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ABSTRACT Gridded bathymetric data are often used to understand seafloor topography; however, high-
resolution data are rare. To obtain high-resolution gridded bathymetric data, the observations from which
the data are derived must be densely measured. However, this process is time consuming and expensive.
In this study, we propose a method to obtain dense bathymetric data from sparse observations by treating the
observed data as a 3D point cloud and applying a deep-learning-based point cloud upsampling technique.
The upsampled cloud points were converted into gridded form. The effectiveness of our method was verified
through both quantitative and qualitative analyses.

INDEX TERMS Bathymetry, deep learning, point clouds, super-resolution.

I. INTRODUCTION
Understanding detailed seafloor topography is important
for various applications, including the protection of marine
resources and construction of infrastructure.

Bathymetric data can be obtained using shipborne, air-
borne, and satellite-based methods. Shipborne measurements
are the primary approach for collecting large-scale bathy-
metric data. Two systems were used for the shipborne
measurements: multibeam sonar and single-beam sonar
systems. Both systems capture seafloor topology as point
clouds, which are then transformed into gridded data for
practical use. To obtain high-quality bathymetric data,
various methods have been studied to obtain high-quality
bathymetric data by considering topographic information,
instrument characteristics, and effects of the measurement
environment [1], [2].

However, according to the Seabed 2030 project [3], only
23.4% of the total seafloor has been mapped using gridded
bathymetric data. The major reason for this is the cost
of data acquisition. To map the seafloor topography using
single-beam sonar, which measures the topography below
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the ship, continuous measurements are required as the ship
moves forward. These measurements were taken at closely
spaced intervals to ensure thorough coverage in the ship’s
wake. By contrast, multibeam sonar extends its capabilities
beyond the area below the ship to include the surrounding
topography, allowing for a less dense wake interval. However,
a multibeam sonar system is more expensive than a single-
beam sonar. In addition, despite its wider range, multibeam
sonar requires a relatively short wake interval for detailed
topographic measurements.

To address this problem, machine-learning super-
resolution techniques have been proposed [4], [5]. These
techniques treat gridded bathymetric data as images and
apply image super-resolution techniques. High-resolution
gridded bathymetric maps can be obtained from existing
low-resolution gridded bathymetric maps. However, the
information that remained in the original point cloud data,
but not in the gridded data, was not used. When converting
point clouds into gridded data via Kriging [6] which is an
interpolation method, variability exists in the number of
corresponding point clouds for each grid cell. Several cells
may contain numerous point clouds, while others may not.
This variability is particularly evident when there is a large
interval in the wake of the ship. Traditional super-resolution
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methods do not adequately address these variations, which
subsequently becomes a bottleneck in improving super-
resolution performance.

In this study, we propose using direct bathymetric data
rather than gridded bathymetric data to improve the accuracy
of seafloor topography representations. Specifically, bathy-
metric data were processed as 3D point cloud structures,
and dense bathymetric information was derived from sparse
bathymetric data using a deep-learning-based point cloud
upsampling technique.

In a practical and cost-conscious scenario, we based our
approach on single-beam sonar data. Ourmodel was designed
to process topography data collected over wide wake
intervals, transforming this input into dense topography data
represented as point clouds. These point clouds were then
converted into a gridded format to produce high-resolution
bathymetric data.

To train our model, we used dense multibeam sonar
measurements from publicly available datasets. Using these
datasets, we synthesized data that mimicked single-beam
sonar measurements. Based on the synthesized data, a neural
network capable of reconstructing the original dense mea-
surement data was constructed. Ourmodel can generate dense
measurement data for uncharted bathymetric areas that are
not included in the datasets.

The main contributions of this study are as follows:

1) To the best of our knowledge, this is the first study to
apply a point cloud upsampling technique to bathymet-
ric data.

2) We also propose a method for constructing a dataset
from actual bathymetric data so that point cloud
upsampling techniques to be applied.

3) From the quantitative and qualitative results, our pro-
posed method can generate more detailed bathymetric
data from sparse bathymetric data.

Note that our method does not make any assumptions on
instrument characteristics and topographic information. Our
method can be combined with existing characteristics-aware
bathymetric method and upsample outputs from the existing
method

The structure of this paper is as follows. First, we review
related work on improving the quality of bathymetric maps
and point cloud upsampling techniques. Next, we describe
the procedure for generating the bathymetric dataset and the
proposed point cloud upsampling method for the bathymetric
data. Furthermore, we present the results of the proposed
method, including quantitative and qualitative evaluations.
Finally, we conclude the paper with a discussion and
summary of this study.

II. RELATED WORK
We briefly review studies on the super-resolution of bathy-
metric maps, that is, the construction of high-resolution
gridded bathymetric data and recent point cloud upsampling
techniques.

A. SUPER-RESOLUTION OF BATHYMETRIC MAPS
Despite the importance of high-resolution bathymetric data
in understanding seafloor characteristics, the availability
of such data remains limited. Recently, several methods
have been developed to generate high-quality bathymetric
data [4], [5], [8], [10]. For example, Sonogashira et al.
[4] proposed a deep-learning-based super-resolution model
for gridded bathymetric data. Their study showed that the
ESRGANmodel [7], trained on both low- and high-resolution
bathymetric maps, had superior accuracy over traditional
interpolation techniques such as bilinear interpolation. How-
ever, this method requires a substantial gridded bathymetric
dataset, which is difficult to obtain because the existing data
are both limited and have coarse resolution. Consequently,
several studies have attempted to mitigate the scarcity of
bathymetric data by applying transfer-learning methods [8],
[10]. In particular, Zhang et al. [8] drew attention to the
similarities between terrestrial and oceanic landscapes by
constructing a pretrained model using land samples. This
model, which is based on the EDSR architecture [9], was
fine-tuned to accommodate the limited bathymetric data
available.

In contrast, the learning process in deep learning is
often referred to as a ‘‘black box,’’ and notes for its low
interpretability. To address this issue, Yutani et al. [5]
extended the sparse coding super-resolution technique and
proposed a super-resolution method for bathymetric maps
that provided high interpretability of the results.

B. POINT CLOUD UPSAMPLING
A point cloud is a representation of 3D data and is often
acquired through geospatial measurements using sensors,
such as LiDAR. With the recent advancements in 3D sensor
technology, the acquisition of point cloud data has become
increasingly accessible. Simultaneously, the emergence of
deep learning techniques that automatically extract features
has led to superior performance in tasks such as 3D
class classification, 3D object detection, and segmentation.
However, a distinguishing characteristic of point cloud data,
particularly those derived from sensors such as LiDAR,
is that they often contain noise or exhibit nonuniformity. This
characteristic distinguishes point cloud data from images in
which the pixels are arranged in a regular and systematic
manner. The nature of point clouds presents challenges and
considerations when processing and analyzing them.

Point cloud upsampling, a task aimed at transforming
sparse or noisy point clouds into dense or comprehensive
forms, has recently emerged as a topic of interest. In par-
ticular, deep-learning-based approaches, such as PU-Net
[12], which extracts features through hierarchical downsam-
pling and subsequently generates points, have demonstrated
remarkable performance. Subsequently, various methods
have been proposed [13], [14], [15], [16]. A typical point
cloud upsampling model consists of three essential modules:
feature extraction, feature upsampling, and point cloud
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generation. The training of the model was achieved by
minimizing the error of the generated point cloud with the
ground truth point cloud.

III. METHOD
In this study, we present a method for generating dense bathy-
metric data from sparse bathymetric data. We constructed
a dataset derived from real bathymetric data and applied
deep learning-based point cloud upsampling techniques to
bathymetric data. The key point of this method is that
bathymetric data are treated as 3D point cloud data, providing
high-quality bathymetric data.

A. OVERVIEW
An overview of the proposed method is presented in
Fig. 1. The proposed method consisted of two parts:
dataset construction and model training. The observed data
of bathymetry is given as a set of points expressed in
3D coordinates of latitude, longitude, and depth, and the
proposed method trains a network with N points as the input
and rN points as the output, where r is the upsampling factor.
In this study, these are referred to as sparse and dense point
clouds, respectively. The dataset construction consisted of
two steps. The first is a preprocessing step to remove missing
or noisy data from the raw bathymetry, and the second is to
construct the sparse and dense point clouds needed to train
the network. The latter step generates data that simulate the
measurements made by a vessel using a single-beam sonar
system.

B. DATASET AND DATA CLEANSING
For the actual bathymetric data used in this study, we used
measurements provided by JAMSTEC,1 whichwere acquired
using a multibeam sonar system. These data consisted of
three dimensions: longitude, latitude, and depth. For this
experiment, the ocean region was segmented into 15 arcmin
of latitude and longitude, equivalent to approximately
27 000 m, and each sample was transformed into a Cartesian
coordinate system with the origin set at (minimum longitude,
minimum latitude, 0). The z-axis, which represents the depth,
was oriented downward. In addition, we selected samples
within the coordinates from (N 20;30;00, E 123;00;00) to
(N 45;30;00, E 154;00;00), which includes the sea area
around Japan. From the selected samples, we employed a
data-cleansing method and subsequently prepared dense and
sparse bathymetric data. These datasets were used to train
and evaluate the proposed method. Figure 2 presents a visual
representation of a sample of the bathymetric data.

The point cloud upsampling model assumes that the object
being processed has a single, continuous, smooth surface.
However, the samples obtained using this method may
contain multiple continuous regions. In Fig. 2, there are
two regions in a sample: a large continuous region in the
center of the figure and a small region in the upper right

1DARWIN (http://www.godac.jamstec.go.jp/darwin/):bathymetric data

corner of the figure. To maintain the model assumptions,
the samples must be processed such that each contains only
one continuous region. In addition, raw observations may
contain data measured multiple times at nearby locations
or noise from unremoved observations, both of which must
be eliminated. To address these issues, three pre-processing
steps were performed for each sample: clustering, removal of
redundant observations, and removal of outliers.

1) CLUSTERING
As it is desirable to have only one continuous region in a
given sample (15 × 15 arc-minute sea area), we applied a
clustering process. Specifically, HDBSCAN [17], which is a
density-based clustering method, was applied to the observed
points in each sample, and the cluster with the largest number
of points was extracted.

2) REMOVAL OBSERVATION POINTS
Due to the raw data collection process, where seafloor
topography was observed as the ship moved, there were
variations in the distribution of the measurements. Specif-
ically, there are areas where the vessel makes numerous
close observations, and conversely, areas where the vessel
rarely visits, resulting in a lack of observations. Therefore,
we removed these sparse observation points by calculating
the distribution (i.e., density) of the points around each point.
Specifically, we define the following set:

Nϵ(p) :=
{
q ∈ Pobs

∣∣ ∥p− q∥ ≤ ϵ
}
, p ∈ Pobs ⊆ R2

where Pobs denotes the set of observation points (x, y) in
the bathymetric data. In other words, the set Nϵ(p) is a
neighborhood of radius ϵ centered on observation point p ∈

Pobs. The number of elements in this set is denoted by
k(p). k(p) was calculated for each observation point in each
sample, and bathymetric data below the specified number of
neighborhood points (minimum neighborhood points) were
removed. The maximum number of neighborhood points is
also defined to ensure that bathymetric data with an extremely
high number of points are removed. In our method, ϵ was
set to 1000 m, and the minimum and maximum numbers
of points in the neighborhood were set to 80 and 5000,
respectively.

3) OUTLIER REMOVAL
The depth values contain outliers owing to the influence
of the measurement environment. In particular, outliers in
multibeam bathymetric data are caused by several factors
[18]. Because the outlier removal process is time consuming,
many methods have been proposed to automatically remove
outliers [19], [20]. To apply the outlier removal process
to various bathymetric data (different seafloor contexts),
we used local information on seafloor topography. Specif-
ically, bathymetric values were estimated using Ordinary
Kriging [6] for each point, and bathymetric data in which
the absolute error (APE) between the actual and estimated
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FIGURE 1. Overview of our method. First, we construct the dataset for our method from actual bathymetric data. The
dataset is a pair of sparse and dense bathymetric data, and we generate the sparse bathymetric dataset by thinning points
from the dense bathymetric data. Next, the model learns the generation of dense bathymetric point cloud from sparse
bathymetric point cloud. In the testing phase, each point cloud data is converted to gridded data for evaluation of the effect
of upsampling.

FIGURE 2. A sample of bathymetric data. The origin represents (minimum
longitude, minimum latitude, 0).

bathymetric values exceeded a certain value were removed.
That is, for each observation point p ∈ Pobs, we removed the
bathymetric data that satisfied the following equation:

|z̄(p) − z(p)|
z̄(p)

≥ threshold

where z(p) is the actual observed bathymetric value, and z̄(p)
is the estimated bathymetric value by Ordinary Kriging. The

data used for Kriging calculations were the k nearest points
of each bathymetric datum. To make the Kriging process
more efficient, the bathymetric data to be estimated were
those with less than 50% of the elements intersecting each
neighborhood, rather than all data. In our method, the values
of k and threshold were set to 200 and 0.01, respectively.

4) GROUND TRUTH DATASET
To construct the bathymetric ground truth dataset, samples
were selected based on the fulfillment of the following
conditions: (1) The total number of points within a sample
falls within the range of 20 000 to 50 000. (2) The minimum
depth is greater than 1000 m and the maximum depth is
less than 7000 m. (3) For both the x and y coordinates, the
calculation of the maximum and minimum values shows a
difference greater than 7000 m. Next, the number of points
for each selected sample was standardized to a constant value
of 20 000 points obtained using the farthest point sampling
method, and the centers of the x and y coordinates were
repositioned parallel to the origin.

Therefore, 3571 sea areas with 15 arcmin of latitude and
longitude were extracted. From conditions (1) and (2), the
x and y components of the sample can assume values from
7000 m to approximately 27 000 m and the z component can
assume values ranging from 1000 m to 7000 m.

C. DATASET FOR TRAINING UPSAMPLING MODEL
The proposed method trains an upsampling model that uses
a sparse point cloud of N points as the input and outputs a
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dense point cloud of rN points. However, sparse point clouds
corresponding to the dense data used in this study did not
exist. Therefore, sparse point clouds PLR ⊆ RN×3 were
generated from the ground truth bathymetric data. In addition,
dense point clouds PHR ⊆ RrN×3 corresponding to sparse
point clouds were created. To train the upsampling model,
we constructed a training dataset that satisfied the following
two conditions:

• Set the number of points in the sparse and dense point
clouds to N and rN , respectively.

• Generate a sparse point cloud expecting to measure with
a vessel equipped with a single-beam sonar.

1) SPARSE BATHYMETRIC DATA
For real-world applications, we assume that the bathymetric
data collected by a single-beam sonar system are represented
as sparse point clouds. Because a single-beam sonar system
focuses on bathymetric topography immediately below the
vessel’s wake, the data acquired from a single measurement
typically lack extensive information about seafloor topogra-
phy. Consequently, we considered bathymetric data collected
from multiple observations using a single-beam sonar system
as sparse data and synthesized this sparse dataset from the
ground truth data. Specifically, the wake of the vessel for
single-beam sonar observations wasmodeled as a straight and
uniformly spaced path.

First, the direction of the wake in the single-beam
sonar system was determined based on the distribution of
observation points in the ground truth bathymetric data. The
direction is defined as the direction of the first principal
component in x − y space of the observation points. Pseudo-
wakes were created at equal intervals in this direction.
These were parallel to the wake direction, and the distances
between the pseudo-wakes were set to a fixed distance. The
pseudo-observation points were then set at equal intervals
in the pseudo-wake. Finally, the data points closest to each
pseudo-observation point were extracted from the ground
truth bathymetric data.

In the experiment, the minimum number of pseudo-wakes
in the sparse bathymetric data was three, the distance from
other pseudo-wakes was 700 m, and the distance between the
pseudo-observation points along the direction of the pseudo-
wakes was 10 m.

2) DENSE BATHYMETRIC DATA
Dense bathymetric data corresponding to sparse bathymetric
data were also obtained from the ground truth data. First,
a convex hull was computed for the points of sparse
bathymetric data PLR, and the ground truth bathymetric data
with observation points located within the convex hull were
extracted. Subsequently, dense bathymetric data were created
by sampling from the ground truth bathymetric data to PLR,
such that these data did not overlap with the observation
points. Figure 3 shows an example of sparse bathymetric data
and the corresponding dense bathymetric data.

D. POINT CLOUD UPSAMPLING MODEL
We adopted PU-GCN as a model for point cloud upsampling,
we adopt PU-GCN [15]. This is a graph convolutional
network based model, whose architecture is shown in
Fig. 4. PU-GCN is a model with Inception DenseGCN as a
feature extraction module and Nodeshuffle, which is based
on PixelShuffle [21] proposed in image super-resolution,
as a feature upsampling module. While PU-Net [12] and
PU-GAN [14] perform upsampling by duplicating points
in the latent space, PU-GCN enables upsampling using
NodeShuffle, in which the GCN layer is integrated. The
key feature of this model is that it can encode spatial
information from the neighborhood of a point and learn
new points from the latent space. The graph convolution
used in the PU-GCN is EdgeConv, which was proposed in
DGCNN [22].

IV. EXPERIMENTS
The training dataset was created using the procedure
described in Section III-B and–he PU-GCN was trained. The
effectiveness of applying upsampling to sparse bathymetric
data was analyzed.

A. DATASET DETAILS
To evaluate the proposed method, 3571 target areas were
divided into 70%, 10%, and 20% for training, validation,
and evaluation, respectively. There is no overlap of sea
areas in each dataset. The distribution of each divided area
and sample at the mean depth are shown in Fig. 5 and 6,
respectively. Multiple samples are available in the same area
owing to the division of the sea area. To avoid an imbalance
of samples in each area, a maximum of four samples were
included in the dataset. Therefore, the numbers of point cloud
samples used for training and evaluation were 5049 and 1352,
respectively. In the training dataset, the number of points in
all samples should be the same. Therefore, we sampled the
same number of points in each sample constant using farthest
point sampling.

In this experiment, the numbers of points for sparse
bathymetric data N and dense bathymetric data rN were
1024 and 4096, respectively, as training data. The upsampling
factor r was set to four, following conventional studies on
point cloud upsampling.

B. IMPLEMENTATION DETAILS
During the training of the DNN model, normalization and
data augmentation techniques were used to improve its
generalization performance. For training a conventional point
cloud upsampling model, the point cloud is normalized to
fit a unit sphere, and methods such as rotation, translation,
and scaling are used for data augmentation. However, these
procedures are not directly applicable to the bathymetric
data used in this study. In terms of normalization, the
range of bathymetric values exhibited significant variation
depending on the specific sea area from which the sample
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FIGURE 3. Sparse (left) and dense (right) bathymetric data. These are the bathymetric data pairs with an upscaling factor of 4. The sparse and dense
bathymetric data are 1024 and 4096 points, respectively.

FIGURE 4. Architecture of PU-GCN [15]. Given an input point cloud, PU-GCN first constructs a graph using K-nearest
neighbors, and then GCN embeds the 3D coordinates into latent space (feature extraction module). Subsequently, new
points are generated by the upsampling module with Nodeshuffle (upsampling module) and reconstructed into 3D
coordinates (point reconstraction module).

was derived. Therefore, each coordinate value was scaled by
a constant factor for all the samples. In this experiment, the
constant factor was set to 1

7000 m. For data augmentation,
the operations were limited to rotations about the z axis
and translation. Because the x, y components are stripped
of latitude and longitude information, bathymetric data are
represented as seafloor topography and are invariant to the
viewpoint.

The experiment was implemented using PyTorch, a deep-
learning library. We used Adam [23] as the optimization
function, with a learning rate of 1.0 × 10−4. The batch size
was 32, and the PU-GCN was trained using early stopping,

which monitored the validation data to prevent overfitting
(the maximum number of epochs was 300). The chamfer
distance was used as the loss function. This measures the
distance between the generated bathymetric data and the
dense bathymetric data, which is the same as that in PU-
GCN. This measures the distance between the generated
bathymetric data P and the dense bathymetric data Q and
follows the equation below:

dCD(P,Q) =
1

|P|

∑
p∈P

min
q∈Q

∥p− q∥2 +
1

|Q|

∑
q∈Q

min
p∈P

∥p− q∥2

where |P| and |Q| are the number of points in P and Q.
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FIGURE 5. Sea areas used in this study. Blue, green, and red denote the
sea area of training data, validation data, and evaluation data,
respectively. Each grid represents a 15 arc-minutes, and there is no
overlap in the training, validation, and evaluation data sets.

FIGURE 6. Frequency distribution at mean depth in the ground truth
point cloud for each dataset. Blue, green, and red denote the sea area of
training data, validation data, and evaluation data, respectively.

V. EVALUATION
The point cloud upsampling model was evaluated by com-
paring the generated point cloud with the ground truth point
cloud. Traditional evaluation metrics include the chamfer dis-
tance and the distance of the earth mover. However, this study
focused on the ability to derive more detailed bathymetric
maps by applying upsampling to sparse bathymetric data.
Consequently, the upsampled point clouds were transformed
into gridded data for evaluation. Specifically, a uniform grid
size was established, and gridded data were constructed from
each point cloud.

We used two methods to create gridded data from point
clouds: Ordinary Kriging [6] and the K-nearest neighbor
(KNN) method. In the experiment, the grid size was set to
200 m, and the number of neighbor points for the KNN
method was set to 16.

A. EVALUATION METRICS
The gridded data D transformed from the point cloud were
considered depth images, and the depth estimation taskmetric
was used to evaluate the proposed method. Specifically,
we evaluated the gridded data created from each point
cloud using the five indices proposed in [24] and [25]. The
following evaluation metrics were used:

Abs-Rel =
1

|D|

∑
z∈D

|z̄− z|/z̄

Sq-Rel =
1

|D|

∑
z∈D

∥z̄− z∥2/z̄

RMSE =

√
1

|D|

∑
z∈D

∥z̄− z∥2

RMSE-Log =

√
1

|D|

∑
z∈D

∥ log (z̄) − log (z)∥2

Threshold : % of z s.t. max(
z̄
z
,
z
z̄
) = δ < thr

where z is the bathymetric value of the grid and z̄ is the ground
truth value. In this experiment, thr is set to 1.0025. Therefore,
when the ground truth bathymetric value is 4000 m, the
estimated value is correct if it is within ±10 m of the ground
truth value.

B. QUANTITATIVE RESULTS
Table 1 presents the results obtained using the evaluation
metrics. The mean value was calculated based on 1352 evalu-
ation data samples. For all indicators, the gridded bathymetric
data generated using the proposed method exhibited better
accuracy.

We further analyzed the effect of applying upsampling to
sparse bathymetric data. Figure 7 shows the distribution of
RMSE between the gridded bathymetric data generated from
PLR and PSR and the ground truth gridded bathymetric data
in the evaluation data.

Consequently, the gridded bathymetric data generated
from the upsampled bathymetric data had a better RMSE for
approximately 52% of the samples in the evaluation data.
However, numerous sampleswith improvedRMSEvalues are
not distributed near the red line, and some have significantly
improved RMSE. This means that a significant improvement
in RMSE can be expected by applying upsampling. In fact,
focusing on the samples with higher RMSE compared to the
RMSE of the gridded bathymetric data generated from the
PLR, that is, samples located above the red line, the average
difference in RMSE for each gridded bathymetric data was
2.07 m. However, for samples located below the red line, the
difference was 9.56 m. Figure 8 shows the sea area of the
evaluation data where the RMSE for the gridded bathymetric
data improved or worsened by applying upsampling to the
bathymetric data.
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TABLE 1. Results of quantitative evaluation by each gridded method GT type represents a method of converting from point clouds to gridded data. Bold
type highlights the best performing models. thr is set to 1.0025.

FIGURE 7. Effect of upsampling on RMSE. Each point represents the RMSE
for the gridded bathymetric data generated from PLR and PSR. The red line
indicates that there is no difference in RMSE before and after applying
the proposed method. For the sake of the appearance of the graph, those
with RMSEs of 50 m or more are considered outliers and are not plotted.
The applicable samples were about 3% of the evaluation data.

FIGURE 8. Improved and worsened RMSE in sea areas by proposed
method. Blue indicates areas where the RMSEs have improved, and red
indicates areas where the RMSE have worsened. For sea areas with
multiple samples, the average of each RMSE is calculated. For proper
visualization, only the ocean areas where the difference in RMSE is in the
range of ±50 m is plotted.

We also analyzed the absolute bathymetric error in each
grid of the gridded bathymetric data because the RMSE is
affected by extreme values. In other words, we calculated the

values for each grid for the bathymetric data as follows:

1abs = |z̄− zLR| − |z̄− zSR|.

zLR and zSR denote the depths of the grid of gridded
bathymetric data created from PLR and PSR, respectively.
If 1abs is positive, the depth value of the target grid is
closer to the true depth value obtained using the proposed
method. We then calculated 1abs for each grid of the gridded
bathymetric data in the evaluation dataset and calculated the
percentage (positive value) of the grid that was improved by
applying upsampling to the entire grid. As shown in Fig. 7,
the samples where the RMSEs are increased by the proposed
method are not significantly different from the RMSEs of
the gridded bathymetric data generated from the PLR. If the
effect of the proposed method is small and negative, then
it may not be problematic in certain contexts. Therefore,
if 1abs was negative for a grid and its value was within the
acceptable range, we calculated the percentage improvement
by applying upsampling which excluded that grid. Table 2
shows the percentage improvement achieved by applying
upsampling when the allowed degradation range was varied
by 2.0 m.

TABLE 2. Improvement degree of upsampling in absolute bathymetric
error.

Consequently, if the permissible distance is 2.0 m, the
proposed method can improve the absolute bathymetric error
for 75% of the gridded bathymetric data.

C. QUALITATIVE RESULTS
Figure 9 shows the samples with improved RMSE using the
proposed method. The figure on the right side of each sample
shows the 1abs calculated for each grid. Gridded bathymetric
data were generated using the Kriging method. The visual
representation shows that the upsampled sample successfully
reconstructed the topographic details of the ridges and valleys
with increased accuracy. Conversely, Fig. 10 shows the
gridded bathymetric data in cases where the proposedmethod
produced negative effects. From this figure, the samples
yielding less favorable results are characterized by relatively
less complex and detailed topographic features in the ridges
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FIGURE 9. Examples of two samples with improved RMSE. We show samples with improved RMSE by applying the proposed method. From left to
right, the gridded bathymetric data corresponding to the HR, LR, and SR point clouds are gridded, and 1abs is calculated for each grid. Grids with
positive 1abs values represent an improvement in absolute depth error (blue), while grids with negative values represent a worsening of absolute
depth error (red). We show in Fig.13 of the Appendix B each point cloud that was the source of these gridded bathymetric data.

FIGURE 10. Examples of two samples with worse RMSE. In contrast to Fig. 9, we show figures for samples for which the RMSE worsened when our
proposed method was applied.

and valleys. The input point cloud and upsampled point cloud
before conversion to gridded data are shown in Fig. 13 of the
Appendix B.

D. QUANTITATIVE RESULTS EXCLUDING GRIDS
CORRESPONDING TO SPARSE POINT CLOUDS
In the quantitative evaluation, the gridded bathymetric data
generated from each point cloud were compared with the
ground truth bathymetric gridded data. As the sparse point
cloud, which is the input to the model, is created by thinning
the ground truth point cloud, the grid corresponding to each
point in the sparse point cloud is also the target of the
evaluation calculations. To further validate the effectiveness
of the proposed method, we performed a quantitative
evaluation of each bathymetric grid dataset, excluding the
grid corresponding to each point in PLR. The results are
presented in Table 3. This shows that the proposed method
captures detailed information on the seafloor topography.

E. EVALUATION RESULTS FOR DIFFERENT DISTANCE
BETWEEN PSEUDO-WAKES
We also created evaluation datasets with different distances
between the pseudo-wakes for sparse bathymetric data. The
distances between the pseudo-wakes were 800 m, 900 m,
and 1000 m, and the direction of the pseudo-wakes for each
sample was the same as that of the sample, with the distance
between the pseudo-wakes set to 700 m. Figure 11 shows

the results for the RMSE for each dataset. As shown in the
figure, the RMSE of the gridded bathymetric data obtained
by applying the proposed method decreased for all datasets.

VI. DISCUSSION
In this study, we evaluated the effect of upsampling on bathy-
metric data and confirmed that more detailed bathymetric
data could be obtained from sparse bathymetric data. This is
the first attempt at point cloud upsampling for bathymetric
data and will be the baseline method in this area.

Recently, studies have attempted to improve the quality
of bathymetric data using multisource data fusion [26]. Our
method can be applied to bathymetric data used in the
aforementioned study, and higher-quality bathymetric data
can potentially be obtained.

However, the proposed method has some limitations. First,
the model generates new points based on the training data;
however, the confidence level at these points is unknown.
In the future, if the reliability of the generated points can
be quantified, it will be feasible to use the model in various
applications. Furthermore, as shown in Fig. 11, the effect
of point cloud upsampling tended to decrease when the
distance between pseudo-wakes of sparse bathymetric data
increased. This indicates that it is difficult for the proposed
model to generate detailed data when the input point cloud
contains numerous blank areas. Therefore, wemust verify the
effectiveness of the modules of the current model and make
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TABLE 3. Quantitative evaluation results for each grid method excluding grids corresponding to sparse point clouds Bold type describes the best
performance. LRgrid denotes the gridded data that contains each point in PLR . thr is set to 1.0025.

FIGURE 11. Quantitative results from Kriging and KNN methods The left figure shows the results from the Kriging method and the
right figure from the KNN method. Solid line represents the average RMSE of the gridded bathymetric data generated from the PLR of
each evaluation dataset. The dotted line represents that of the proposed method. The number of samples for the 700 m, 800 m, 900 m,
and 1000 m datasets are 1352, 1351, 1349, and 1344, respectively. This is because the minimum number of pseudo-wakes is three.

improvements that are suitable for bathymetric data. These
issues must be addressed in future studies.

VII. CONCLUSION
We propose a method for obtaining detailed bathymetric
data by applying a point cloud upsampling technique.
To apply this technique, we created a dataset based on
actual bathymetric data and trained a point cloud upsampling
model. Qualitative and quantitative results indicate that
increasing (upsampling) bathymetric data provides more
detailed topographic information. The results showed that
the improvement was more considerable when the seafloor
topography was complex (that is, intricately interwoven
ridges and valleys). As complex seafloor topography requires
more point measurements than flat seafloor topography, the
proposed method can be applied to efficiently understand
bathymetry.

For producing high-quality bathymetric maps, a compara-
tive analysis with grid-based bathymetric super-resolution is
intriguing.

APPENDIX A
TRAINING PROCESS
To verify the reproducibility of the proposed method, the
learning and validation losses in the learning process of the

FIGURE 12. Training loss and validation loss for PU-GCN. The solid line
represents the training data loss curve and the dotted line represents the
validation data loss curve.

PU-GCN are shown in Fig. 12. The chamfer distance is used
as the loss function.

APPENDIX B
QUALITATIVE RESULTS OF POINT CLOUD UPSAMPLING
Figure 13 shows the point clouds that were the sources of
each gridded bathymetric data point in Figs. 9, 10. Also
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FIGURE 13. Each point cloud corresponding to the gridded bathymetric data. The upsampled point cloud (SR) shows that
the data is close to high-resolution point cloud (HR). Please zoom in for more details.

FIGURE 14. Upsampling quantitative results in bathymetric data. We show the input point cloud (2802
points), ×4 upsampled point cloud and high-resolution point cloud. Overall, the generated bathymetric
data is similar to the true value.

shown in Fig. 14 is the data distribution for a sample with
some of the areas zoomed in. The blue regions indicate
that the proposed method produced data close to the true
values. Conversely, the red regions are missing compared

with the other regions, suggesting the need for additional
observations. If the missing area of the observational data
is large, the point cloud completion method may be more
suitable than the upsampling method.
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