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ABSTRACT Cognitive radio is a technology that allows Secondary Users (SUs) to access vacant spectrum
areas allocated to Primary Users (PUs) by dynamically adjusting their settings. However, the spectrum
detection subsystem of SUs consumes battery power that could be used for transmission. This work aims to
address the energy availability issue for cognitive radio devices by two methods: energy harvesting from the
ambient environment and deep learning prediction of future energy levels. We compare three deep learning
models: Long-Short Term Memory (LSTM), Convolutional Neural Network (CNN), and Convolutional
Long-Short Term Memory (ConvLSTM) with three classic machine learning models: Artificial Neural
Networks (ANN), Support Vector Regressor (SVR), and Extreme Gradient Boost (XGBoost). The results
show that deep learning models outperform machine learning models across all datasets, with ConvLSTM
being the best model with a Normalized Root Mean Squared Error (nRMSE) of 0.0632 and Mean Absolute
Error (MAE) of 1.479, which are 8.80% and 9.04% better than the best machine learning model, ANN, with
nRMSE of 0.0693 and MAE of 1.626.

INDEX TERMS Cognitive radio networks, deep learning, energy harvesting, machine learning, modeling,
wireless communications systems.

I. INTRODUCTION spectrum [1]. In general, a user can only use radio spectrum

The radio spectrum includes Radio waves, also known as
electromagnetic waves with a frequency range of 3 Hz
to 3 THz, which are frequently employed as a transmission
medium in modern technologies, including telecommuni-
cation. The creation and transmission of radio waves are
rigorously governed by regulations that have been stan-
dardised by an international organization, the International
Telecommunication Union (ITU) [1], to reduce the issue
of interference between various users. The total quantity of
spectrum is constrained, but technology choices affect how
much of it may be used. The region of the electromagnetic
spectrum that contains radio waves is known as the radio
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after receiving a special license from the appropriate national
regulatory organization. Technically speaking, this strategy
aids in system design since it is simpler to create a system
that functions in a certain band than it is to create a system
that can employ several bands dispersed throughout various
frequency bands [2].

In Figure 1, the spectrum usage of the radio spectrum
is presented. Noticeable from the diagram, there are large
portions of sparse use, especially in the lower frequency
bands and there are also portions of medium use in the
higher frequency bands. Overall, spectral occupancy is less
than 6% [3].

The demand for radio spectrum has increased significantly
due to recent events. Radio spectrum can be considered
as a renewable natural resource that can be reused within
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FIGURE 1. Spectrum Usage.

certain constraints under appropriate conditions. However,
the spectrum availability is limited and has to support a
growing number of connected devices, which creates a lot
of pressure on it. The IoT paradigm further exacerbates this
spectrum scarcity problem, which makes it urgent to find
solutions. One of the proposed solutions in the literature
is Cognitive Radio (CR), which can potentially improve
spectrum utilization.

Cognitive radio (CR) is a technology that enables dynamic
and opportunistic spectrum access by Secondary Users (SUs)
who can utilize the frequency bands allocated to Primary
Users (PUs) without causing interference. CR relies on
software-defined radio (SDR) and smart antennas to adapt its
settings to the environment. CR also has a cognitive engine
that analyzes the spectrum usage and a policy engine that
defines the rules and roles of different users [3], [4], [5], [6],
[7]. CR can exploit spectrum holes or white spaces, which
are vacant or underutilized parts of the spectrum as seen in
Figure 2, by either switching to another band or adjusting
its transmission parameters. This is known as Underlay
Spectrum Access. CR is a promising solution to improve
spectrum efficiency, which is a major challenge for regulatory
agencies worldwide due to the limited availability of radio
waves and the increasing demand for wireless services [8],
[9], [10], [11], [12]. CR has many potential applications in
wireless communication systems including mobile and satel-
lite communications, IoT, smart grid, medical applications,
military, and security [12], [13], [14], [15], [16]
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FIGURE 2. Concept of Spectrum Holes.

Il. KEY CONTRIBUTIONS OF WORK AND BACKGROUND

The wireless technologies that operate in different frequency
bands have different characteristics that affect the temporal
correlation of the wireless channel. Temporal correlation is
a measure of how the channel conditions change over time,
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and it depends on factors such as the signal bandwidth, the
Doppler spread, the fading model, and the power density.
Different wireless technologies may have different protocols,
application scenarios, and user behavior that influence
these factors [17], [18]. Previous works have used different
variations of classical ML and statistical models such as
the Autoregressive Integrated Moving Average (ARIMA)
and Normalized Least Mean Squares (NLMS) for the
prediction, however, these models rely on assumptions about
the structure and properties of the time series data, such as
stationarity, linearity, autocorrelation, and noise. As such,
this makes them limited in terms of broad application and
location for highly stochastic data such as harvestable RF
energy, which varies widely as the usage pattern on the band
of interest, location, and other environmental factors [19],
[20]. This work investigates the use of DL models to predict
harvested RF energy for CR devices. Among other benefits,
DL models place less emphasis on data preprocessing, feature
engineering, stationarity, correlation, and noise, making
them less susceptible to widely varying data and afford
the opportunity for more robust models suitable for highly
stochastic RF energy data. To the best of our knowledge,
DL models have not been deployed to predict harvested RF
energy for CR devices.

IIl. REVIEW OF SIMILAR WORKS

Since  EH-CRNs fall under the category of resource-
constrained devices, some of their attributes, such as
their computational complexity, speed of execution, energy
consumption of computation, memory requirements, and
suitability for time-series forecasting, are taken into consider-
ation [21], [22], before a DL algorithm is considered for use
in EH CIoT. In this section, we present the current research
on DL and ML methods for RF EH wireless networks. It is
provided with a synopsis of the findings the researchers came
at, along with their methods.

A Fuzzy Neural Network (FNN) was used by the authors
of [23] to study the power consumption of system calls made
by mobile devices. This FNN was trained to examine process
execution behavior based on a series of system call sequence
characteristics. They organized the functional components of
the system calls into categories, examined each call 100, 000
times, along with the other system parameters, in a database,
and then calculated the average energy consumption to create
a Power Estimation Daemon (PED) for Linux-based OSs.

According to the findings of their research, there was an
overall efficiency of more than 98.8% and a maximum 1.2%
discrepancy between the direct power profile of the individual
operations and that projected by the PED tool [23]. As the
authors in [24] suggested, Dynamic Power Management
(DPM), which is a technique to best allocate power to
running processes within the device based on demand by
such processes other than bulk allocation, can be deployed
and used to retain the aggregate power of the system while
still harvesting energy for storage and utilization. When
there is a low or high energy demand, an action-reward
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RL system adjusts the duty cycle allocations for processes
while preserving as much of the gathered energy as feasible.
As compared to previous adaptive approaches, their findings
indicated an increase of over 2.34%.

ML can be deployed as the favoured technique to optimize
energy harvested, the amount of energy harvested, harvesting
channel, harvesting duration, and energy storage policy,
through training and analyzing data using channel state
information and other parameters [25]. A coordinated ambi-
ent/dedicated RF energy harvesting strategy was presented by
the authors in [26]. The system is programmed in this way
to collect energy from specialized RF energy sources when
they are accessible but to fall back on unintentional (ambient)
sources when the dedicated sources are unavailable. They
suggested two techniques: the Artificial Neural Network
(ANN) and the Linear Forecaster with Near-time Linear
Regression-based Enhancer (LFNTLRE) algorithms, for
calculating the ideal EH schedule. The LFNTLRE is an
algorithm that can adapt to its environment while in progress,
but it however requires a limited history of live data to
operate making it require more computational memory. ANN
is simpler and requires less memory since it can access the
history live data from the cloud, instead of locally [26].
Their studies showed that using either the LFNTLRE or
the ANN, the chances of getting a source for EH was up
to 99.6% and 99.5%, over ideal sensors, respectively. They
also showed percentage energy accuracy levels of 100% and
99.0%, respectively. The studies further showed that ANN
was better suited for urban areas because the probability of
getting unintended sources is lower in rural areas as opposed
to urban areas. The LFNTLRE was better suited for the rural
areas due to the need for less history live data. However, the
performance of ANN closely matched that of the LFNTLRE
without the need for live data.

An RF-EH device needs to have a sense of the available
energy to better plan and allocate its energy resource to
internal processes. Being able to forecast the harvestable
energy helps the device to achieve this, and this is the basis
of the study by the authors in [27]. Their study focused
on harvestable energy prediction for self-powered wearable
devices. As they noted, wearables have distinct parametric
requirements different from other wireless devices, and
their energy management and Quality of Service (QoS)
requirements are also different including; execution time,
prediction accuracy, and memory, in addition to small
and lightweight considerations. They noted that RF energy
harvesting has low and sparse power densities and for self-
powered devices, being able to predict harvestable energy is
key to better managing energy resources and prolonging the
lifespan of the device while maintaining a reasonable level of
QoS [27].

The authors in [28] employed several ML algorithms
to forecast RF energy data using a model approach for
effectiveness in wireless communications networks. Using
data from the 1805 MHz and 1880MHz bands, they inves-
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tigated four machine learning (ML) modeling techniques and
evaluated their accuracy based on their RF energy models.
Linear Regression (LR), Support Vector Machine (SVM),
Random Forest Algorithm (RFA), and Decision Tree were the
ML algorithms that were investigated. They chose variables
such as Feature Length of 1, Number of Observations
120, and Number of Training Splits, which refers to the
division between the Training Set and Testing Set. Their
results showed that LR performed best for harvesting energy
prediction with a mean error of 0.138 under the testing
conditions, while RFA performed worse with a mean error
of 0.3005, which is unacceptable for real-time prediction
purposes. The purposes of harvesting energy prediction are to
cater for better planning of more efficient energy harvesters
and to reduce overheads in energy consumption of the target
devices.

With no CSI information of the intended receiver, the
authors in [29] developed a methodology to learn the
best power for transmission at the source (for SWIPT)
to advance the energy awareness of EH wireless devices.
To improve energy efficiency, they created an algorithm
based on the Upper Confidence Bound and compared it to
a benchmark scheme using CSI knowledge to determine
the ideal power level for transmission. Energy availability
and management are strained more as a result of CSI
estimation’s energy use [29]. As a result, their plan, which
requires no CSI expertise, performed 52% better than
the benchmark plan with CSI. Additionally, the system
outperforms the benchmark scheme with CSI knowledge
for CSI energy costs higher than —60dBm, but underper-
forms for CSI energy costs below —60dBm, which is not
practical.

In [30], the authors looked at a DL implementation for
sharing resources in battery-operated EH D2D networks.
They used the Multi-agent Deterministic Policy Gradient
(MADDPG), a POMDP (Partially Observable Markov Deci-
sion Process) designed to address the multi-user cooperative
task execution problem. In comparison to the baseline
algorithms Local and ECLB, their results demonstrated
higher performance in terms of lost jobs and overall battery
energy penalty. The top total number of dropped jobs for the
MADDPG was 110, while for the Local and ECLB, it was 720
and 1300, respectively. The MADDPG outperformed both
baseline algorithms, recording O (zero) penalty for the total
battery energy.

In resource-constrained EH-CRNSs, learned resource allo-
cation has been shown to be more effective. Researchers
in [31] looked at this issue. To address the issue of the
secondary network’s primary network’s interference thresh-
old, secondary user (SU) QoS, and secondary base station
(SBS) restricted power budget, they developed an enhanced
DNN-based method. They did this by using transfer learning
to take advantage of the initialization of the DNN weights
and hasten the convergence of the DNN loss function. Their
simulation findings demonstrated improvements over earlier
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conventional methods in terms of calculation time, with
an improvement of 18.8% over the traditional optimization
approaches.

Convex optimization techniques may be used to discover
the best power allocation plan for an RF transmitter with
many energy harvesters, but the computational complexity
required is prohibitive, especially for devices with limited
resources. Therefore, fewer computationally intensive strate-
gies are required to solve the optimal power allocation
problem; otherwise, the EH device would find itself burning
up more CPU cycles and energy merely to obtain the
optimal power allocation plan, which would negate the
original goal of the plan. The researchers in [32] presented
a DL technique suitable for Multiple-Input, Multiple Output
(MIMO) applications to examine this research challenge,
where the simplified channel vectors are the inputs to the
DNN and the network was trained offline using a significant
quantity of simulated data. Their findings indicated that
their DNN scheme obtained an execution time of 2.47 Sec
compared to the convex technique (using CVX), which
achieved an execution time of 96.46 sec for the identical
transmitter and receiver with three antennas and a Sbhps/Hz
information rate requirement.

Heterogenous Ultra-Dense Networks (HUDN) are a solu-
tion to the restricted range of the millimeter waves utilized in
these networks for EH devices in the 5G and maybe 6G net-
works. Due to the expanding number of devices that require
even greater data rates, HUDN enables the transmission of
millimeter waves. The difficulty in harvesting energy arises
from the fact that the EH sources in HUDN are very random-
ized. The authors of [33] suggested Wolpertinger DDPG (W-
DDPG), Deep Deterministic Policy Gradient (DDPG), and
Deep Reinforcement Learning (DRL) approaches to address
this problem. From the outcomes of their simulations, they
found that W-DDPG outperforms the original DDPG and
Deep Q-Learning (DQL) algorithms in terms of both energy
efficiency and throughput. With a configuration of three
macro base stations (MBS), fifty small-cell base stations
(SBS), and 100 user equipment (UE), they were able to reach
average energy of roughly 11Mbits/Joule with W-DDPG
throughout 300 episodes, as opposed to the 7Mbits/Joules
they were able to accomplish with DDPG under the same
conditions.

Wireless energy transfer’s channel estimation issue has
been researched in relation to DL. The authors in [34]
suggested a Deep Autoencoder (DAE)-based approach that,
in the sense of reducing the Mean Square Error (MSE) of
the channel estimate, learns the channel state information
(CSI) at the energy transmitter based on the collected
energy feedback from the energy receiver. They obtained
an MSE of around 0.6 vs an MSE of roughly 1.6 for a
Signal-to-Noise Ratio (SNR) of 10db obtained using the
traditional method, Gerchberg Saxton algorithm published
in [35]. Additionally, given the same SNR of 10dB, they
were able to harvest an average of 6.5Joules as opposed to
4.75Joules in [35].
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IV. ENERGY HARVESTING

The addition of spectrum sensing to wireless devices
introduces a new problem, namely the problem of power.
The power supply intended for transmission uses provides
the necessary power to the sensor circuitry. This limits the
amount of electricity needed for CR networks. Additionally,
since sensing must take place before transmission can start
following spectrum access, sensing shortens the period that is
supposed to be reserved for opportunistic transmission. The
throughput of the CR device is directly negatively impacted
by this.

External energy must be obtained to reduce this. In this
field, research has been done on energy harvesting from
the surrounding environment. There are several methods for
drawing energy from the area around the SU, including solar,
wind, piezoelectric, radio frequency energy, etc [36].

A. RADIO FREQUENCY ENERGY HARVESTING

The built environment contains sources of ambient RF
energy. In general, these signals are just meant to transmit
information and are not meant to be utilized as power sources.
However, power may be extracted from these ambient
signaling sources and transformed to DC for use by attached
devices. The following three things are among the ambient
RF energy’s sources [37]:

o Broadcast sources such as TV and radio.

o Directed multiuser sources, for example, cellular base
station transceivers and WiFi.

« Directed or undirected peer-to-peer wireless links such
as Bluetooth, ZigBee, and wireless backhauls.

RF Energy Harvesting (RF-EH) has characteristics, differ-
ent from harvesting energy from alternate sources, for exam-
ple, wind, solar, and vibrations, some of these characteristics
include:

i Controllable and constant energy transference can be
provided by RF sources over a distance for RF energy
harvesters.

ii Predictability and relative stability of harvested energy
are very common in a fixed RF-EHN over time due to
fixed distance due to transmitter footprint.

iii Given that the harvested RF energy amount is propor-
tional to the distance from the RF source, the harvested
RF energy of network nodes in the different locations can
vary significantly [38].

For energy detection at the SU, the detected signal y

received by the SU is seen as a binary hypothesis problem

given as [39]:

(n(t),HO
_ ]
y() [ e (t) +n(r), H1 M

where HO and H1 represent the respective absence and
presence of the PU, respectively, 7 (¢) is the PU signal which
has a power ps, n(t) is the Gaussian noise and varies as o?n,

from the PU transmitter to the receiver of the SU, the channel
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gain is g(¢), for sample r = 1, 2, ..., M. The number of the
signal samples is M.

When energy is detected at the antenna input according
to equation 1, an ambient RF energy harvester’s main
goal is to transform the RF energy it receives from the
ambient RF sources into DC electricity. These harvesting
tools are referred to as Rectenna, which stands for RECtifying
anTENNA. As illustrated in Figure 3 [40], [41], a rectenna
circuit typically consists of a receiving antenna coupled to an
RF bandpass filter, a rectifier, a low-pass filter, and ultimately
a load (or energy storage device).

Antenna

Q)

=1

FIGURE 3. Rectenna Block Diagram.

B. POWER CONVERSION EFFICIENCY OF A RECTENNA
The Power Conversion Efficiency (PCE) of a rectenna is
a measure of the fraction of the incident power that gets
converted to usable energy by the device. This can be given
mathematically as [42];

_ b 100 2)
=5

l
where 7 is the efficiency of the rectenna, P;, is the received
signal power in Watts, and P, is the rectified DC power at the
output of the rectenna, in Watts. The useable rectified signal is
measured by the PCE as it is given in the equation. Given that
some of the received signal is lost in the antenna’s circuitry,
it tells what percentage of the rectified input signal is useable
by the device that it powers. The performance of the rectenna
improves with increasing PCE. For a rectenna with a load
connected to its output, having a load resistance of Ry, the
PCE is given as [43];

2

n= Y .100 3)
P;.R;,

where V, is the output voltage of the rectifier and Ry, is the
load resistance in Ohms. This shows that the PCE is inversely
proportional to the load resistance, which calls for proper load
matching of rectenna to load for optimum power transfer to
occur.

The overall (RF — to — DC Power Conversion Efficiency
(PCE) is basically determined by the rectenna [44]. There-
fore, the amount of electrical energy that can be harvested
from incident RF signals depends on the antenna gains of
the RF source and that of the receiving device, the power
emitted from the RF source, path loss exponent, the distance
of the receiving antenna from the RF source antenna, and
the RF — to — DC rectification efficiency ngrr—_pc. The
received electrical power is given in [45] as:

PPC = nrp__pcP; 4)
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where P; is the received RF power that can be calculated
using the Friis transmission equation. In practical terms, the
maximum possible energy transferable wirelessly is limited
by various factors such as [46];

¢ RF Power Restrictions
o RF Distribution features
o Weather related attenuation

The frame structure of an EH-CRN by [47] is shown in
Figure 4, where they used a single sensing slot and then an
energy harvesting slot per frame. These are followed by a
transmit frame which is dependent on the presence, or not,
of the PU. When the PU is present, the SU becomes silent.

T

Data

Spectrum Sensing Transmission/Idle

Energy Harvesting

07,0 8 (T-05,,0) (1= 85, )T-05,0)

FIGURE 4. Cognitive Radio Energy Harvesting Time Frame Scheme.

For a single band EH-CRN, the sum total of the energy
consumed by a SU m, during sensing time slot t, is denoted
by S, can be given as [47]:

Sm,t = 19m,tUPs (5)

where P is the sensing circuit power consumption per
sample. v is the sensing time for one sample during sensing
time slot t. ¥,,; is the number of samples of the sensed
spectrum channel. The total harvested energy of SU m during
time slot t denoted by H,, ; can be written as [47]:

Hm,t B Sm,tnm,t[(T - 19m,tU)Pthu,m,t] (6)

where 17, ; is the RF-to-DC efficiency, T is the frame slot in
seconds and ¥ is the sensing time for one sample. A, ; is the
channel gain during time slot t, between the PU, u, and SU,
nm,: depends on the frequency of operation and rectification
technology.

For energy harvesting to occur over any given band, the
average received power from the PU must be greater than a
threshold Py, and the sensitivity indicator function, &, ; is
equal to 1 (when SU m is in HR over band b), under this
condition and O if the average received power from the PU is
less than the threshold Py,. This harvesting indicator function
Om,r 1s given by [47]:

P;h is the condition to make sure that the SUs are in HR.

The total harvested energy of SU, m during time slot,
t denoted by Hm,t can be written as [47]:

Hyy = Sp_ 80 b (T —0b ,)PPil ] (7

t uym,t

where 7731, , 1s the RF-to-DC efficiency. T is the frame slot in
seconds. v is the sensing time for one sample.

nfjw depends on frequency of operation and rectification
technology. The stored energy at the end of time slot t at Sm,t,
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denoted by By, ;, is given by [47]:
Bm,t = max((Bm,t—l + Hm,t - Sm,t)a 0) (8)

where max(x, 0) takes a maximum value between x and 0.

C. APPLICATIONS OF RF-EH

One increasingly common use of RF-EHNs is wireless sensor
networks. A wireless sensor device’s circuit implementation
that includes RF energy harvesting can be used as a source
of power. The literature has also offered a variety of model
structures for sensor devices that use RF energy [38]. The
use of RF-powered devices is also possible in medical
and healthcare equipment, such as wireless body networks.
Thanks to RF-EH, low-power medical devices may obtain
work-on-demand power in real-time from specialized RF
sources, further allowing small, battery-free circuits. RFID
is a common application for RF energy harvesting that has
undergone extensive study and has a wide range of uses in
inventory management, identification, and tracking. RFID
tags, which are like conventional ID cards can have extended
long life spans and ranges due to recent advancements in RF
energy harvesting technology and low-power circuits [38].
Since low-power mobile devices like wireless keyboards
and mice, hearing aids, electronic watches, MP3 players,
and other IoT devices typically consume power between
microwatts and milliwatts, RF energy harvesting may also
be used to provide charging capabilities for these devices.
Figure 5 shows a possible implementation of an EH-CR IoT
network.

ellular base
station
£ o
82 o
- &8 ES
Wireless
3

sensornode %,
(WSN) e ¢, €t
o

FIGURE 5. A spectrum sharing, energy harvesting and transmitting loT
Network.

V. ENERGY HARVESTING COGNITIVE RADIO NETWORKS
WITH MACHINE LEARNING AND DEEP LEARNING
TECHNIQUES

The system’s optimum performance, device resource alloca-
tion, and energy management are all greatly enhanced by the
capacity to forecast the usage pattern of the different cognitive
device operations. Since RF-EH alone cannot foresee, energy
is arbitrarily distributed across the cognitive device’s many
functions. Machine Learning (ML) offers a chance to increase
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TABLE 1. A comparison of DL and conventional ML techniques.

Metric ML Schemes DL Schemes

Data pre-processing | Highly required Minimal requirement
Feature engineering | Highly required Minimally required
Hyper-parameter Restricted Several ways

tuning capabilities

Data requirement Require less data Requires large

amounts of data

Hardware Computationally less | Computationally

requirement (e.g., CPU) robust devices (e.g.,
GPU)

Execution time Shorter Longer

Accuracy Lower Higher

Complex modelling | Weaker Stronger

capability

Network Simple Complex

architecture

the spectral efficiency and energy efficiency of the CR device
by utilizing energy consumption and channel state prediction.

ML can be used in communications settings when the
machine has no prior knowledge of the channel being
accessed. A communications system can maximize expected
outcomes by optimizing its communications strategy thanks
to ML. The ML-enabled node learns by making mistakes in
an uncharted environment [48]. In systems with significant
co-channel interference, where the Deep Neural Networks
(DNN) algorithm is used to optimize interference man-
agement by, for example, solving the Weighted Minimum
Mean Square Error (WMMSE) problem, ML can also be
used to either increase spectral efficiency or optimize the
system’s overall energy efficiency [48], [49], [50], [51].
Virtualization technology, an aspect of ML has been deployed
with significant improvements in energy efficiency and
resource utilization which results in up to 50% savings on
energy consumed by the overall system [52].

Deep Learning (DL) is increasingly being used to extract
even more efficiency from the EH Cognitive devices in terms
of managing energy. DL is a branch of Al that uses Artificial
Neural Networks (ANN) to compute input functions by
propagating the input via weighted layers to the output,
simulating the function of neurons in biological systems.
By altering the weights of the neural network’s layers, the
output is learned [53]. DL has grown more appealing as a
result of the abundance of data and modern devices’ improved
processing power [21]. Table 1 shows a comparison of ML
and DL schemes based on some general metrics.

A. CLASSIFICATION OF MACHINE LEARNING
APPROACHES

ML, which itself is a subfield of Artificial Intelligence
(AI), can be loosely classified according to the technique
deployed in realizing the desired or expected outcomes.
These are Supervised Learning, Unsupervised Learning,
Reinforcement Learning, and Hybridized Learning [52], [54].
The performance of ML methods depends on the chosen
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features for the particular application. Figure 6 shows the
classifications and subcategories of ML.

Multi Armed
Bandit
RL-based Neural
Network

Hybrid
Learning
Machine

Learning

FIGURE 6. Classification and Techniques of Machine Learning for
Improved Energy Efficiency of Communication Systems.

VI. DEEP LEARNING MODELS INVESTIGATED IN THIS
WORK
In this work, the models investigated were three DL models
for RF EH. These are;

1) Long-Short-Term Memory (LSTM)

2) Convolutional Neural Network (CNN)

3) Convolutional Long-Short-Term Memory (ConvLSTM)

A. LONG-SHORT TERM MEMORY (LSTM)

In order to address the issue of back error signals erupting
and disappearing in Real Time Recurrent Learning (RTRL)
or traditional Back Propagation Through Time (BPTT), both
of which are Recurrent Neural Networks, the Long-Short
Term Memory (LSTM) was proposed in [55]. Although the
forget gate was initially not part of the LSTM network, the
authors in [56] proposed it so that the network could reset
its state. The three gates regulate the cell’s information flow,
and the cell retains values across virtually any period. The
memory building blocks that make up the LSTM architecture
are a group of recurrently linked sub-networks. The memory
block’s function is to preserve its state over time and regulate
data flow using non-linear gating units [57].

B. CONVOLUTIONAL NEURAL NETWORK (CNN)
Convolutional Neural Networks (CNN), also known as
ConvNet, are a form of Artificial Neural Networks (ANN)
that have a deep feed-forward architecture and exceptional
generalizing powers, in contrast to other networks with
Fully Connected (FC) layers. It can learn highly abstracted
characteristics of things, in particular geographical data, and
more accurately identify them [58], [59].

C. CONVOLUTIONAL LONG-SHORT TERM MEMORY
(CONVLSTM)

ConvLSTM was initially introduced by Xingjian Shi et al.
in [60]. Convolutional structures are present in this model,
which is an extension of the Fully Connected LSTM (FC-
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LSTM) model, in both the input-to-state and state-to-state
transitions. By stacking several ConvLSTM layers, they
created a network model with an encoding-forecasting struc-
ture that is suitable for spatiotemporal sequence forecasting
issues. By carrying out the underlying LSTM operation as
a convolutional operation, the amount of processing may be
significantly reduced [61].

These DL models (LSTM, CNN, and ConvLSTM) were
chosen because they are well suited for processing time-
correlated, sequences of data and some of the application
areas include time series prediction, natural language pro-
cessing, image and video captioning, text recognition, speech
processing and recognition, and so on [57], [62], [63].

D. THE ACTIVATION FUNCTION

The basic objective of any activation function in a neural
network-based model is to convert the input to the output,
where the input value is produced by aggregating the
weighted inputs of all the neurons and biasing the result (if
bias exists). The activation function, in other words, decides
whether a neuron will be engaged for a specific input by
producing the appropriate output. There are several activation
functions described in the literature, and the most common
ones are Sigmoid, Tanh, and ReLU. ReL U activation function
is used in this work because it requires less computation,
converges 6 times faster than the other activation functions
and has been shown to be more efficient in training deep
networks even without pre-training [59], [64], [65].

VII. MACHINE LEARNING MODELS USED IN THIS WORK
To compare the efficiency of the DL models in this work,
some popular ML models were also developed. These models
and their fundamental concepts are discussed below;

A. SUPPORT VECTOR REGRESSOR

A support vector machine produces a hyperplane or group
of hyperplanes in a high- or infinite-dimensional space that
may be used for classification, regression, or other tasks.
Given that the bigger the margin, the smaller the classifier’s
overall generalization error is, it seems reasonable that the
hyperplane that is farthest from the nearest training data point
will achieve good separation for every class. A variant of
SVM for regression was first developed in 1996 by Drucker et
al. [66]. Support Vector Regression (SVR) is the term for this
method and uses actual values for the labels as opposed to
classification’s binary values [67]. Some of the applications
of SVM/SVR include text analysis, image classification,
medical sciences, handwriting recognition, and time series
forecasting in general.

B. EXTREME GRADIENT BOOST (XGBOOST)

A machine learning technique called gradient tree boosting
excels in a wide range of real-world uses. Tree boosting has
been demonstrated to deliver cutting-edge outcomes on a
variety of standard classification benchmarks. A decision tree
ensemble with a high degree of scalability, XGBoost is based
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on gradient boosting. Similar to gradient boosting, XGBoost
builds an additive extension of the objective function by
minimizing a loss function. Because XGBoost only employs
decision trees as its fundamental classifiers, a separate loss
function is used to control the complexity of the trees [68],
[69].

C. ARTIFICIAL NEURAL NETWORK

Artificial neural networks (ANNs) are a class of statistical
learning models used in cognitive science and machine
learning to estimate or approximation functions that might
depend on a large number of inputs and are often unknown.
Biological neural networks, notably the brains of animals
and their central nervous systems, served as an inspiration
for artificial neural networks (ANNSs). The nodes (much
like biological neurons) are weighted and the data tunneled
through a neural network are modified according to the
weights of the data [70], [71].

VIIl. RESEARCH METHODOLOGY

This section details the methods, working principle, and
steps taken in carrying out the research in the development
of a DL-assisted energy optimization for energy harvesting
CRNEs.

A. WORKING PRINCIPLE

In this research, the general process to be implemented in
the energy harvesting prediction subsection using LR shall
follow the steps outlined in Figure 7 below:

v

Collate and prepare
data

v

Data preprocessing: Cleaning,
removing unwanted parts

v
Split data into training dataset, test
set; Normalize and scale data

L 2

Select DL model and select
model parameters

2

Train DL model

v

Test and validate results using the test sets|
Evaluate and compare results

End

FIGURE 7. Energy Harvesting Prediction Flowchart for Deep Learning
Models.

B. DESCRIPTION AND PREPROCESSING OF DATA

The RF energy data in this work was captured for 4 months
inside a research laboratory on the University of Warwick
campus and obtained from the researchers with permission
for academic and personal uses only. The equipment is
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the Cambridge Radio Frequency Services (CRFS) node.
CREFS is a cutting-edge RF designer, with nodes that focus
on real-time 24/7 RF spectrum monitoring at a low cost.
The Rhode and Schwartz HF9070M antenna was used,
a vertically polarized broadband omnidirectional antenna that
covers 800 MHz to 26.5 GHz. All of the data was saved
in a two-dimensional matrix, with the row representing the
time and the column representing the frequency. For example,
the band 1805-1880 MHz comprises 448 frequency bins as
columns, with each bin having a bandwidth of 0.167 MHz.
The data was collected every minute over 131 days (188
917 min) by the authors in [28]. Therefore, the data set
of each frequency bin has 188,917-time instants as rows.
Eight frequency bands are measured as 880-915 MHz,
925-960 MHz, 1710-1785 MHz, 1805-1880 MHz, 1900-
1920 MHz, 1920-1980 MHz, 2110-2170 MHz and 2400-
2500 MHz. They represent the U.K. 2G and 3G bands as well
as the Wi-Fi band. Comparing these bands, their patterns are
similar so we use the 2110-2170 MHz band as an example.
Therefore, our predictive models were built for the 2110-
2170 MHz band.

Furthermore, for this work, the data subset used in the
2110-2170 MHz band covers data collected every minute
over a 30-day period which comprises 43200 samples. This
was further subdivided into 1-day, 7-day, and 30-day datasets
with sample sizes of 1440, 10,080, and 43,200 timesteps
(min), respectively, to give an idea of the predictions for these
time durations and also how the data size affects prediction
error. These subdivisions of the data are visualized as plots of
power level against time steps in Figure 8. A close observation
of these plots shows that the data is seasonal with peak and
off-peak periods, these can easily be seen as the nighttime
when fewer wireless devices are connected, and midday when
more devices are connected.

ooooooooooooooo

FIGURE 8. Visualization of the data, (a), 1-day data; (b), 7-day data; (c),
30-day data.

Furthermore, a description of the three datasets is presented
in Table 2 and shows the various parameters of the data. The
data shows that the standard deviation of the 1-day, 7-day and
30-day datasets are 2.72, 2.60 and 2.50, respectively. Also,
it further shows that for the 1-day dataset, for example, 25%
of the samples lie below —31.36dBm, while 50% lie below
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—29.18dBm and 75% lie below —27.20dBm, with a minimum
of —38.83dBm and maximum of —23.20dBm.

Due to the observed stochastic nature of the sample, feature
scaling was used to minimize the effect of the stochastic data
on prediction results while maintaining the core information
in each dataset. To do this, Min-Max scaler was used. It was
imported from the Sci-kit learn python library and employed
on the data for scaling. Figures 9, 10, and 11 show the scatter
plots for the three datasets before and after Min Max scaling.

Scatterplot Before Min Max Scaling

Scatterplot After Min Max Scaling

FIGURE 9. 1-day dataset feature scaling; (a) before Min Max scaling;
(b) after Min Max scaling.

Scatterplot Before Min Max Scaling

R Power(aBm)

Scatterplot After Min Max Scaling

ertdm)

FIGURE 10. 7-day dataset feature scaling; (a) before Min Max scaling;
(b) after Min Max scaling.

Scatterplot Before Min Max Scaling Scatterplot After Min Max Scaling
. w

RF Power(dam) 10 2 « A PowerloBm)
P

FIGURE 11. 30-day dataset feature scaling; (a) before Min Max scaling;
(b) after Min Max scaling.

C. EXPERIMENTAL SET-UP FOR THE DL MODELS

In implementing DL models predictions, the general
flowchart of Figure 7 was followed. Using Python program-
ming language running on Jupyter Notebook. The steps are
elaborated below and the codes can be found in the Appendix
section of this work.
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1y

2)

3)

4)

5)

6)

7)

8)

9)

Obtaining the dataset and data cleaning: The data
was cleaned and unwanted parts were removed. The
data was divided into three datasets namely 1-day
data, comprising of harvested energy values within
24 hours, every minute. This translates to 1440 minutes
or samples. The second dataset was a 7-day data,
comprising harvested energy every minute for 7 days,
this amounted to 10,080 minutes of samples. The third
was a 30-day data, comprising of the energy harvested
every minute for 30 days and amounted to 43,200
minutes or samples. The reason for the split was to also
investigate the effect of larger data size on prediction
error outcomes in DL models. The data were also split
in-code into training and test datasets at a ratio of 80:20
and were imported into the Python code using the Pandas
library.

Training libraries: Anaconda Integrated Development
Environment (IDE) was used for this work and elabo-
rated further in subsection F of this section.

Feature Scaling/Normalization and reshaping: The
scaler used in this work was the MinMaxScaler from the
sci-kit learn library. In this study, the training dataset was
organized to include 120 timesteps to provide a single
output. As a result, the training dataset would include
two variables: x-train and y-train, with y-train being
the output. The x-train and y-train were converted into
number arrays using the NumPy module. Finally, the x-
train data’s dimension was changed to be in the 3D plane
and also lie between 0 and 1 using NumPy.

Model Selection: The model was selected by calling
the required kernel in Jupyter running the Python code.
For this work, the Keras libraries were used for the DL
models.

Initializing the Model: The model was Sequential with
four layers each. Each layer, except the output layer, had
64 units, and returning sequences, and activation was set
as ReLU except for the output layer which had Linear
activation. Dense was added only on the output layer
with just one unit.

Compiling the Model: This was achieved by optimiza-
tion, a stepwise adjustment of the coefficients of the
model. To achieve this, the optimizer used was Adam,
while the loss metric was set as Mean Squared Error.
Fitting the Model to the Training Set: The batch size was
set to 32 to fit or train our model utilizing the training
dataset. The training dataset set was divided into three
separate groups: data from four months, one year, and
ten years. At epochs 500 and 1000, each of these groups
received unique training with an identical batch size of
32.

Testing The Model with Test Dataset: The model testing
was done using the test data set of 20% the entire
dataset for each category of 1-Day, 7-Day, and 30-Day
datasets.

Forecasting the Harvested RF Energy: The RF energy
harvested was forecasted using the trained model.
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TABLE 2. Description of the Datasets; 1-day, 7-day and 30-day Datasets.

Dataset Count Standard | Mean Minimum | Maximum | 25% 50% 5%
(no. of | deviation | (dBm) (dBm) (dBm) (dBm) (dBm) (dBm)
samples)
1-day 1440 2.72 -29.39 -38.83 -23.20 -31.36 -29.18 -27.20
7-day 10080 2.60 -28.14 -38.83 -21.06 -29.94 -28.03 -26.18
30-day 43200 2.50 -29.04 -38.83 -21.06 -30.81 -28.99 -27.20
TABLE 3. LSTM Model Parameters. TABLE 5. ConvLSTM Model Parameters.
S/N Parameter Value S/N Parameter Value
1 Timestep (Look-back) 120 1 Timestep (Look-back) 120
2 Number of batches 32 2 Number of batches 32
3 Number of epochs 500, 1000 3 Number of epochs 500, 1000
4 Number of units 50 4 Number of units 50
5 Number of layers 4 5 Number of layers 4
6 Number of filters 32
7 Number of Nodes 32
TABLE 4. CNN Model Parameters.
S/N Parameter Value
1 Timestep (Look-back) 120 3) EXPERIMENTAL SETUP OF THE CONVLSTM MODEL
2 Number of batches 32 .. .
3 Number of epochs 300, 1000 For the ConvLSTM model' training and testing, some
1 Number of units 50 parameters were equally defined. Several parameters were
B Number of layers 4 selected which are essential for training to occur. These
6 Number of filters 32 parameters are listed in Table 5;
7 Number of Nodes 32

10) Visualizing the results: The graphs of all the predictions
made using our RNN models were plotted using the
Matplotlib package for visualization. The correctness of
the data was visualized using independently collected
data from epochs 500 and 1000 for 1 day, 7 days, and
30 days. It was found that accuracy rises as the data
amount increases.

1) EXPERIMENTAL SETUP OF THE LSTM MODEL
For training and testing of the model, some parameters were
defined. Several parameters were selected which are essential
for training to occur. These parameters are listed in Table 3.
To use the data, which is time series data, in an
LSTM model, it must be reshaped from samples to
samples, features, and timesteps, to suit the LSTM kernel.
This was done using the reshape command in Python.

2) EXPERIMENTAL SETUP OF THE CNN MODEL
For the CNN model, several parameters were selected and
these parameters were as given in Table 4;

Also, to use the data which is time series data in a CNN
model, it must be reshaped from samples to samples, features,
and timesteps, to suit the CNN kernel. This was also done
using the reshape command in Python, thus;

#reshapeinputtobe[samples, timesteps, features|

trainX = np.reshape(trainX , (trainX .shape([0],

trainX .shape[1], 1))

testX = np.reshape(testX , (testX .shape[0],

testX .shape[l], 1))
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To use the data, which is time series data, in a ConvLSTM
model, it must be reshaped from samples to samples, features,
and timesteps, to suit the ConvLSTM kernel. This was done
using the reshape command in Python.

Start

Collate and prepare
data

Data preprocessing: Cleaning,
removing unwanted parts

Split data into training dataset, test
set

Select ML model and select
model parameters

‘ Train ML model ‘

Test and validate results using the test sets,
Evaluate and compare results

End

FIGURE 12. Energy Harvesting Prediction Flowchart for Machine Learning
Models.

D. EXPERIMENTAL SET-UP FOR THE ML MODELS

Figure 12 shows the Energy harvesting prediction flowchart
for machine learning models. The results obtained in the
energy prediction subsection shall be compared with the DL
algorithms outlined above using the performance metrics.

8709



IEEE Access

0. 0. Umeonwuka et al.: DL-Assisted Energy Prediction Modeling for Energy Harvesting

The steps in Figure 12 in more detail shall follow the process
below;

1) Data preprocessing: Collate, sort, and clean parameters
data removing anomalies. Remove non-useful data.

2) Import required libraries.

3) Feature Scaling/Normalization and reshaping: The
scaler used in this work was the MinMaxScaler from
sci-kit learn library. In this study, the training dataset was
organized to include 120 timesteps to provide a single
output. As a result, the training dataset would include
two variables: x-train and y-train, with y-train being the
output.

4) Split data into training dataset, test, and validation
datasets using a predefined ratio of 80:20, respectively.

5) Instantiate the ML models, calling the required libraries.

6) Select the ML algorithm and implement it to predict
harvested energy for a given frequency bin and time.

7) Training data using the ML algorithm.

8) Test and validation of data using the test dataset.
Evaluate performance by calculating error rates and
applying the performance metrics.

9) End

E. PERFORMANCE METRICS

The performance of all models was evaluated using Root
Mean Squared Error (RMSE) and Normalized Root Mean
Squared Error (nRMSE). The prediction error which is the
Root Mean Square Error (RMSE) for LR for the i-th time
slot is given as [72];

N iy iy \2
- (H ) —H,.)
RMSE \/Zzl( tc[s\t/ tcst) (9)

where H,}, represents the predicted target label of the y-th
frequency bin evaluated using the trained models and H,),
represents the actual target label of the harvested power. N is
the total number of time slots for the training data, that is total
number of samples. The Normalized Root Mean Square Error
(NRMSE) is also given as;

RSME

NRMSE = ———— (10)
Z{\]: 1 (H rle:r )

N

Data preparation, training, and testing are the three
critical processes that make up the training process. The
gathered energy is divided into training and test sets via data
preprocessing. We allocate 80% of the captured energy to
the training set and 20% to the test set. The training set was
used for training, while the test set was used to validate the
predictions.

F. SIMULATION ENVIRONMENT

The platform on which the Python coding and simulation
was performed was Jupyter Notebook, which is a web-based
Python notebook running on Anaconda Navigator 3, which is
an Integrated Development Environment (IDE) incorporating
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various libraries and development platforms for different
programming languages, such as Python, R, JavaScript, etc.
The required libraries are either already preinstalled on
Anaconda Navigator or downloaded and installed. It is worth
noting that the libraries used for DL models are provided
by Keras. It is an open-source software package and Python
interface for artificial neural networks. Its user-friendliness,
modularity, and extensibility are its main design goals as
it aims to facilitate quick experimentation with deep neural
networks.

IX. RESULTS AND ANALYSIS

The findings from the experiments in Section VIII are
discussed in this section. In earlier research published in
the literature, experiments were conducted to examine the
efficacy of ML models for forecasting captured RF energy.
However, in this study, trials were conducted to examine how
well DL approaches performed on RF energy gathered for
wirelessly linked cognitive radio devices. These tests were
conducted with safety measures in place to prevent excessive
mistake rates and subpar performance. The experiment’s
findings are shown here, along with evaluations of the
data based on the selected performance indicators and
conventional ML methods.

A. SIMULATION RESULTS FROM THE LSTM MODEL

As earlier stated in Section VIII, the data was divided into 1-
day, 7-day, and 30-day data, and experiments were conducted
on them separately. They were then individually subdivided
into training and test sets in-code, using train-test-split of
Sci kit learn. Below are the results obtained from the three
datasets.

1) LSTM 1-DAY DATA RESULTS

The 1-day data consists of samples taken over 24 hours,
every minute, which translates to 1440 mins, for 24 hours,
i.e. 1440 samples. The model was first trained at 500 epochs,
120 timesteps, and a batch size of 64. The RMSE score
obtained on the test data was 1.860dBm which gave an
nRMSE of 0.0633. At 1000 epochs, the RMSE score obtained
was 1.870, and nRMSE of 0.0636. Figures 13 and 14 show the
plot of the actual and predicted values of the model on the test
sets.

LSTM RF Energy Prediction (a) Boxplot of Predictions (b)

FIGURE 13. 1-day Dataset LSTM model plot of the actual and predicted
RF energy harvested values against time at; (a) 500 epochs, RMSE =
1.860dBm, nRMSE = 0.0633; (b) Boxplot distribution of predictions.
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LSTM RF Energy Prediction (a)

FIGURE 14. 1-day Dataset LSTM model plot of the actual and predicted
RF energy harvested values against time at; (a) 1000 epochs, RMSE =
1.870dBm, nRMSE = 0.0636; (b) Boxplot distribution of predictions.

2) LSTM 7-DAY DATA RESULTS

The 7-day data consists of samples taken over 7 days, every
minute, which is 10,080 samples in total. Training was
performed at 500 and 1000 epochs. The results at 500 epochs
showed that RMSE is 1.865dBm and nRMSE of 0.0663.
At 1000 epochs, the RMSE was 1.862dBm and nRMSE of
0.0661. The plots of the actual harvested energy and predicted
energy against time are shown in Figures 15 and 16 for
500 and 1000 epochs, respectively.

LSTM RF Energy Prediction (a) Boxplot of Predictions (b)
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FIGURE 15. 7-day Dataset LSTM model plot of the actual and predicted
RF energy harvested values against time at; (a) 500 epochs, RMSE =
1.865dBm, nRMSE = 0.0663; (b) Boxplot of predictions.

LSTM RF Energy Prediction (a) Boxplot of Predictions (b)
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FIGURE 17. 30-Day Dataset LSTM model plot of the actual and predicted
RF energy harvested values against time at; (a) 500 epochs, RMSE =
1.821dBm, nRMSE = 0.0627; (b) Boxplot distribution of predictions.
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FIGURE 18. 30-Day Dataset LSTM model plot of the actual and predicted
RF energy harvested values against time at; (a) 1000 epochs, RMSE =
1.832dBm, nRMSE = 0.0631; (b) Boxplot distribution of predictions.

TABLE 6. Summary of the results for the LSTM model at 500 epochs.

Dataset | RMSE (dBm) | nRMSE | MAE (dBm)
1-day 1.860 0.0633 1.515
7-day 1.865 0.0663 1.513
30-day 1.821 0.0627 1.471

TABLE 7. Summary of the results for the LSTM model at 1000 epochs.

Dataset | RMSE (dBm) | nRMSE | MAE (dBm)
1-day 1.870 0.0636 1.531
7-day 1.862 0.0661 1.504

30-day 1.832 0.0631 1.477

LSTM RF Energy Prediction (a)

Boxplot of Predictions (b)
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FIGURE 16. 7-day Dataset LSTM model plot of the actual and predicted
RF energy harvested values against time at; (a) 1000 epochs, RMSE =
1.862dBm, nRMSE = 0.0661; (b) Boxplot of predictions.

3) LSTM 30-DAY DATA RESULTS

The 30-day data comprises harvested RF energy over 30 days,
taken every minute, which translates to 43,200 data samples.
Training of the model was performed at 500 epochs and an
RMSE of 1.821dBm was recorded and nRMSE of 0.0627. At
1000 epochs, the RMSE was however 1.832dBm and nRMSE
of 0.0631. The plots of the actual samples and predicted ones
against time are shown in Figures 17 and 18.
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B. SIMULATION RESULTS FROM THE CNN MODEL

Using the same datasets as in the modeling of the LSTM,
CNN models were developed and trained by following the
steps outlined in SectionVIII.

1) CNN 1-DAY DATA RESULTS

The results of the training performed at 500 epochs were
1.899dBm and an nRMSE of 0.0646. At 1000 epochs, the
RMSE was 1.913dBm and nRMSE was 0.0651 The plot of
actual and predicted data were carried out and are shown in
Figures 19 and 20.

2) CNN 7-DAY DATA RESULTS

Also, the results of training the model with the 7-day data
at 500 epochs were 1.863dBm and an nRMSE of 0.0662. At
1000 epochs, the RMSE was 1.866dBm and an nRMSE of
0.0663. The data were plotted and are shown in Figure 21
and 22.
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CNN RF Energy Prediction (a) Boxplot of Predictions (b)
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FIGURE 19. 1-day Dataset CNN model plot of the actual and predicted RF
energy harvested values of the CNN model against time at;

(a) 500 epochs, RMSE = 1.899dBm, nRMSE = 0.0646; (b) Boxplot of
predictions.
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FIGURE 20. 1-day Dataset CNN model plot of the actual and predicted RF
energy harvested values of the CNN model against time at;

(a) 1000 epochs, RMSE = 1.913dBm, nRMSE = 0.0651; (b) Boxplot of
predictions.
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FIGURE 21. 7-day Dataset CNN model plot of the actual and predicted RF
energy harvested values of the CNN model against time at;

(a) 500 epochs, RMSE = 1.863dBm, nRMSE = 0.0662; (b) Boxplot
distribution of predictions.
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FIGURE 22. 7-day Dataset CNN model plot of the actual and predicted RF
energy harvested values of the CNN model against time at;

(a) 1000 epochs, RMSE = 1.866dBm, nRMSE = 0.0663; (b) Boxplot
distribution of predictions.

3) CNN 30-DAY DATA RESULTS
The simulations were carried out on the 30-day data and it
was recorded that at 500 epochs, the RMSE was 1.825dBm
and an nRMSE of 0.0629. At 1000 epochs the RMSE was
1.822dBm and an nRMSE of 0.0627. The actual data and
prediction results were plotted against time and are shown
in Figures 23 and 24.

Tables 8 and 9 show the summary of the results for the
CNN model.
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FIGURE 23. 30-day Dataset CNN model plot of the actual and predicted
RF energy harvested values of the CNN model against time at;

(a) 500 epochs, RMSE = 1.825dBm, nRMSE = 0.0629; (b) Boxplot of
predictions.
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FIGURE 24. 30-day Dataset CNN model plot of the actual and predicted
RF energy harvested values of the CNN model against time at;

(a) 1000 epochs, RMSE = 1.822dBm, nRMSE = 0.0627; (b) Boxplot of
predictions.

TABLE 8. Summary of CNN model results at 500 epochs.

Dataset | RMSE (dBm) | nRMSE | MAE (dBm)
1-day 1.899 0.0646 1.555
7-day 1.863 0.0662 1.502

30-day 1.825 0.0629 1.473

TABLE 9. Summary of the results for the CNN model at 1000 epochs.

Dataset | RMSE (dBm) | nRMSE | MAE (dBm)
1-day 1.913 0.0651 1.542
7-day 1.866 0.0663 1.507

30-day 1.822 0.0627 1.471

C. SIMULATION RESULTS FOR THE CONVLSTM MODEL
Having set up the simulation based on the steps and
parameters outlined in Section VIII, the experiments were
conducted on the three datasets, and results were obtained.
These results are presented below.

1) CONVLSTM 1-DAY DATA RESULTS

For the 1-day dataset, the results obtained at 500 epochs
were an RMSE of 1.860dBm and an nRMSE of 0.0633. At
1000 epochs the RMSE obtained was 1.739dBm and nRMSE
of 0.0592. The actual data and predicted data were plotted
against time and are shown in Figures 25 and 26 for 500 and
1000 epochs, respectively.

4.3.2 ConvLSTM 7-day Data Results The results for the
experiment conducted with the 7-day data at 500 epochs were
RMSE of 1.850dBm and nRMSE of 0.0657. At 1000 epochs,
the RMSE obtained was 1.848dBm and nRMSE of 0.0657.
The plots of the actual data and prediction results against
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FIGURE 25. 1-day Dataset model Plot of the actual and predicted RF
energy harvested values of the ConvLSTM model against time at;

(a) 500 epochs, RMSE = 1.860dBm, nRMSE = 0.0633; (b) Boxplot of
predictions.
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FIGURE 26. 1-day Dataset model Plot of the actual and predicted RF
energy harvested values of the ConvLSTM model against time at;

(a) 1000 epochs, RMSE = 1.739dBm, nRMSE = 0.0592; (b) Boxplot of
predictions.

time were carried out and are shown in Figures 27 and 28
for 500 and 1000 epochs, respectively.
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FIGURE 27. 7-day Dataset model plot of the actual and predicted RF
energy harvested values of the ConvLSTM model against time at;

(a) 500 epochs, RMSE = 1.850dBm, nRMSE = 0.0657; (b) Boxplot
distribution of predictions.
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FIGURE 28. 7-day Dataset model plot of the actual and predicted RF
energy harvested values of the ConvLSTM model against time at;

(a) 1000 epochs, RMSE = 1.848dBm, nRMSE = 0.0657; (b) Boxplot
distribution of predictions.

2) CONVLSTM 30-DAY DATA RESULTS

The experimental results for the 30-day data at 500 epochs
were an RMSE of 1.821dBm and an nRMSE of 0.0627.
At 1000 epochs the RMSE obtained was 1.827dBm and an

VOLUME 12, 2024

TABLE 10. Summary of ConvLSTM model results at 500 epochs.

Dataset | RMSE (dBm) | nRMSE | MAE (dBm)
1-day 1.860 0.0633 1.518
7-day 1.850 0.0657 1.503

30-day 1.821 0.0627 1.469

TABLE 11. Summary of ConvLSTM model results at 1000 epochs.

Dataset | RMSE (dBm) | nRMSE | MAE (dBm)
1-day 1.739 0.0592 1.469
7-day 1.848 0.0657 1.499

30-day 1.827 0.0629 1.472

nRMSE of 0.0629. The plots of the actual data and predicted
data were carried out and are shown in Figures 29 and 30 for
500 and 1000 epochs, respectively.
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FIGURE 29. 30-day Dataset model plot of the actual and predicted RF
energy harvested values of the ConvLSTM model against time at;

(a) 500 epochs, RMSE = 1.821dBm, nRMSE = 0.0627; (b) Boxplot
distribution of predictions.
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FIGURE 30. 30-day Dataset model plot of the actual and predicted RF
energy harvested values of the ConvLSTM model against time at;

(a) 1000 epochs, RMSE = 1.827dBm, nRMSE = 0.0629; (b) Boxplot
distribution of predictions.

Tables 10 and 11 show the summary of the results for the
ConvLSTM model for 500 and 1000 epochs, respectively.

D. SIMULATION RESULTS FOR THE ANN MODEL

In addition to the DL models simulated, three ML models
were also developed based on the three datasets as discussed
in Section VIII. These models are ANN, SVR, and RF
The model parameters were chosen and the experiments
conducted. Below, the results for the ANN model simulations
are presented for the datasets.

1) ANN 1-DAY DATA RESULTS

The 1-day data which comprises 1440 data samples was used
to train the ANN model and the results obtained for the RMSE
were 2.206dBm and an nRMSE of 0.0751. The plots of the

8713



IEEE Access

0. 0. Umeonwuka et al.: DL-Assisted Energy Prediction Modeling for Energy Harvesting

actual data and the predicted data were carried out and are
shown in Figure 31.

ANN RF Energy Prediction Model Boxplot of Predictions

; -29
.

FIGURE 31. 1-day Dataset model Plot of the actual and predicted RF
energy harvested values of the ANN model against time at; (a) RMSE =
2.206dBm, nRMSE = 0.0751; (b) Boxplot distribution of predictions.
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2) ANN 7-DAY DATA RESULTS

The results obtained when the ANN model was trained with
the 7-day dataset, at 1000 epochs was an RMSE of 1.957dBm
and an nRMSE of 0.0695. The plots of the actual data and
predicted data are shown in Figure 32.
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FIGURE 32. 7-day Dataset model plot of the actual and predicted RF
energy harvested values of the ANN model against time at; (a) RMSE =
1.957dBm, nRMSE = 0.0695; (b) Boxplot distribution of predictions.

3) ANN 30-DAY DATA RESULTS

The results of training the ANN model using the 30-day
dataset were an RMSE of 1.835dBm and an nRMSE of
0.0632 at 1000 epochs. The actual and predicted data were
plotted and are shown in Figure 33.
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FIGURE 33. 30-day Dataset model plot of the actual and predicted RF
energy harvested values of the ANN model against time at; (a) RMSE =
1.835dBm, nRMSE = 0.0632; (b) Boxplot distribution of predictions.

Table 12 shows the summary of the results for the ANN
model.

E. SIMULATION RESULTS FOR THE SVR MODEL
The three datasets of 1-day, 7-day, and 30-day, which
comprised 1440, 10,080, and 43,200 samples, respectively,
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TABLE 12. Summary of ANN model results.

Dataset | RMSE (dBm) | nRMSE | MAE (dBm)
1-day 2.206 0.0751 1.828
7-day 1.957 0.0695 1.567

30-day 1.835 0.0632 1.483

were used to train the SVR model as outlined in Section VIII
of this work. The results obtained are presented below.

1) SVR 1-DAY DATA RESULTS

The results obtained using the 1-day dataset for the SVR
model were an RMSE of 2.513dBm and an nRMSE of
0.0855. The actual and predicted data were plotted and are
shown in Figure 34.

SVR RF Energy Prediction (a) Boxplot of Predictions (b)

Energy, dam

Energy, dBm
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FIGURE 34. 1-day Dataset plot of the actual and predicted RF energy
harvested values of the SVR model against time; (a) RMSE = 2.513dBm,
nRMSE = 0.0855; (b) boxplot of predictions.

2) SVR 7-DAY DATA RESULTS

The results obtained after training with the 7-day data were
an RMSE of 2.197dBm and an nRMSE of 0.0781. The actual
and predicted data were plotted and the plot is shown in
Figure 35.

SVR RF Energy Prediction (a) Boxplot of Predictions (b)

— Actual RF Eneray
— Predicted RF Eneray

RF Energy, dBm

G 250 500 730 1000 1250 1500 1750 2000
Time. min

FIGURE 35. 7-day Dataset plot of the actual and predicted RF energy
harvested values of the SVR model against time; (a) RMSE = 2.197dBm,
nRMSE = 0.0781; (b) Boxplot of predictions.

3) SVR 30-DAY DATA RESULTS
Using the 30-day dataset, the SVR model was trained and
an RMSE of 2.091dBm was obtained while an nRMSE of
0.0720 was equally obtained. The actual and predicted results
were plotted and are shown in Figure 36.

Table 13 shows the summary of the results for the SVR
model.

F. SIMULATION RESULTS OF THE XGBOOST MODEL
Similar to the SVR model training, experiments were
conducted on the XGBoost model using the three datasets of
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FIGURE 36. 30-day Dataset plot of the actual and predicted RF energy
harvested values of the SVR model against time; (a) RMSE = 2.091dBm,
nRMSE = 0.0720; (b) Boxplot of predictions.

TABLE 13. Summary of SVR model results.

TABLE 14. Summary of XGBoost model results.

Dataset | RMSE (dBm) | nRMSE | MAE (dBm)
1-day 2.513 0.0855 1.959
7-day 2.197 0.0781 1.756

30-day 2.091 0.0720 1.666

1-day, 7-day, and 30-day, and results were obtained. These
results are presented below.

1) XGBOOST 1-DAY DATA RESULTS

The model training of the XGBoost model with the 1-day
dataset yielded results and it was observed that the RMSE
obtained was 2.380dBm and an nRMSE of 0.0810. The actual
and predicted data were plotted and shown in Figure 37.

XGBoost RF Energy Prediction (a) Boxplot of Predictions (b)

o 50 100 150 200 250 300 1

FIGURE 37. 1-day Dataset Plot of the actual and predicted RF energy
harvested values of the XGBoost model against time; (a) RMSE =
2.380dBm, nRMSE = 0.0810. (b): Boxplot distribution of predicted values.

2) XGBOOST 7-DAY DATA RESULTS

The performance of the XGBoost model was evaluated using
the 7-day dataset and an RMSE of 2.00dBm and an nRMSE
of 0.0711 was equally obtained. The plot of the actual and
predicted data was plotted against timestep and is shown in
Figure 38.

3) XGBOOST 30-DAY DATA RESULTS
The result of simulations for the 30-day data is an RMSE of
1.914dBm and nRMSE of 0.0659. The plot of the actual and
predicted data was plotted against timestep and is shown in
Figure 39.

Table 14 shows the summary of the results for the XGBoost
model.

X. ANALYSIS OF THE RESULTS
In this work, the performance of the models was evaluated
using Root Mean Squared Error (RMSE), Normalized Root
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Dataset | RMSE (dBm) | nRMSE | MAE (dBm)
1-day 2.380 0.0810 1.870
7-day 2.00 0.0711 1.602

30-day 1.914 0.0659 1.538

Mean Squared Error (nRMSE), and Mean Absolute Error
(MAE). One of the methods most frequently used to assess
the accuracy of forecasts is RMSE, also known as root
mean square deviation. It illustrates the Euclidean distance
between measured true values and forecasts. When evaluating
a model’s performance in machine learning, whether during
training, cross-validation, or monitoring after deployment,
it is very helpful to have a single number. One of the most
popular metrics for this is root mean square error. It is an
appropriate scoring method that is simple to comprehend
and consistent with some of the most widely used statistical
presumptions. Absolute error in the context of machine
learning refers to the size of the discrepancy between the
forecast of an observation and its actual value. The size
of errors for the entire group is determined by MAE by
averaging the absolute errors for a set of forecasts and
observations. MAE is another name for the L1 loss function.
nRMSE is obtained by dividing the sum of the RMSE by the
difference between the maximum and minimum data points,
hence is commonly presented as a percentage.

In this work, the DL models investigated performed better
than the traditional ML models, across all datasets. More
specifically, of all the models investigated, the ConvLSTM
performed best with an average nRMSE of 0.0632 and MAE
of 1.479 across all datasets, while the LSTM model followed
with an nRMSE of 0.0642 and MAE of 1.504, and then the

XGBoost RF Energy Prediction (a) Boxplot of Predictions (b}

— Actual RF Energy
2 — predicted RF Energy

RF Energy, dBm

FIGURE 38. 7-day Dataset plot of the actual and predicted RF energy

harvested values of the XGBoost model against time; (a) RMSE =
2.00dBm, nRMSE = 0.0711; (b): Boxplot distribution of predicted values.
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]

1] 2000 4000 5000 8000 1
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t RF Energy Prediction (a)

FIGURE 39. 30-day Dataset plot of the actual and predicted RF energy
harvested values of the XGBoost model against time, 30-day data;

(a) RMSE = 1.914dBm, nRMSE = 0.0659; (b): Boxplot distribution of
predicted values.
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CNN model with nRMSE of 0.0647 and MAE of 1.507. The
least performing model was the SVR with an nRMSE of
0.0785 and MAE of 1.794, this is followed by the XGBoost
model with an nRMSE of 0.0723 and MAE of 1.670. The
ANN model performed best among the ML models with an
nRMSE of 0.0693 and an MAE of 1.626.

Comparing our results to results from previous works, it is
worth noting that, to the best of our knowledge, there are
few works that deal with RF energy harvesting prediction
for CRNs using ML or DL. However, in comparison to the
work of researchers in [28] that investigated communications
systems in general, show that our models performed better
in terms of overall average errors. Specifically, our results
show that the ConvLSTM model which achieved an average
error of 0.0632 performed better than the best-performing
model in [28] which was the LR with an overall average
error of 0.139. Furthermore, we showed that our LSTM
model obtained an error of 0.0642 compared to the results of
the researchers in [28] with an SVM model error of 0.141.
Our least-performing model, which was the CNN model
performed better than their best-performing model, the LR
model, on the overall average, with errors of 0.0647 and
0.139, respectively.

These results show that DL. models can perform remark-
ably better with large datasets requiring least feature
engineering and preprocessing, especially when training is
performed in the cloud to mitigate the negative effects of high
computational complexity.

Figures 40 and 41 show the plots of both the nRMSE and

MAE for all models.
COMPARISON OF THE NRMSE OF ALL MODELS
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FIGURE 40. Comparison chart of nRMSE values for all models
investigated in this work.
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These results also show that the DL models performed
better than the ML models, with the best-performing DL
model, that is, the ConvLSTM having an nRMSE 8.80%
superior performance over the best-performing ML model,
that is the ANN model nRMSE. The ConvLSTM also had
an MAE of 9.04% better than the ANN. Furthermore,
the ConvLSTM model had an nRMSE 19.49% better than
the SVR, which was the least performing model, and an
MAE 17.56% better. Figures 42 and 43 show the plots of
average nRMSE and MAE for all models, across all datasets,
respectively.
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FIGURE 41. Comparison chart of MAE values for all models investigated
in this work.
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FIGURE 42. Plot of average nRMSE for all Models across all datasets.
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FIGURE 43. Plot of average MAE for all Models across all datasets.

To visualize the performance of the deep learning models
with increasing epochs, the loss (which was set as the
Mean Squared Error (MSE) in the models) per epoch, up to
1000 epochs was plotted for each dataset set. Figures 44, 45
and 46 show this performance for the 1-day, 7-day and 30-day
datasets, respectively.
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FIGURE 44. Normalized loss per epoch plotted against each epoch for the
1-day dataset, for all three deep learning models.
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FIGURE 45. Normalized loss per epoch plotted against each epoch for the
7-day dataset, for all three deep learning models.
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FIGURE 46. Normalized loss per epoch plotted against each epoch for the
30-day dataset, for all three deep learning models.

Furthermore, the MAE per epoch for each dataset was
plotted against the total number of epochs up to 1000 and
the results are shown in Figures 47, 48 and 49, for the 1-day,
7-day and 30-day datasets, respectively.
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FIGURE 47. Normalized MAE per epoch plotted against each epoch for
the 1-day dataset, for all three deep learning models.
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FIGURE 48. Normalized MAE per epoch plotted against each epoch for
the 7-day dataset, for all three deep learning models.

It is seen from the plots that beyond about 500 epochs,
both the loss and MAE remain almost the same, with only
a marginal decrease of up to 1000 epochs. This shows that all
three models did not improve much beyond about 500 epochs,
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MAE plot for 30-day Dataset
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FIGURE 49. Normalized MAE per epoch plotted against each epoch for
the 30-day dataset, for all three deep learning models.

and it can be safely concluded that, for this dataset and
parameters, 500 epochs are a good choice for training.
Beyond that, more epochs only added more complexity and
training time, with no significant redeeming benefits on an
improved model.

XI. CONCLUSION AND RECOMMENDATIONS

The need for EH-CRNs to be energy-aware and to better
allocate their energy resources based on the residual power of
its power source, mostly a battery, was discussed. Predicting
its available energy from energy harvesting has an indirect
impact on the energy savings of the device. In this regard,
it was shown through the literature review how ML can help
EH-CRNs predict their potential energy resources and as
such, better manage and allocate its internal energy-intensive
processes, such as spectrum sensing, data transmission and
control scheduling, TPC, etc. Already existing work in ML-
assisted EH-CRN's was reviewed and the merits and demerits
of such schemes were reviewed.

Given their higher efficiencies in prediction tasks,
DL schemes were reviewed and existing works showed
that they perform better at predicting time series data.
However, at the time of writing, no known research covered
DL modeling of EH-CRNs, which is a motivation for this
work. After simulations were carried out, it was shown that,
in general, the DL algorithms reviewed performed better
than the ML models in terms of reported error metrics. The
ConvLSTM model performed better than all the other models
investigated in this work with an nRMSE of 0.0632 and MAE
of 1.479. It is followed closely by the LSTM model with an
nRMSE of 0.0642 and MAE of 1.504. The least performing
DL model among the three was CNN with an nRMSE of
0.0647 and MAE of 1.507. For the ML models, the ANN
model performed better than the other two with an nRMSE of
0.0693 and MAE of 1.626, while the XGBoost followed with
an nRMSE of 0.0723 and MAE of 1.670. The SVR was the
least of all the models with an nRMSE of 0.0785 and MAE
of 1.794.

The results show that RF EH-CRNSs can benefit more from
the superior performance of DL algorithms. The lower the
error, the higher the efficiency of the model. This means that
devices can better forecast its energy resources and therefore
better manage its internal energy processes. These have an
indirect impact on the energy savings of the device. It is
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worth noting that, even though the computational complexity
of DL models is a concern, training cannot always be done
on the CR device, rather, it can be done in the cloud, for
instance, while inference on the already trained model (which
is computationally less expensive by far) can be carried out
on the device. As seen for all the models investigated, the
more the data, the less prediction error. To take advantage
of this, SU CR-IoT devices, which are traditionally data-
driven, can very easily collate CSI for each channel, for each
spectrum access, and send it to a fusion center fitted with an
adaptive model that takes the data and re-trains itself, thereby
giving better RF-EH predictions, which the device can use
for its internal optimum energy resource management and
allocation. These results also make a case for hybrid models
for RF EH, as the hybrid ConvLSTM model performed better
than the other two stand-alone, traditional DL models.

A. RECOMMENDATIONS FOR FUTURE RESEARCH

In carrying out this research, some challenges were encoun-
tered, some were surmounted or surmountable, and others
were not. Though the objectives of this work were achieved,
some of the challenges encountered can be circumvented
in the future, especially as it pertains to DL for EH-CRNSs.
Therefore, the following recommendations are made;

1) Given the computational complexity and length of time
it takes to train DL models, especially with large
datasets, training can be done in the cloud on one
of the commercial cloud providers available today
such as Google Cloud Platform, Microsoft’s Azure,
Amazon’s AWS, Oracle Cloud Infrastructure, etc. These
platforms theoretically provide limitless computing
power, as opposed to PCs. Training in the cloud will
benefit mobile devices as training can be done in the
cloud while inference is done at the Edge or Device.
By so doing, the computational complexity which is a
major drawback of using DL methods in comparison
with other methods, would be mitigated.

2) Modeling can be done with the other frequency bands,
such as the WiFi band to investigate the performance of
the models in such bands.

3) An ensemble DL model such as CNN-LSTM can be
used in modeling to further investigate the performance
in comparison to the other models and traditional ML
models.

4) Real-time RF energy predictions can be researched to
investigate the practical performance of the various
models.

5) More localized data, such as RF energy harvested in
Johannesburg can be used in future work to learn the
RF energy footprint of wireless devices in South Africa
and to also use that to model RF energy harvesting
possibilities for low-power [oT devices in the country.
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