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ABSTRACT The deployment of a group of robots equipped with sensors for monitoring, also known
as a robotic sensor network, is a promising technological solution to solve time-critical societal and
environmental issues. This paper considers the problem of deploying a robotic sensor network to persistently
and effectively monitor multiple locations of interest in a large field represented by grids. To this end,
we propose a novel two-layer control framework where the first layer (i.e., task allocation strategy)
encapsulates the targeted grids into a set of tasks (small regions of interest) followed by optimally allocating
the robots to each task based on their initial position (location of their base stations) and sensing capabilities.
The second layer (i.e., persistent monitoring algorithm) generates each robot’s motion control input to ensure
persistent monitoring over the designated region of interest. The proposed framework is demonstrated and
evaluated via numerical simulations. It is shown that the proposed control framework improves real-time
monitoring in terms of both the coverage performance and travel distance of the robots.

INDEX TERMS Automation, coverage control, mobile sensors, persistent monitoring, task allocation.

I. INTRODUCTION
The deployment of a group of robots equipped with sensors
for monitoring, also known as a robotic sensor network,
is a promising technological solution to solve time-critical
societal and environmental issues, such as infrastructure
survey, environmental monitoring, and search-and-rescue
mission [1], [2], [3], [4], [5], [6]. Notably, a robotic
sensor network promises a multitude of benefits, such as
the capability to cover multiple places at the same time,
robustness to individual robot failure, and flexibility in
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completing a complex task. To take the most of these benefits
in ensuring a successful monitoring mission, a robotic sensor
network requires a coordinated control scheme to effectively
cover the targeted areas of interest.

The focus of this paper is on the deployment of a
robotic sensor network to persistently and effectively monitor
multiple locations spread across a large field, as depicted in
Fig. 1a. To this end, coverage control has been demonstrated
as one of the most promising approaches for coordinating a
robotic sensor network [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15]. Briefly speaking, coverage control is a distributed
control strategy for deploying a robotic sensor network by
maximizing a cost function that represents the information
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FIGURE 1. The scenario of a field divided into a collection of grids
monitored by a robotic sensor network.

gained over a given domain. Here, the importance of each
location of interest is emphasized by a spectrum of values
denoted as the density function. Coverage control has been
studied for various sensors’ footprints [10], [11] and has
also been demonstrated on ground robots [10], flying robots
[12], [13], and a combination of both [14], [15]. Originally,
the coverage control algorithm was designed to ensure a
stationary configuration of the optimal robots’ position.
However, when the region to bemonitored ismuch larger than
the total sensing capability (footprint) of the robotic sensor
network, having a stationary sensor configuration may result
in some important areas being left uncovered.

An extension of the coverage control to ensure the whole
region to be covered at least one time has often been
categorized as dynamic coverage control [12], [16], [17],
[18], [19], [20]. The idea is to introduce an exogenous input
for the robotic sensor network given by a time-varying density
function. Specifically, the density function on a sub-region
is updated, marking it less important, once a robot senses
it. Built on top of this idea, the persistent coverage control
scheme [15], [20], [21] introduces the concept of information
decay that rebounds the density function after the robot leaves
the sub-region for a certain time. This addition generates a
persistent patrolling motion over a given region of interest.
The literature has often demonstrated persistent coverage
control via full-domain exploration, where the whole domain
initially has equal importance. Note that specifications for
monitoring vary depending on the application scenarios.
In some practical cases, the full-domain patrolling motion
may not be required. Instead, patrolling only over several
locations within the domain can be sufficient. To this end,
the discussion on persistent coverage control which focuses
on only a spread of locations in the large region of interest
remains lacking from the literature. This particular case is
especially important as a poorly designed controller may

render the robots stuck in local optimal as shown in [22]
which also makes the robots waste their energy to monitor
unimportant areas.

A potential strategy to remove the unimportant areas is by
restructuring the domain into a number of smaller regions,
where each region represents a cluster of important areas
to be persistently covered. To this end, one needs to solve
the following problems: i) how to effectively divide the
domain and ii) how to optimally allocate the robotic sensor
network to the cluster of areas, which is a combinatorial
optimization problem. Swarm intelligence is a class of
meta-heuristics approach which is able to find good solutions
(but not necessarily optimal) of combinatorial optimization
problems within a reasonable amount of time. Particularly,
the Ant-Colony Optimization (ACO) algorithm [23] is a
well-known swarm intelligent algorithm for solving the
Traveling Salesman Problem, that has also been adopted to
the TaskAllocation problem in [24], [25], [26], [27], and [28].
Regardless, a thorough and extensive study is required to
explore the potential use of ACO in persistent monitoring
using a robotic sensor network.

In this paper, we propose a novel two-layer control
framework to persistently monitor the targeted locations in
a large field, here formulated as a set of targeted grids,
to improve the coverage performance and reduce the robots’
travel distance. Specifically, the first layer (task allocation
strategy) encapsulates the targeted grids as several smaller
regions via K-means clustering [29], [30] followed by
assigning the robots to monitor the regions accordingly via a
modified ant colony optimization (M-ACO) [31]. Then, the
second layer (persistent monitoring algorithm) models the
importance of the area in each smaller region as a density
function and further generates the control input for each robot
based on a persistent coverage control algorithm [20], [21].
In particular, the main contributions of this paper are listed as
follows:

• We propose a modified ant colony optimization
(M-ACO) to find the most suitable agents (robots) to
cover the tasks (regions), where the earlier version
is presented in [31]. The proposed M-ACO in [31]
prioritizes the compatibility of the task area with the
total capability of the agent(s) allocated to that particular
task, resulting in a limitation where task(s) with a small
area may not be covered by any agent. In this work,
modifications to theM-ACO are introduced to guarantee
that each task is covered by at least one agent.

• A novel design of the density function is introduced to
model the area of importance within the region. The
design is also a novel feature of our coverage algorithm,
asmost of the literature on coverage control assumes that
the density function is given. Furthermore, compared
to our previous framework in [31], we improve the
encapsulation of the targeted grids as a convex hull
(formerly a box rectangle) which can further improve
the coverage performance. Collision avoidance between
the robots is also explicitly considered by imposing
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additional constraints using the control barrier function
approach [6], [32], [33], [34].

• We present an extensive simulation for the proposed
two-layer control framework. It highlights the benefits
of dividing the targeted grids into several smaller regions
that help improve coverage performance and reduce the
overall travel distance.

The rest of this article is organized as follows. In Section II,
we provide the problem settings considered in this paper.
We present our two-layer control framework in Section III,
followed by a more detailed formulation of the first layer
(Task Allocation Strategy) in Section IV and the second
layer (Persistent Monitoring Algorithm) in Section V.
Section VI presents the numerical simulation and discussion
of the proposed framework. Finally, Section VII presents a
concluding remark.

II. PROBLEM STATEMENT
In this paper, we consider a scenario of monitoring a specified
field, formally denoted as a convex polytope-shaped region
(compact set) F ⊂ R2. The field F is further discretized into
square grids with equal width Ds where a number of grids
of interest need to be monitored (also referred to as targeted
grids), as depicted in Fig. 1. Let the setM denote a collection
of indices of m number of targeted grids in the field F whose
center location is represented by hi ∈ F , i ∈ M. The targeted
grids over the field F can then be defined as

H =

⋃
i∈M

{q ∈ F | ∥q− hi∥∞ ≤ Ds/2}.

Tomonitor the targeted gridsH, we consider a solution with n
number of autonomous robots equippedwith sensors working
in cooperation, often referred to as robotic sensor networks.

Let the set of identifiers for the robots is denoted by I =

{1, . . . , n}, and let the term pi(t) = [xi(t) yi(t)]T ∈ F
describes the position of the robot i ∈ I at the time t . Here,
we assume that each robot starts from its own base station pib ,
i.e., pi(0) = pib . Furthermore, it is assumed that the position
of each robot is updated according to the kinematic model1:

ṗi = ui. (1)

where ui ⊆ R2 denotes the velocity input to be designed.
Each robot i’s sensor is assumed to be able to sense a subset

of the area in the field within a fixed sensing radius Ri > 0,
with the sensing region further defined as

Bi(pi) = {q ∈ F | ∥q− pi∥ ≤ Ri}.

Within this paper, let us define the size of a given region R
as A(R). We can then quantify the sensing capability of each
robot as the size of its sensing region, i.e., A(Bi) := πR2i .

To this end, the objective of this paper is to design a
cooperative control framework for the robotic sensor network

1Despite its simplicity, the single-integrator model (1) can still be
effectively used to control various mobile robots. For example, by having
designed a good trajectory tracking controller, the kinematic model (1) can
be used to generate velocity references for mobile robots such as quadrotors.

to maximize coverage over the targeted grids, i.e., H, at all
times. Note that in most cases, the energy consumption of the
robot is proportional to its travel distance [33]. Thus, to ensure
the long duration of the monitoring mission, the proposed
solution needs to specifically account the distribution of the
targeted grids to reduce the required traveling distance from
the base station as well as during the monitoring mission.

An example of the considered scenario is the monitoring
of a field, where the grids correspond to areas that each
static sensor needs to cover [31]. However, coverage holes
(unmonitored areas) may appear, e.g., due to malfunction
or lack of sensors [35], [36]. As a complementary solution,
a group of quadrotors equipped with sensors (the robotic
sensor network) can then be deployed for monitoring the
coverage holes (the targeted grids), resulting in a hybrid
monitoring system that comprises of static and mobile
sensors [37], [38], [39].

III. PROPOSED TWO-LAYER CONTROL FRAMEWORK
Given the presented problem statement and objectives,
we formulate our framework for solving the following
problems:

1) to encapsulate the targeted grids H to monitor as a set
of tasks and provide an optimal allocation based on the
robots’ initial position and sensing capabilities, and

2) to design a control input ui in (1) for each robot i ∈ I to
ensure persistent monitoring over the designated tasks’
region.

The separation of these two problems allows us to approach
the solution in two separate layers: the first layer (i.e., a higher
layer) which divides the original targeted grids into smaller
tasks followed by allocating each robot to one of the tasks
while accounting for the expected distance each robot needs
to take, and the second layer (i.e., a lower layer) which
directly governs the motion of the robot to ensure persistent
monitoring. Throughout this paper, we refer to these higher
and lower layers respectively as task allocation strategy and
persistent monitoring algorithm. The Fig. 2 illustrates our
proposed two-layer control framework.

The task allocation strategy comprises dividing the tar-
geted grid H into ℓ smaller regions via K-means clustering
and then assigning the n number of robots accordingly via
a modified ant colony optimization (M-ACO). The process
of dividing the targeted grids H into ℓ smaller regions
reduces the total area to be covered and, at the same time,
localizes the area that each robot needs to monitor. Here,
the K-means clustering algorithm is chosen since it is a
straightforward clustering method that can decide whether
an object belongs to one cluster or not [29], [30]. Since
K-means clustering aims to minimize the pairwise squared
deviations of points (grids) in the same regions (clusters),
this will help to reduce the travel distance of the drone for
monitoring all the grids within its region. Moreover, the
requirement to define an explicit number of the generated
clusters allows a thorough study of how these region divisions
impact the coverage performance, as will be presented later
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FIGURE 2. An overview of the proposed two-layer control framework. The targeted grids are divided into 4 regions using K-means clustering. The
Modified Ant-Colony Optimization algorithm assigns 6 robots to monitor the 4 regions. The importance of area in each region is modeled as a
density function, where the coverage hole has a high value (yellow). Finally, the Voronoi-based coverage control provides the control input for each
robot to maximize the coverage of the region.

in Section VI. We further impose that ℓ ≤ n and each
region need to be monitored by at least 1 robot and all
n robots need to be allocated. The Modified Ant Colony
Optimization (M-ACO) is then used to allocate the robots
to regions by considering the size of each region, the
sensing capability of the robot, and the distance between
the robot’s initial position and the region. Our proposed
M-ACOmethod is a modified version of the ACO algorithms
that aims at finding the most suitable agents (robots) to
cover the tasks (regions). Here, some modifications are
introduced to fit the intended scenario and the aimed
objective.

Finally, the persistent monitoring algorithm comprises
modeling the importance of area on each smaller region as
a density function and deploying the robots based on a time-
varying Voronoi-based coverage controller [20], [21]. Here,
we introduce a novel approach to construct a density function
for fields in grids. Then, the control input ui for each robot
is computed via a gradient ascent algorithm to maximize
the coverage within each robot’s sensing area. The density
value across each region varies over time, i.e., the value at
a certain position decreases when a robot passes through it
and increases again once it is outside any robot’s sensing
area. These time-varying properties of the density function
along with the gradient ascent algorithm ensure a continuous
motion to travel to all the targeted grids. Additionally,
obstacle avoidance via control barrier function [6], [34] is
implemented to ensure no collision between robots. The
detailed descriptions of our approaches are described in more
detail in the subsequent sections.

IV. TASK ALLOCATION STRATEGY
In this section, we detail our proposed approach for a
higher layer, which introduces ℓ smaller regions and then
accordingly allocates all n numbers of robots into the regions.
Each smaller region is identified as Qj, j ∈ C := {1, · · · , ℓ}

with its centroid cj ∈ R2, j ∈ C. The output of the modified
ant colony optimization (M-ACO) is the sets of robots I j ⊆ I
to monitor each region j ∈ C.

A. K-MEANS CLUSTERING
The K-Means clustering requires the explicit number of
clusters to be generated and the data to be clustered, i.e., ℓ

and hi, ∀i ∈ M. In practice, ℓ is chosen by considering the
number of available robots, the distribution of the targeted
grids, and the size of the field F . The summarized procedure
of K-Means clustering is given as follows:

1) First, initialize ℓ number of random points inside F as
the initial centroids of the cluster.

2) Each point located at hi, ∀i ∈ M is then assigned to the
closest centroid, by calculating the Euclidean distances
between the point and the centroids.

3) The centroid positions are then updated by taking the
average of all points that were assigned to them.

4) Steps 2 and 3 are repeated until the centroid positions
converge, i.e., do not change anymore.

We direct the interested readers to [29] for more details on the
algorithm.

The output fromK-Means clustering is ℓ groups of targeted
grids. For each group j ∈ C, the cluster of the targeted grids
is denoted as Mj

⊆ M. Then, the region to be monitored
in each group j is constructed as a convex hull (conv) that
contains each grid i ∈ Mj, i.e.,

Qj
= conv

 ⋃
i∈Mj

{q ∈ F | ||q− hi||∞ ≤ Ds/2}

 ,

with the region’s centroid as cj. To this end, the combination
of the regions overlaps the targeted grids H, i.e., ∪j∈CQj

⊇

H. The resulting ℓ regions from this procedure are illustrated
in Fig. 2, where each region for ℓ = 4 is denoted by the
colored polygons with its centroid is denoted by the colored
circle.

B. MODIFIED ANT COLONY OPTIMIZATION
In this subsection, we describe our proposed modified ant
colony optimization (M-ACO) method. The goal is to obtain
an equal distribution of n robots in covering the ℓ regions,
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where ℓ ≤ n. Referring to the terminology of ‘‘agents’’
and ‘‘tasks’’ as commonly used in ACO [23], in this work,
the agents are the robots and the tasks are the regions with
targeted grids. To this end, both the robots (agents) and the
regions (tasks) are represented as nodes, while the ants are the
computational units to find the optimum coalition of robots.
Given an N number of ants and M number of iterations, the
general procedure of the M-ACO method is summarized as
follows:

1) An ant k ∈ {1, · · · ,N } randomly chooses the pairing of
region and robot based on a given probability function
pkij(t). Here, p

k
ij(t) defines the probability of ant k in

pairing robot i with region j based on the pheromone
concentration and heuristic function at the time t .

2) Ant k repeats step 1 until all regions are allocated with
at least 1 robot and one of the following conditions
is satisfied: each robot has been allocated to a region,
or all regions has been covered with enough robots.

3) Repeat steps 1-2 for all N ants.
4) Updates the pheromones concentration based on the

chosen pairings from all N ants.
5) Repeat steps 1-4 forM number of iterations.
In this work, we define the probability for ant k in pairing

robot i with region j as

pkij(t) =


[τij(t)]α[ηkij(t)]

β∑
a,b⊂allowedk [τab(t)]

α[ηkab(t)]
β
; i, j ∈ allowedk

0; otherwise

(2)

where τij denotes the pheromone concentration of pair ij, ηkij
denotes the heuristic function of pair ij for ant k , and α and
β denote the importance of the pheromone and the heuristic
value respectively. Here, allowedk is the set of robots and
regions that can be chosen by ant k . In our previous work [31],
allowedk is defined as the robots that have not been allocated
to any region and the regions that still have an ‘‘uncovered’’
area. Here, we modify the definition of allowed regions in
allowedk into two conditions: 1) If there are still regions that
have not been paired with any robot, then the regions that can
be selected are the regions that have not been assigned with
any robot; 2) If all regions have been allocated with at least
one robot, then the regions that can be selected are the regions
that have not been fully covered.

The heuristic function ηkij is defined as

ηkij =


A(Qj) −

∑
l∈I j A(Bl)

||pib − cj||
; A(Qj) >

∑
l∈I j

A(Bl)

0; otherwise
(3)

where I j ⊂ I is the set of robots already selected for the
region j ∈ C. The heuristic function in (3) considers the
following terms:

1) size of each region, A(Qj), j ∈ C;
2) sensing capability of each robot, A(Bi), i ∈ I;

3) distance between the robot’s initial position (the base
station) and the centroid of the region, ∥pib − cj∥, i ∈

I, j ∈ C;
such that the ants tend to pair the region that has not been fully
covered yet and then pair it with the closest robot. Note that
due to the change of definition in allowedk which regulates
how the ants pair a region with a robot, the heuristic function
introduced in [31] may give a negative value when the size of
the region is smaller than the sensing capability of the robot
assigned to it. This will result in negative probability (see (2)).
Thus, an additional term is added to avoid a negative value in
the heuristic function (see (3)).
One iteration of pairing the robots and regions for a single

ant (Step 1–2) is defined as one tour. At the end of one tour,
each ant records the changes it imposes to the pheromone in
each pair ij (pairing of robot i to region j) as

1τ kij =

{
Pϵk ; if ant k select agent i for task j
0; otherwise

(4)

where P is the pheromone strength, and ϵk is the efficiency
factor of ant k in one tour, defined as

ϵk =

∑
j∈C

(
A(Qj) −

∣∣∑
k∈I j A(Bk ) − A(Qj)

∣∣)∑
j∈C

(∑
k∈I j dkj

)
Once all ants finish their pairings (step 3), the pheromones
for each pair ij are updated according to

τij(t + 1) = (1 − ρ)τij(t) +

∑
N

1τ kij (t),

where ρ is the pheromone evaporation coefficient. Here, the
pheromone concentration is iteratively updated by minimiz-
ing the following two costs: (i) the difference between the size
of the region and the total sensing capability of the allocated
robots; (ii) the distance between the paired robots and regions.
At the end of M iterations, the chosen solution is the ant tour
which yields the maximum efficiency factor ϵk .

The output of the M-ACO algorithm is the set of indexes
I j ⊆ I, j ∈ C which ensures a distinct selection of robots to
each given region, i.e., I j∩Ik = ∅ for j ̸= k . The information
of each regionQj, j ∈ C, the location of targeted grids within
(i.e., hi, ∀i ∈ Mj), and the selected robots (i.e., I j) will be
used to generate each robot’s control input ui as described in
the next section.

V. PERSISTENT MONITORING ALGORITHM
In this section, we describe our proposed approach for
the lower layer, that formulates each robot’s control input
to ensure all the assigned robots persistently cover their
designated region. For simplicity, in the remain of the
discussion we focus on a single region of Qj and the robots
in the set I j where j ∈ C.

A. MODELING AREA OF IMPORTANCE
In this subsection, we first describe the procedure of defining
the degree of importance for all locations within the region
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Qj. Here, we define a range of value [0, 1] where 1 specifies
the location with the highest importance to monitor and 0 as
the lowest. Thus, the locations nearby hi, ∀i ∈ Mj (targeted
grids withinQj) need to be represented with values close to 1.
To achieve that, we design a density function φ̂j : Qj

→ [0, 1]
which is formulated using a mixture of Gaussian functions:

φ̂j(q) := cf + k
∑
i∈Mj

φ
j
i (q)

φ
j
i (q) = exp

[
−
1
2
(q− hi)T6−1(q− hi)

]
, (5)

where 6 ∈ R2×2 is the covariance matrix, cf ≥ 0 is a fixed
minimum value of the density function, and k ∈ [0, 1] is
a fixed gain to adjust the maximum density value. In this
paper, we consider a covariance matrix in the shape of 6 =

σ 2I2 with σ > 0. Note that each selection of cf , k , and σ

provides unique characteristics in highlighting the contrast
of importance between the targeted grids and the remaining
area inQj, as will be shown later. Additionally, the parameters
need to be selected such that the maximum density value over
the field Qj does not exceed 1.

Given the formulation in (5), notice that any targeted grid
i ∈ Mj increases the density values over its surrounding
grid’s center hi. Note that this influence diminishes as
distance from hi increases. The term φ

j
i (q) can be written

as exp
[
−

(d ji (q))
2

2σ 2

]
with d ji (q) = ||q − hi||2. Then, the

computed values of φ
j
i (q) for any points q around hi whose

d ji equal to σ , 2σ , 3σ and 4σ are 0.607, 0.135, 0.011 and
0.0003, respectively. These series of values serve as a basic
benchmark in guiding the selection of appropriate parameters
for σ as well as k for a given field with grid distance Ds.
To illustrate this further, we present two examples for a

field with 49 targeted grids (a 7m × 7m with Ds = 1m)
as shown in Fig. 3. Both examples share the same value of
cf = 0.3 with two different sets of k and σ . Fig. 3a presents
a case where σ = 0.25 (Ds = 4σ ) which results in almost
non-existent influence from φ

j
i (q) to the adjacent grid. Hence,

the selection of k can be set close to the remaining 0.7 values.
On the other hand, Fig. 3b presents a case with σ = 0.5
(Ds = 2σ ) that provides significant influence from φ

j
i (q)

to the adjacent grid, hence resulting in a smaller range of
permissible values for k .

In both examples in Fig. 3, the max value of k which
ensures φ̂j(q) ≤ 1 for any q ∈ Qj can be approximated by
considering the influence from direct adjacent neighboring
targeted grids, such as solving

cf + k
(
1 + 4 exp(−D2

s/2σ
2) + 4 exp(−2D2

s/2σ
2)

)
< 1.

This results in k < 0.6991 and k < 0.4335 for the case in
Fig. 3a and Fig. 3b, respectively. Note that with σ ≤ 0.5 Ds
the influence from the targeted grid further than

√
2Ds are

significantly smaller, and hence it is sufficient to choose a
slightly smaller value than the approximated k , e.g., 0.433 for
Fig. 3b. However, with a larger value of σ , the designer needs

FIGURE 3. Examples of density functions for a field with 49 broken
sensors (7 × 7m2 with Ds = 1m). (Left) The 3D plot of density functions.
(Right) A vertical cut of the density function for y = 0.

to assess the degree of influence from each Gaussian function
φ
j
i (q) component when deciding the appropriate value of k .
Finally, let us focus our discussion on the selection of cf .

Consider a case where Mj comprises multiple clusters of
targeted grids that are apart from each other, e.g., when the
number of available drones is smaller than the number of
clusters of targeted grids. An example of this is shown in
Fig. 4. Here, the gaps between the groups may result in an
area with φ̂j(q) = cf . Providing the cf = 0 can potentially
hinder the robot from crossing from one area to another,
as often observed for voronoi-based coverage controllers [22]
(described later). Thus, a positive cf , i.e., cf > 0, highlights
a small importance of these regions where φ̂j(q) = cf and
promotes the exploration that potentially results in the robot
traversing to all targeted grids. Note that a high value of
cf further promotes the exploration, but with a drawback of
reducing the relative importance of the targeted grids.

B. VORONOI-BASED COVERAGE CONTROL WITH
OBSTACLE AVOIDANCE
Finally, in this subsection, we present the computation for
each robot’s control input ui based on the provided density
map. First, let us consider the collocations of pi for all i ∈ I j
as pj. Then, the Voronoi partition of each region Qj [7],
namely the collection of the sets {Vi(pj)}i∈I j , is defined as

Vi(pj) = {q ∈ Qj
| ||q− pi|| ≤ ||q− pj||, ∀j ∈ I j\{i}}.

Moreover, let us define the feasible sensing area Si(pj) as

Si(pj) := Bi(pi) ∩ Vi(pj).
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FIGURE 4. An example scenario where the area of importance are
distanced to each other. The value of cf = 0.3 highlights the small
importance of the remaining regions, hence promoting exploration.

It is shown in [7] that the set Si(pj) depends solely on
the position of robots that lie within a radius 2Ri from pi.
Therefore, Si(pj) can be computed in a distributed fashion,
e.g., by allowing robots to exchange position information
within 2Ri radius.
In the remaining discussion, let us consider a practical case

when the total sensing capabilities of the assigned robots is
much less than the total area to be covered, which requires
the robots to periodically visit the broken sensors locations.
To that end, we consider the following time-varying density
function φj : Qj

× R≥t0 → [0, 1], updated according to

dφj(q, t)
dt

=

{
−

¯
δφj(q, t), if q ∈ ∪i∈I jSi

δ̄(φ̂j(q) − φj(q, t)) otherwise
(6)

with δ̄,
¯
δ > 0 and φ̂j(q) refer to the density map designed

via (5). The update rule (6) implies that the importance
of a point being monitored by a robot is decreasing with
rate

¯
δ, and will then be increased with rate δ̄ if it is left

unmonitored and thus requiring the robot to revisit that point
to maintain persistent monitoring of the targeted grids. Note
that the parameters δ̄,

¯
δ are assigned by the designer by

considering the characteristics of the sensor attached to the
robot. For example, if the sensor requires more time to take
measurements, then

¯
δ can be set to be small.

The control input ui for all i ∈ I j can then be computed
based on the gradient ascent algorithm to maximize the
following objective function

J (pj, t) := −

∑
i∈I j

∫
Si

∥q− pi∥2φj(q, t) dq.

To that end, let us then consider a (partially) distributed
computation given by

∂J (pj, t)
∂pi

= 2mass(Si(pj))(cent(Si(pj)) − pi) (7)

where

mass(Si(pj)) :=

∫
Si

φj(q, t) dq

cent(Si(pj)) :=
1

mass(Si(pj))

∫
Si
qφj(q, t) dq (8)

During deployment, the initial position of each robot may
be outside the designated region Qj. Thus, proportional
control is introduced for the robot to navigate towards
the centroid of Qj (i.e., cj) until it enters the region Qj.
To summarize, the computation of ucovi for i ∈ I j is given
by

ucovi =


∂J (pj, t)

∂pi
, if pi ∈ Qj

γ (cj − pi) otherwise

where γ > 0 is the proportional gain.
Additionally, the collision avoidance and actuator limit

can be explicitly incorporated by utilizing quadratic pro-
gramming with control barrier function [6], [33], [34] and
additional constraint as follows

ui = arg min
ui

∥ucovi − ui∥2

s.t.
(

∂ho(pi, pj)
∂xi

)T

ui ≥ −γ ho(pi, pj), ∀j ∈ N s
i

ulbi ≤ ui ≤ uubi .

given that

ho(pi, pj) := ||pi − pj||2 − D2
≥ 0,

N s
i := {j, j ̸= i | ||xi − xj||2 ≤ (2Ri)2}.

Here, D is the considered collision distance, γ > 0 is the
obstacle avoidance gain, and ulbi and uubi are the lower- and
upper-bound of the actuator range.

Finally, in practice, the computation of the density update
in (6) will be performed by a central system for each region
j, since each robot hardly knows if other robots have visited
each q ∈ Qj. On the other hand, provided the information of
Qj, cj, and φj(q, t) in Si from region j’s central system, each
robot i ∈ I j can distributively compute ui.

VI. NUMERICAL SIMULATIONS AND DISCUSSION
In this subsection, we demonstrate and evaluate the proposed
two-layer control framework in simulations. Particularly,
we are interested in investigating the effects of selecting the
number of regions to be generated on the overall performance
of the monitoring mission.

A. SIMULATION SETUP
Throughout the simulation, we consider a field F of size
[−0.5, 19.5] m × [−0.5, 19.5] m discretized into 400 grids
with grid size Ds = 1 m. Here, we consider 20% of the grids
are targeted grids, i.e., m = 80, and we prepare 2 cases of
targeted grid distribution, which are 1) uniform distribution
throughout F denoted by Hu, and 2) clustered distribution
towards 4 corners of the field F denoted by Hc. Then,
we consider that the number of robots to be deployed is n =

6 with 2 different sets of sensing capabilities (homogeneous
and heterogeneous) as shown in Table 1.

In total, we investigate these 3 scenarios:
A. Hu (uniform distribution) with homogeneous robots
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TABLE 1. The sets of homogeneous and heterogeneous sensing
capabilities of the robots.

TABLE 2. The simulation parameter values.

B. Hc (clustered distribution) with homogeneous robots
C. Hc (clustered distribution) with heterogeneous robots

Additionally, we prepare 50 sets of random initial positions
for the 6 robots within the field F . Given that the number of
the generated region should not exceed the number of robots,
i.e., ℓ ≤ n, we simulate each scenario for all ℓ ∈ {1, · · · , 6}.
Thus, we generate and analyze 300 simulation data for each
scenario.

The parameter values for both the task allocation and
persistent monitoring algorithms are summarized in Table 2.
For the M-ACO algorithm, we utilized these values based
on [24]. The number of ants corresponds to the number of
computational units to try some possible region-robot pairing
based on the pheromone and heuristic values (see (2)). Here,
we utilized 10 ants where in every iteration, each ant paired all
regions with at least one robot. At the end of each iteration,
the pheromone value is updated according to (4) before the
next iteration begins. When the iterations reach 1000, the
best region-robot pairing is then decided. Note that the initial
pheromone value / strength was set to 1, which means that all
region-robot pairs were given the same pheromone strength
of 1, before being updated in each iteration. Pairs that are
not chosen by any ants will evaporate with a pheromone
evaporation coefficient of 0.2. In this work, we give the same
importance to the pheromone value and heuristic value. Thus,
both parameter values are set to 1. For the modelling area
of importance, we use the same parameter as the example in
Fig. 3b as this parameter generates steady slopes for the gaps
between targeted grids (as compared to Fig. 3a).

TABLE 3. Sizes of partitioned coverage holes (in m2) from K-means
clustering.

Remark: For the deployment in other scenarios, Table 2
can be used as a reference for the selection of the parameter
values. For the M-ACO algorithm, the same sets of parameter
can be used irrespective of the number of robots (including
their sensing range) and regions (clusters). The modelling
area of importance can use the same cf and k while the 6

can be scaled linearly to a different grid size. Otherwise,
section V-A provides guidelines to compute these parameters.
For the persistent monitoring algorithm, the

¯
δ and δ̄ are

dictated by the specification on how long the robot needs
to stay in order to gather the information and how often the
information needs to be revisited. The D, ulbi and uubi rely on
the robot’s physical features, while the γ can be used as it is
or adjusted if more reactive response is needed by making the
gain smaller.

B. EVALUATION OF TASK ALLOCATION STRATEGY
In this subsection, we first evaluate each step in task
allocation strategy, namely K-means clustering and Modified
Ant-Colony Optimization (M-ACO) algorithm, for 300 sim-
ulation data at each of the 3 scenarios.

1) DIVIDED REGIONS FROM K-MEANS CLUSTERING
As described in subsection IV-A, the procedure of K-means
clustering requires the input of the desired cluster, i.e., ℓ, and
the initial value of the centroids of the cluster. Within our
test, we generate the initial values of the centroids randomly
with a fixed seed. The fixed seed minimizes the variation
from K-means clustering and results in a consistent shape of
clustered regions for each ℓ value. Examples of the resulting
clustered regions are shown in Fig. 5 for both Hu (uniform
distribution) and Hc (clustered distribution). Note that the
K-means clustering does not take account of the robots’
initial position and sensing capabilities, and thus there is no
difference in the results for homogeneous or heterogeneous
robots. The detailed values of the area for each region after
K-means clustering are summarized in Table 3.
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FIGURE 5. Results of K-mean clustering for targeted grids that is generated with uniform distribution (Hu) and clustered distribution (Hc).
The colored polygons and circles denote the resulting clustered regions and its centroid, respectively. The color indexes for region 1 to
6 are blue, orange, green, red, purple, and brown.

From Table 3, we observe that with the increase of
ℓ, the reduction of the total area of the generated region
is more significant on Hc compared to Hu. Moreover,
as Hc is intentionally generated based on 4 clustered
distributions, we can observe that the sum of the regions size
is significantly reduced towards ℓ = 4 and with reduced
improvement for ℓ = 5 onward. Thus, theK-means clustering
helps in condensing the area to be monitored, but has the
most impact on targeted grids whose distribution is more
clustered.

2) TASK ALLOCATION PERFORMANCE FROM M-ACO
ALGORITHM
Next, we evaluate the task allocation performance of the
M-ACO algorithm. Here, we define the metric to evaluate the
task allocation as the occupancy ratio between the summation
of the capabilities from the allocated robots versus the region
j’s size as

ϕj = min
{
1,

∑
k∈I j A(Bk )
A(Qj)

}
The case where

∑
k∈I j A(Bk )/A(Qj) > 1 denotes the

condition where the sum of the allocated robots’ capabilities
exceeds the area to be monitored. Thus, we capped the value

to 1 using the minimization function. For each scenario at
each value of ℓ, we compute the mean ± variance of ϕj

for all 50 simulations with different robots’ initial positions.
The resulting graph for the 3 scenarios is shown in Fig. 6.
Additionally, we evaluate the distances of each robot to the
allocated region’s centroid. Themean± variance of the initial
distances and also the deviation from the true minimum, i.e.,
the shortest distance of each robot to any region’s centroid,
are shown in Fig. 7.
Note that the generated regions from K-means clustering

is consistent for each ℓ value in each scenario. Thus, the
resulting variations of ϕj on Fig. 6 are solely the results
from the M-ACO algorithms when allocating the robots to
each region. Observing the result on scenario Hu (uniform
distribution) with homogeneous robots in Fig. 6a, we can
observe that the ratios ϕj are relatively consistent for all
regions on each different value of ℓ. Specific to ℓ = 6,
the M-ACO algorithm is reduced to one-to-one allocation of
robot-region based on the shortest pairing distance. Due to the
homogeneity of the sensing capabilities, the allocation ratio is
consistent, i.e., the variance value is 0. A similar observation
can be seen for the scenario Hc (clustered distribution) with
homogeneous robots in Fig. 6b. In comparison to Fig. 6a, the
value of the ratio is slightly larger for ℓ ≥ 3 due to the smaller
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FIGURE 6. Occupancy ratios (mean ± variance) between the allocated robot’s sensing capabilities versus the region’s size, i.e. ϕj , for 50 simulations on
each scenario. A larger value of ϕj (with a maximum of one) means better occupancy to region j. The color indexes for region j = 1 to 6 are blue,
orange, green, red, purple, and brown.

FIGURE 7. The upper figure describes the distance (mean ± variance) between the robot’s initial position to the allocated region’s centroid, i.e.
||pi − c j ||, i ∈ Ij , j ∈ C. The lower figure describes the deviation (mean ± variance) of ||pi − c j || to the minimum distance of robot i to any region’s
centroid. The figures are results from 50 simulations on each scenario where the color indexes for robot i = 1 to 6 are blue, orange, green, red, purple,
and brown.

sizes of region after K-means clustering in Hc compared
to Hu. Finally, in the case that the sensing capability of the
robots is heterogeneous as shown in Fig. 6c, the resulting
means of the ratio ϕj follows closely to the Fig. 6b with
slightly larger variance.

From Fig. 7, in each scenario, we can observe a consistent
distribution of mean and variance for each robot’s distance
to the allocated region’s centroid, i.e., ||pi − cj||, i ∈

I j, j ∈ C, suggesting optimal distribution in terms of
distances. Additionally, we can also observe the deviation
from the minimum distance pairings of a robot to any
region’s centroid. With ℓ = 1, the only possible pairings
are toward a single region, thus no deviation occurs. A larger
deviation is introduced along the increase of ℓ. This illustrates
the trade-off in distance to ensure each region is allocated
to at least one robot and also in a balanced allocation,
as also illustrated by the coverage ratio ϕj. Thus, with these
observations, we can conclude that the M-ACO algorithms
manage to provide an optimal allocation based on the robot’s
initial position and sensing capabilities.

C. EVALUATION OF PERSISTENT MONITORING
ALGORITHM
Finally, in this subsection, we evaluate the persistent
monitoring algorithm after the resulting allocation from the
task allocation strategy in the previous subsection. Here,
we evaluate the monitoring performance throughout 120s
of simulation duration, and we execute the simulation with
a time sampling of 20ms. An example of the persistent
monitoring algorithm in action is shown in Fig. 6 for the first
45 seconds.

1) COVERAGE PERFORMANCE
Here, we define the ratio of total density value at the time t
compared to the modeled density value as

ζ (t) :=

∫
H φj(q, t) dq∫
H φ̂j(q) dq

.

This value roughly denotes the performance of the coverage
control algorithm over time, where the smaller the coverage
ratio ζ denotes the more often the overall targeted grids are
being covered by any of the robots. For each scenario at each
value of ℓ, we compute the mean ± variance of the coverage
ratio ζ over time for all 50 simulations with different robot
initial positions. The resulting graph for the 3 scenarios and
for ℓ = {1, 3, 6} are shown in Fig. 9.
Through Fig. 9, we can observe that the coverage ratio is

significantly reduced within the first 20s, and then the value
remains oscillating within a bounded region, where we refer
to the middle value of the bounded region as a steady value.
Observing the result on scenario Hu (uniform distribution)
with homogeneous robots in Fig. 9a, the steady value remains
similar throughout the various ℓ values. On the other hand, for
the scenario Hc (clustered distribution) with homogeneous
robots in Fig. 9b, the steady value is reduced with the increase
of the ℓ values. Then, for the case of heterogeneous robots in
Fig. 9c, the results do not vary much from the homogeneous
counterpart in Fig. 9b. Note that in the previous subsection,
we observe that the K-means clustering provides a significant
reduction of the sum of regions’ size with the increase of ℓ for
the Hc compared to Hu. Thus, we conclude that the steady
value is inversely proportional to the sum of the regions’ size,
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FIGURE 8. An example of the robots’ trajectory (dashed lines) and the changes in density map for the first 45s of the simulation for the
scenario Hc (clustered distribution) with heterogeneous robots and ℓ = 3.

FIGURE 9. Coverage ratio (mean ± variance) over the coverage hole H, i.e. ζ (t), for 50 simulations on each scenario. A smaller value of ζ indicates a
better coverage performance.

FIGURE 10. Total travel distance (mean ± variance) for each robot for 50 simulations on each scenario. The color indexes for robots 1 to 6 are blue,
orange, green, red, purple, and brown.

meaning that the coverage performance is increased as the
region’s size is smaller.

2) TOTAL TRAVELING DISTANCES
Last, we investigate the total travel distance for each robot.
For each scenario at each value of ℓ, we compute the mean
total travel distance for all 50 simulations with different robot
initial positions. The resulting graph for the 3 scenarios is
shown in Fig. 10. Here, we observe one more time that
the increase of ℓ results in a larger decrease in robots’
travel distance for Hc (Fig. 10b) compared to Hu (Fig. 10a).
Note that despite the similar steady value of coverage ratio
throughout various ℓ value Hu, we can observe a small
reduction of the final travel distances as ℓ increases. Finally,

by comparing the travel distance for the heterogeneous case
(Fig. 10c) versus the homogeneous case (Fig. 10b), we can
observe a larger variation of the final travel distance in the
heterogeneous case. Here, the robot with a larger sensing
radius results in a larger movement gain (mass) as depicted
in the equation (7) and (8), thus resulting with further final
travel distance. However, the general trend that the increase
of the ℓ results in a decrease in robots’ travel distance remains.

VII. CONCLUSION AND FUTURE WORK
This paper presents a novel two-layer control framework
for a robotic sensor network to persistently monitor targeted
grids in a given field with an improved coverage performance
and reduced traveling distance of the robots. The first layer
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(task allocation strategy) encapsulates the targeted grids
into a set of tasks and optimally allocates the robots based
on their initial position and sensing capabilities, while the
second layer (persistent monitoring algorithm) generates
each robot’s control input to ensure persistent monitoring
over the designated task area. Throughout our numerical
simulation, we can conclude that dividing the originally
targeted grids into several smaller regions helps in improving
persistent monitoring in terms of coverage performance and
travel distance. Moreover, this benefit has more impact on
targeted grids where the distribution is more clustered than
the uniform case. However, as evident from the analysis,
dividing into too many clusters will increase the travel
distance from/to the base station as the number of robots
that can be allocated to a cluster decreases. Hence, there is
a trade-off between the system’s performances, which needs
to be considered in choosing the number of clusters.

To this end, several limitations persist in the proposed
framework. The K-means clustering method requires an
explicit number of regions to be generated. Moreover, the
proposed framework neglects the issue of energy limitation
and is not fully adaptive to environmental changes in the
monitoring regions, as the task allocation strategy is limited
to offline computation pre-deployment of the monitoring
mission. Nonetheless, our proposed framework is modular
in the sense that each approach can be independently
replaced if improvements to the mission performance are
needed. To alleviate these limitations, our future works will
investigate: a clustering method that optimizes some metrics
to remove the need to specify the number of clusters; an
online task allocation algorithm that allows adaptation to
changes in the monitored environment; energy management
that accommodates charging scheduling of the robots; and
implementation of the proposed control framework in a real
world experiment (e.g., via crazyflie nano-quadcopters in
our networked robotic laboratory) to investigate the possible
deviations from the current simulation results.
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