Therefore, they
appear as point targets in the reconstructed ultrasound
image [2]. The number, distribution, and even the shape of the
microcalcifications are informative in order to diagnose the
disease [3]. It can be concluded that ultrasound imaging with
the aim of revealing point targets in the tissue is applicable.

The associate editor coordinating the review of this manuscript and

approving it for publication was Fang Yang .

Kidney stone identification, tracking the moving point-like
particles in the tissue (e.g., microbubble imaging), and also,
needle tracking during the biopsy process are other examples
of the applications of point target identification in medical
ultrasound imaging [4], [5].

TABLE 1. List of abbreviations that are used in this paper.

Different algorithms can be used to reconstruct the
image and reveal the point targets. The data-independent
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delay and sum (DAS) algorithm is the most common
beamformer. Although this algorithm is simply implemented,
the result strongly suffers from poor resolution and contrast.
The data-dependent minimum variance (MV) algorithm
and its improved versions such as forward-backward and
eigenspace-based MV algorithms, improve the image reso-
lution by weighting the received signal adaptively [6], [7],
[8], [9]. Therefore, a better separation of two close point
targets will be achieved compared to DAS. Other techniques
such as the coherence factor (CF) and generalized CF (GCF)
weighting methods have also been developed to suppress
the noise level and improve the detection capability [10].
However, point target identification using the mentioned
algorithms is still a challenge due to the strong effect of
acoustic clutter on ultrasound imaging. In order to overcome
this limitation and identify the point targets within the
tissue in the presence of strong clutter, various studies
have been conducted so far. A list of related works is
presented in the following; in [11] and [12], an algorithm
known as the Bayesian information criteria was presented
to identify the point targets in the ultrasound image through
an iterative process, and it was shown that this algorithm
outperforms DAS and MV beamformers. In [13], two binary
microcalcification mapping techniques were developed using
the CF weighting method, and also, the first eigenvalue of
the covariance matrix of the beamformed data. The outputs
of these algorithms were overlaid on the B-mode image to
determine the distribution of microcalcifications. In [14],
a coherence-based wavelet coefficient shrinkage method was
proposed in order to suppress the background speckle and
increase the probability of point target identification. In [15],
a correlation-based method known as the excitelet method
was proposed which leads to resolution improvement and
artifact reduction of the final image. This is achieved by
considering the correlation between the reference signal and
the measured signals obtained from the array. In [16], the
combination of multi-line and short-lag spatial coherence
(SLSC) methods is used to suppress the clutter and better
reveal the point targets. In [17], a multilook-based technique
was developed to increase the probability of detection.
In this algorithm, the pre-whitening method was also used to
improve the SNR and further suppress the noise level. Some
image reconstruction algorithms, such as SLSC, in coherent
plane wave compounding (CPWC) have also been evaluated
in [18] in kidney stone identification.

It is well-known that by using the compressive sensing
(CS) algorithm, an improved contrast reconstructed image
will be obtained [19], [20], [21]. In this algorithm, by taking
this assumption into account that the data is sparse, much
smaller samples compared to the Nyquist rate are used to
efficiently construct the final image. As the CS algorithm
efficiently suppresses the noise level [22], [23], it is expected
that by using this method, point targets are extracted more
successfully from the background speckle, and a more
accurate identification will be achieved.

In this paper, it is proposed to use the CS algorithm in
plane wave imaging (PWI) to identify point targets; on one
hand, by using the PWI, high frame rate (ultrafast) imaging is
possible [24], [25]. On the other hand, the image quality will
be degraded in PWI compared to focused ultrasound imaging
due to the usage of unfocused transmitted beams, which
negatively affects the point target identification. Note that the
image quality is improved by coherently compounding the
received signals corresponding to multiple emissions from
different angles, i.e., the so-called CPWC technique [26].
However, there is a trade-off between the image quality and
frame rate in CPWC. Also, point detection still remains a
challenge due to low signal-to-noise ratio and strong acoustic
clutter. It has been shown that the CS algorithm significantly
suppresses the noise, and consequently, improves the image
contrast in PWI [27]. Also, it has been shown that a limited
number of emissions (one or two) is sufficient for the CS
algorithm to reach its best performance [28]. As a result,
by processing the received signals obtained from only a single
emission in plane wave imaging, the point targets will be
successfully identified while the frame rate is not degraded.
One should note that the drawback of the CS algorithm is
that the point detection ability will be lost by increasing the
imaging depth [22]. To tackle this problem, a modified CS
(M-CS) algorithm is proposed in this paper that leads to
efficiently identifying the point targets even in deep regions.
Our contributions are summarized below:
• A CS-based algorithm is used to identify the point
targets in CPWC. In the proposed method, the algorithm
is performed only on the received signals corresponding
to the middle emission (0◦). Once the locations of
point targets are identified, they are overlaid on the
B-mode image obtained from the CPWC process to
determine the positions of point targets within the
tissue.

• In order to make it possible to identify the point targets
in deeper regions of the imaging medium using the
CS-based algorithm, the M-CS algorithm is developed.
By using the proposed algorithm, the limitations of
the CS algorithm are overcome. Also, note that in the
M-CS algorithm, the matrix to be processed is divided
into a number of sub-matrices, each of which is pro-
cessed independently. Therefore, in addition to reducing
the memory required to process each sub-matrix, the
process can be done in parallel. Consequently, the
computational burden will be reduced.

The rest of the paper is organized as follows. The CPWC
technique as well as the CS algorithm are briefly explained in
Section II. The proposed method is presented in Section III.
The results obtained from the simulation study are evaluated
in Section IV. Finally, the discussion and conclusion are
provided in Sections V and VI, respectively. The list of
abbreviations that are used in the paper is presented in
Table 1 to find their corresponding full writing more
easily.
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II. BACKGROUND
In this section, image reconstruction using the non-adaptive
DAS beamformer as well as the conventional CS algorithm
are briefly discussed in CPWC. Then, inspired by the
CS algorithm, the proposed method will be presented in
Section III.

A. COHERENT PLANE WAVE COMPOUNDING
In CPWC, Np tilted plane waves are used to insonify
the imaging medium from different emission angles. Then,
the received signals corresponding to each emission are
acquired and processed to obtain the final reconstructed
image. In particular, with the consideration of an Ne-element
linear array, the DAS beamformed data corresponding to jth

emission is obtained as below:

y(j)DAS(n) =
Ne∑
i=1

si,j(n− τi,j(n))

=

Ne∑
i=1

xi,j(n) for j = 1, · · · ,Np, (1)

where si,j(n) denotes the received signal corresponding to
ith element and jth emission for nth imaging point. Also,
τi,j(n) is the time delay proportional to the round-trip path
of the wave corresponding to ith element and jth emission
which is applied to the received signal in order to perform
focusing on the nth imaging point [26]. The time-delayed
signal associated with the ith element and jth emission
is denoted as xi,j(n). By processing the received signals
obtained from each emission, the low-quality images will be
reconstructed. By coherently compounding the low-quality
images, improved image quality in terms of both resolution
and contrast will be achieved. More precisely, the final
reconstructed image in CPWC is obtained as below:

yDAS(n) =
1
Np

Np∑
j=1

y(j)DAS(n)

=
1
Np

Np∑
j=1

Ne∑
i=1

xi,j(n), (2)

which is obtained from the DAS algorithm.

B. COMPRESSIVE SENSING ALGORITHM
In the CS algorithm, the reconstructed image is obtained by
using much fewer samples compared to the Nyquist rate. The
CS problem is formulated as below:

si,j = A(i, j)y(j) + n, (3)

where si,j ∈ CM×1 denotes the received signal consisting
of M samples which corresponds to ith element and jth

plane wave. Considering that the final reconstructed image
is represented in a Nx × Ny grid, y(j) ∈ CNxNy×1 is the
solution of the above problem which we are looking for,
i.e., the (reshaped) reconstructed image. Also, n ∈ CM×1

is noise and A(i, j) ∈ CM×NxNy is the measurement matrix
corresponding to ith element and jth emission. Note that
the measurement matrix is designed based on the imaging
geometry and independently of the data; that is, for a fixed
imaging geometry, the measurement matrix can be designed
once, and used to reconstruct the images of different imaging
objects. In this study, the measurement matrix is designed
according to the following equation [29], [30]:

amn(i, j) =

{
1 for fs

∣∣τ i,j(n)− tm∣∣ < 1
0 else,

(4)

where amn(i, j) denotes the mth row and nth column of the
matrix A(i, j), fs is the sampling frequency, and tm represents
the temporal measurement associated with the mth sample.
Considering the prior knowledge about the sparsity of si,j,
the reconstructed image is obtained by solving the following
minimization problem:

y(j)CS = argmin
y(j)CS

∥∥∥A(i, j)y(j)CS − si,j∥∥∥22 + α

∥∥∥y(j)CS∥∥∥1 , (5)

where y(j)CS is the obtained solution corresponding to jth

emission which should be reshaped as Y (j)
CS ∈ CNx×Ny in

order to visualize the image. Also, ∥.∥p denotes the ℓp-
norm regularization term, and α ∈ [0, 1] is a constant that
determines the participation of the sparse regularization term∥∥∥y(j)CS∥∥∥1. Note that in the case where the data is non-sparse,
one can inspire a transformation matrix in order to achieve
a sparse representation of the data and use it to solve the
problem [23]. This topic is out of the scope of this paper, and
therefore, will not be investigated.

III. PROPOSED METHOD
In this paper, the M-CS algorithm is proposed to identify
point targets in ultrafast imaging. The reconstructed images
obtained from the PWI suffer from poor quality (especially in
terms of contrast) compared to the focused imaging technique
due to unfocused emissions. This negatively affects the point
target identification process. The CS algorithm significantly
suppresses the noise level and improves the image contrast by
using the received signals corresponding to a limited number
of emissions (one or two). Therefore, it can be concluded that
the CS algorithm helps the point targets to be better identified.
However, there are two main limitations to this algorithm:
• The dimensionality of the matrix to be processed is
usually high; aM × NxNy matrix should be constructed
during the process according to (5). As the imaging
region, and consequently, the number of pixels that
are included in the final image increases, a greater
memory is required to perform the process and obtain
the reconstructed image.

• As the value of the parameter α increases, better noise
suppression is achieved. As a result, the point targets will
be better identified and separated from the background
speckle. However, the information corresponding to the
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FIGURE 1. The schematic of the proposed point detection method.

deeper regions of the imaging medium will be lost.
This issue was previously evaluated in [22]. Therefore,
one can conclude that for a smaller value of α, the
probability of error increases such that some scatterers
will be identified as point targets. Also, as the value of
this parameter increases, point targets in deep regions
will not be identified.

In order to overcome the limitations mentioned above,
we propose to divide the matrix A and the reconstructed
image y(j)CS (presented in (5)) into D non-overlapping parts,
and process each part separately. In other words, (5) is
reformulated as below:

y(j)CSd = argmin
y(j)CSd

∥∥∥Ad (i, j)y(j)CSd − si,j∥∥∥22 + α

∥∥∥y(j)CSd∥∥∥1 , (6)

where Ad (i, j) ∈ CM×
NxNy
D is the d th measurement sub-matrix

the dimensionality of which is 1/D times the one presented in

the conventional CS algorithm. Also, y(j)CSd ∈ C
NxNy
D ×1 is the

d th part of the reconstructed image. Once the above problem
is solved for all the consideredD parts, the final reconstructed
image is obtained by juxtaposing them as below:

Y (j)
CS =


Y (j)
CS1

Y (j)
CS2
...

Y (j)
CSD


Nx×Ny

, (7)

where Y (j)
CSd ∈ C

Nx
D ×Ny is the d th reconstructed image which

is reshaped to form the two-dimensional image. By using
the proposed M-CS algorithm, the dimensionality of the

processing matrices will be smaller, and therefore, the need
for a huge amount of memory is overcome. Also, the effect
of the parameter α will start over in each sub-matrix;
that is, the problem of information loss in deep regions
caused by the parameter α will be tackled. Note that in the
proposed method, only the received signals corresponding to
the middle emission are considered to be processed using
the M-CS algorithm; j = ⌈Np/2⌉ is considered in (6),
where ⌈.⌉ denotes the upward round operation. Therefore,
by using the proposed M-CS algorithm to identify the
point targets, not much computational complexity will be
imposed.

Once the image is reconstructed using the proposed M-CS
method, the following steps are applied to the obtained output
in order to identify the locations of the point targets:

1) Removing small intensities using a threshold: In
this step, the zero value is assigned to some parts of
the image, and only the high-intensity pixels, i.e., the
regions associated with point targets will remain. This
is achieved by using a pre-determined threshold τ .

2) Finding the local maximum positions: Once the
thresholding process is performed, some local high-
intensity regions will appear in the output image. In this
step, the maximum point of each region is found and
considered as the center position of the point target.
This process is inspired by the localization process
which is used in super-resolution ultrasound imaging.

3) Overlaying the target positions on the B-mode
image: The final step is to overlay the identified
positions of the point targets on the B-mode image.
Note that the B-mode image can be achieved using
a limited number of emissions in order to achieve an
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overview of where the point targets are located in the
tissue.

The processing steps of the proposed algorithm are schemat-
ically shown in Fig. 1. Moreover, the pseudocode of the
proposed method is presented in Algorithm 1 to better see
the detailed procedure. The procedure described in lines
1-8 of the pseudocode results in the reconstructed image
in which the noise level is significantly suppressed. This
is while the point targets located at deep regions of the
medium are preserved. Note that the process does not occupy
much memory thanks to dividing the matrix into some small
sub-matrices. The procedure described in lines 9-10 of the
pseudocode is also used to identify the exact locations of the
point targets. As the noise level is successfully suppressed in
the previous stages (i.e., the proposed M-CS algorithm), the
performance of the simple thresholding method to identify
the locations of the point targets is significantly improved
compared to the conventional CS algorithm. Therefore, the
probability of identifying the spurious point targets will
be low, and most of the existing point targets will be
identified.

To better clarify the strengths and weaknesses of the
proposed method over other related works that are used
in the evaluations, Table 2 is presented. As can be seen from
the table, the proposed method overcomes the limitations of
the conventional CS algorithm. Also, compared to DAS and
MV algorithms, the M-CS method significantly suppresses
the noise level which improves the point target identification.
Detailed evaluation of the mentioned algorithms will be
performed in the following sections.

A. EVALUATION METRICS
The following evaluation metrics are defined and used in
order to evaluate the performance of the proposed algorithm
in terms of the ability to correctly identify the point
targets:
• Missed detection evaluation metric, which is defined
as the ratio of the number of point targets that are not
identified to the total number of existing point targets in
the imaging medium.

• True detection evaluation metric, which is defined as
the ratio of the number of point targets that are correctly
identified to the total number of existing point targets in
the imaging medium.

• False detection evaluation metric, which is defined as
the ratio of the number of spurious point targets that
are identified by the algorithm to the total number of
existing point targets in the imaging medium.

Note that all the mentioned evaluation metrics are in the
range of [0, 1]. As the values of the missed detection and
false detection metrics get smaller, one can conclude that
the performance of the algorithm is improved. Also, the
greater the value of the true detection metric, the better
the performance of the algorithm in terms of revealing the
existing point targets.

IV. RESULTS
A simulation study is performed in order to evaluate the
performance of the proposed method to identify point
targets. The Field II Matlab toolbox is used to perform the
simulation [31]. In the designed phantom, a large number
of scatterers are uniformly distributed along a 10 × 40 ×
60 mm3 volume to simulate a speckle-generating phantom.
Then, 40 point targets (high-reflectors) are randomly placed
in the considered volume. The adjusted parameters to perform
the simulation are presented in Table 3.
The reconstructed images obtained from the DAS

algorithm (using all the Np emissions), the adaptive MV
algorithm, the CS algorithm, and the proposed M-CS method
are demonstrated in Fig. 1. Note that the reconstructed images
of the algorithms, except the DAS algorithm, are obtained
by using only the middle plane wave. Also, in the proposed
M-CS algorithm, D = 8 is considered. It can be seen that
the point targets cannot be well revealed in the reconstructed
image obtained from DAS; the background speckle makes
it difficult to identify the point targets, especially in deeper
regions of the imaging phantom. By using the adaptive MV
algorithm, the resolution of the point targets is improved
compared to DAS, as demonstrated in Fig. 2 (b). However,
identifying the point targets in deep regions is still difficult.
Also, the improved resolution of the MV algorithm is
achieved at the expense of high computational complexity
[439 sec to obtain the reconstructed image shown in
Fig. 2 (b)]. The CS algorithm suppresses the background
speckle, as shown in Figs. 2 (c-e). Depending on the assigned
value of the parameter α, the noise rejection is performed
differently in the CS algorithm; the greater the value of α, the
more the noise suppression is performed. However, the point
targets in deep regions of the imaging medium will be lost.
In particular, it can be concluded from Figs. 2 (c-e) that the
noise level is better suppressed and the point targets are more
clearly visible for α = 1. However, the point targets that are
located beyond the depth of almost 50 mm are completely
disappeared. In contrast, the information in deeper regions
of the imaging phantom is not lost for α < 1. However, the
noise suppression is degraded in such a case, which leads
to errors in identifying the locations of the point targets.
By comparing the M-CS algorithm (Fig. 2 (f)) and the CS
method, it can be seen that the proposed method outperforms
the DAS and CS algorithms in terms of noise suppression
while the point targets are also revealed even in deep regions
of the imaging medium. It should be noted that deep regions
of the imaging phantom are still noisy by using the proposed
M-CS algorithm, as demonstrated in Fig. 2 (f). This is due
to the use of only a single emission without focusing on the
imaging points to perform the imaging process (i.e., PWI),
which causes a reduction in the energy of the transmitted
wave as the imaging depth increases. Consequently, a high
level of noise will be induced in the reconstructed image,
as can also be seen from Figs. 2 (a-b). By using the
conventional CS algorithm, the noise of deep regions is
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Algorithm 1 The Processing Steps of the Proposed M-CS Algorithm
Inputs: α, D, τ , Nx , Ny.
Output: Point targets mapping on the B-mode image.

1: Acquiring the received signals for middle emission, i.e., si,j, for i = 1, · · · ,Ne, and j = ⌈Np/2⌉.
2: Constructing the measurement matrix A according to (4).
3: Dividing the measurement matrix into D sub-matrices, the dimensionality of which equalsM × NxNy

D .
4: for d = 1 : D do
5: Constructing d th part of the image vector by using d th sub-matrix Ad and solving (6).
6: end
7: Juxtaposing all the obtained D vector images resulting in a NxNy × 1 vector.
8: Reshaping the vector image into a 2D matrix with the dimensions of Nx × Ny according to (7).
9: Omitting the regions the intensities of which exceed the threshold value τ (i.e., 0← y(j)CS (n) ≤ τ , for n = 1, · · ·NxNy).

10: Finding the local maximum intensities and estimating the positions of the point targets.
11: Overlaying the obtained positions on the B-mode image.

TABLE 2. Comparison of strengths and weaknesses of the algorithms used in the evaluations.

TABLE 3. The simulation parameters.

eliminated. However, useful information about the imaging
medium will also be lost (Figs. 2 (c-e)). Note that by using
the proposed method, the amplitude of the point targets is
much higher compared to the noisy parts of the reconstructed
image in deep regions. Therefore, they can be successfully
separated by thresholding which will be discussed in the
following.

Once the image is reconstructed, the locations of the
point targets are desired to be identified by thresholding
and localizing the beamformed data. Then, the identified
locations are overlaid on the B-mode image to better
visualize the result. The output of the described process is

demonstrated in Fig. 3. It can be seen that point detection
using the CS algorithm induces error; some spurious point
targets are identified, as demonstrated in Fig. 3 (a). As the
value of the parameter τ increases, the number of spurious
point targets will be reduced. However, some point targets
will be lost, as shown in Fig. 3 (b). Finally, it can be seen
from Fig. 3 (c) that by using the proposed M-CS method, the
point targets are correctly identified.

A. EFFECT OF THE PARAMETERS D AND τ

The proposed method is evaluated for different values of the
parameter D and the results are shown in Fig. 4. Note that the
results are obtained for τ = 0.05 and α = 1. From the missed
detection and true detection metrics, one can conclude that
the performance of the M-CS algorithm improves for greater
values of D; more existing point targets are identified, and
the probability of missed detection is reduced. However, the
false detection metric is also increased according to Fig. 4 (c),
indicating that the number of spurious point targets will be
increased as the parameter D increases. This limitation
can be overcome by varying the threshold value. To better
evaluate the effect of the parameter τ on the performance
of the proposed algorithm, pay attention to Fig. 5. It can be
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FIGURE 2. Reconstructed images obtained from (a) the DAS algorithm, (b) MV (subarray length equals half the array length), the CS algorithm with
(c) α = 0.05, (d) α = 0.1, (e) α = 1, and (f) the proposed M-CS algorithm with α = 1 and D = 8. The actual locations of the point targets are shown with
blue circles in (a). The images are shown with the dynamic range of 70 dB.

seen from the figure that as the parameter D increases, the
performance of the M-CS algorithm will be improved for
greater values of τ . Generally, it can be concluded that the
greater the value of D, the better the performance of the M-
CS algorithm in terms of identifying the point targets. As the
parameter D exceeds a certain value, a greater value should
be assigned to τ in order to prevent identifying the spurious
point targets. In this simulation study, D = 8 leads to the
most appropriate performance in which all the point targets
are correctly identified. Also, no spurious point targets appear
(error=0). It is worth noting that although the performance
of the proposed method is degraded for other values of
the parameters D and τ , however, it still outperforms the
conventional CS algorithm in which the missed detection,
true detection, and false detection metrics equal 0.225, 0.775,
and 0.9, respectively, for τ = 0.05.
The receiver operating characteristic (ROC) curve for the

proposed M-CS and the conventional CS algorithms (for
two different values of the parameter α) are demonstrated
in Fig. 6 to better evaluate and compare their performances.
To obtain the ROC curves, we consider two classes of target
and non-target; the target class includes 40 point targets that

are distributed along the simulated speckled region. Also,
the non-target class includes all the imaging points except
40 point targets. By using the proposed method, the false
detection ratio is low (equal or close to zero) even for smaller
values of τ . This is due to the fact the M-CS algorithm
suppresses the noise level significantly, and therefore, the
probability of identifying the spurious pint targets due to the
presence of the noisy region will be reduced. Also, for a
wide range of values of the parameter τ , most of the point
targets are identified. Therefore, the obtained ROC curve
is favorable, as demonstrated in Fig. 6 (a). In contrast, the
probability of identifying spurious point targets increases by
using the conventional CS algorithm; as a smaller value is
assigned to the parameter α, a higher level of noise remains in
the reconstructed image which results in increasing the false
detection ratio. Also, for higher values of α, the probability
of identifying the actual point targets decreases since they are
removed from the reconstructed image, as previously shown.
By comparing the ROCs of the conventional CS for two
different values of α with the one obtained from the M-CS
algorithm, the superiority of the proposed method will be
concluded.

VOLUME 12, 2024 2983



R. Paridar, B. M. Asl: Low-Complexity CS Algorithm for Point Target Detection

FIGURE 3. Point detection obtained from (a),(b) the CS algorithm (α = 0.1) using two different values of τ ,
and (c) the M-CS algorithm (α = 1) using τ = 0.05. The images on which the identified point targets are
overlaid, are shown with the dynamic range of 70 dB.

B. EFFECT OF THE PARAMETER α

It has been shown in Figs. 2 and 3 that the performance of
the CS algorithm significantly changes for different values of
α. It is desired to evaluate the proposed M-CS algorithm for
different values of this parameter; Figure 7 shows the graph
corresponding to the evaluation metrics for different values
of α. The parameter D equals 8 in this figure. Note that for
different values of α, the parameter τ changes appropriately;
as the value of the parameter α decreases, a greater value is
assigned to τ . This is due to the fact that the noise suppression
is degraded for smaller values of α. Therefore, the threshold
τ needs to be a greater value in order to filter out the noise-
contaminated image and separate the point targets from the
background speckle. A similar conclusion has also beenmade
from Fig. 3 (a),(b). It can be seen from Fig. 7 that the

sensitivity of the proposed algorithm to the parameter α is
much less compared to the conventional CS algorithm (the
results of which are shown in Figs. 2(c)-(e)). Also, all of
the existing point targets are identified for different values
of α while the error decreases compared to the CS algorithm
(missed detection=0, and false detection<0.05 for all cases
according to Fig. 7).

V. DISCUSSION
The proposed M-CS algorithm in PWI improves the point
identification process compared to the conventional CS
algorithm. The main application of the proposed method is
to identify point targets, such as kidney stones, microcal-
cifications, and microbubbles in super-resolution imaging.
A distinct feature of the proposed method compared to other
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FIGURE 4. (a) Missed detection, (b) true detection, and (c) false detection evaluation metrics of the proposed method for different values of D.

FIGURE 5. Evaluation of the proposed method for different values of τ in terms of (a) missed detection, (b) true detection, and (c) false detection
evaluation metrics.

FIGURE 6. ROC curve for (a) M-CS, (b) CS with α = 0.1, and (c) CS with α = 0.05. D = 8 is considered for the proposed M-CS algorithm.

methods associated with the considered application is the
successful identification of point targets in deep regions
of the medium. In addition, since the proposed method is

performed on PWI in which only a single emission is used,
high-speed identification of point targets will be provided.
Inspired by these twomentioned properties (imaging the deep
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FIGURE 7. Evaluation of the proposed method for different values of the
parameter α. For each value of the parameter α, the corresponding
threshold value is also changed appropriately.

regions and high-speed process) of the proposed method,
real-time imaging of the internal organs of the human body,
with the goal of point target identification, will be achieved.
Identifying the point targets using the CS algorithm imposes
errors due to the limitation caused by the parameter α; the
point targets that are located in deeper regions of the imaging
medium are lost for larger values of α. It can be seen from
Fig. 2 (e). Also, for a smaller α, the number of spurious
point targets, or equivalently, the false detection metric will
be increased, as demonstrated in Fig. 3 (a). The reason is
that the noisy regions in the reconstructed image also pass
through the threshold, and therefore, lead to the identification
of some spurious point targets in the next step, i.e., the
localization process. One may think that this limitation will
be overcome by varying the threshold value; the identification
process using a higher value of the parameter τ is also
evaluated and the result is presented in Fig. 3 (b). It can
be seen that the number of spurious point targets decreases
by increasing the threshold value. However, this is achieved
by losing the point targets that are located in deep regions;
the intensity of the reconstructed point targets reduces as
the imaging depth increases. This can also be qualitatively
seen from Fig. 2 (d), for instance. Therefore, they will be
removed similarly to the noisy regions around the point
targets in the upper region of the imaging medium. By using
the proposed method, these limitations will be overcome; the
imaging region is divided into D parts, which are treated as
D separate images to be reconstructed. Therefore, intensity
reduction of the point targets by increasing the imaging depth
is prevented. Also, due to the division process, one can
increase the value of the parameter α in order to suppress
the noise level more efficiently and identify the point targets
more successfully. The greater the value of the parameter α,
the better the identification, since the noise level is suppressed
more successfully. This is achieved without any considerable
trade-offs such as missing the deeper point targets using the

proposedM-CS algorithm, whichmakes it advantageous over
the conventional CS method. It can also be seen from Fig. 7
that no point targets are missed as the value of α increases.
One should note that in order to achieve the best performance
of the M-CS algorithm, the parameter τ should be selected
appropriately. According to Fig. 5, it has been concluded that
as the parameter D increases, the threshold value τ is desired
to be increased. Also, for smaller values of α, a greater value
should be assigned to the parameter τ in order to better filter
out the reconstructed image and separate the point targets.
Generally, since the greater value of α results in a better noise
reduction, the greatest possible value of this parameter is of
interest.

Note that overlaying the positions of the identified point
targets on the B-mode image which is obtained from
the CPWC, is to get information about the status of the
point targets within the tissue (such as the distribution of
microcalcifications, or the location of a stone in the kidney).
Therefore, fewer emissions can also be used to obtain the
B-mode image. More precisely, the number of emissions to
obtain the B-mode image does not affect the accuracy of the
point targets identification, since the identification process
relies on using only the middle emission.

In addition to the improved accuracy in terms of the point
detection process, another advantage of the proposed M-CS
algorithm compared to the conventional CS method is its
lower computational complexity and memory requirement;
the process is independently performed on D number of
sub-matrices with the size of M × NxNy/D using the M-
CS algorithm. This is while the CS algorithm is applied
to a M × NxNy matrix, the entries of which are D times
greater compared to the one that is considered in the M-CS
algorithm. Therefore, the need for memory is increased in
the CS algorithm. This can cause serious problems as the
imaging size (equivalently, Nx × Ny) is increased. Moreover,
due to the fact that smaller sub-matrices are considered in the
M-CS algorithm, the process will be sped up compared to
the CS algorithm. The computational time of the proposed
method for different values of the parameter D (using the
pre-determined measurement matrix/sub-matrices) is listed
in Table 4 using a PC with the core i7-5820k CPU and 64
GB memory. It can be concluded that the processing speed of
the M-CS algorithm is reduced for all values of D compared
to the CS method, the computational time of which equals
64.46 seconds. Note that no parallel processing is performed
in computing the proposed M-CS algorithm.

Finally, it is worth noting that in [32], a block CS algorithm
was proposed and used in the image processing field to
improve the processing steps compared to the conventional
CS algorithm. The principles of the algorithm presented in the
mentioned study differ from the proposed M-CS algorithm.
To better understand the differences between these two CS-
based methods, pay attention to the following explanations.
In the mentioned study, the image is divided into B × B
blocks in both lateral and axial directions, and a measurement
matrix is defined for each block. The independent and
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identically distribution (i.i.d) Gaussian matrix is considered
as the measurement matrix for each block. Moreover, the
samples corresponding to each block are also divided to
construct that block; if the total number of samples equals
M , the block CS method uses MB2

NxNy
samples associated

with each block (M ≪ NxNy). Note that the block CS
algorithm does not improve the image quality. In contrast, the
division process is completely different in the proposed M-
CS algorithm; consider the reconstructed image as the vector
form with the dimensions of NxNy × 1. In each step, 1/D
part of the mentioned vector is constructed, meaning that the
considered blocks in the M-CS method are not necessarily
square blocks with equal dimensions in both lateral and axial
directions. Also, in the proposed method, the measurement
matrix is not defined for each divided part separately. Rather,
one measurement matrix (which is not i.i.d) is constructed
according to (4), and the result is divided into D parts.
A very important difference between the proposed method
and one proposed in [32], is that all of the samples in the
received signal are considered to obtain the reconstructed
image for each part (from 1 to D). This is due to the fact
that in ultrasound imaging, the echoes reflected from all
the imaging regions affect each other. This is in contrast
to image processing principles, where such a relationship
does not exist and each pixel has its own independent
value.

TABLE 4. Computational time of the M-CS algorithm for different values
of the parameter D.

VI. CONCLUSION
In this paper, the M-CS algorithm was presented with the
aim of identifying the point targets in PWI. In the proposed
algorithm, the processing matrix is divided into a number
of sub-matrices, each of which is processed separately.
It was shown that by performing the division process, the
information loss in deeper regions of the imaging object
that occurs in the conventional CS algorithm is prevented.
As a result, without eliminating the point targets in deep
regions, larger values of the parameter α can be used to
better suppress the noise level and reduce the probability of
identifying the spurious point targets. Once the reconstruction
is performed using the M-CS algorithm, the obtained output
is thresholded and localized to achieve the positions of
the point targets. The simulation results showed that the
proposed algorithm successfully identifies the point targets
in the highly speckle-generating medium. In addition, the
processing speed increases compared to the CS algorithm.
Evaluating the performance of the M-CS algorithm on the
experimental data will be our future work.
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