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ABSTRACT Under non-Gauss noise condition, the performance of traditional state estimation methods
based on Gauss measurement noise will be greatly reduced. In order to solve this problem, a robust
state estimation method based on Mahalanobis distance under non-Gauss noise is proposed in this paper.
First of all, based on the Mahalanobis distance, the calculation method of optimal buffer length for PMU
measurements is used, which can unify the SCADA measurements with PMU measurements in the same
snapshot. Then, Based on the two-stage processing method, in the first stage, the SCADA measurements
are used for filtering by using maximum likelihood estimator to obtain the estimated values, and then the
estimated values in the first-stage are combined with PMUmeasurements as the second-stage measurements
for filtering, and finally the final results are obtained. Based on the IEEE-39 buses system and IEEE-118
buses system, under Gaussian noise and non-Gaussian noise, the AEE results of proposed method are very
small, and which are all within 10−3, numerical tests under different simulation conditions verified the
robustness and effectiveness.

INDEX TERMS Non-Gauss noise, optimal buffer length, two-stage, maximum likelihood estimator, state
estimation.

I. INTRODUCTION
The purpose of state estimation (SE) is to obtain the voltage
result that is closest to the true value of the network when
given the network topology and parameters [1]. Therefore,
the accuracy of estimation results is influenced by measure-
ment errors and estimation models [2]. However, due to the
measurement error of the measuring device, all measure-
ments are affected and inevitably have errors [3]. Seriously,
the measurements may have large error which is called bad
data in SE [5], [6]. Moreover, due to the changes of operat-
ing environment, network parameters may also change, thus
exhibiting the uncertainty of the SE model [4]. Therefore, the
noise of measurement errors in practice is unknown and may
not necessarily be strictly Gaussian noise [5], [6].
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Nowadays, phasor measurement units (PMU) are widely
deployed in power system [7], but it can not completely
replace the traditional supervisory control and data acqui-
sition system (SCADA) for the time being [10]. The data
collected by PMU and SCADA will coexist in power system
for a long time [8]. In the field of SE, how to combine
SCADA data and PMU data fully and effectively to maximize
the estimation performance is an important focus of current
research [9], [10].
Therefore, the combination of PMU data and SCADA

data for mixed data filtering has been paid more and more
attention [11], [12]. Based on the mixed data processing
method, literature [13] directly mixes PMU data and SCADA
data for estimation. This method is direct, simple and easy
to implement, but it also has the following three disadvan-
tages: (1) First of all, it needs to modify the key parts of the
program, such as Jacobian matrix, which makes its program
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is not extensible [14]; (2) Secondly, when doing SE in each
snapshot, the PMU data and SCADA data are mixed to con-
struct a measurement equation for filtering processing, which
will cause the PMU data and SCADA data to interact with
each other, so that the PMU data with higher measurement
accuracy will be polluted by the SCADA data with lower
measurement accuracy [15]; (3) Thirdly, the sampling fre-
quency of PMU is not synchronous with SCADA data, which
has the problem of data delay [16]. Therefore, it is necessary
to unify the two types of data under the same snapshot when
combining them [17].

The method to deal with bad data can be divided into
two main types, namely methods for looking for bad data
in SCADA measurements and methods for looking for bad
data with multiple data sources such as PMU [18]. The
former method focuses on the use of Lagrange multiplier,
hypothesis tests, or robust estimators for analyzing resid-
uals. In recent years, with the increase of PMU deployed
in the transmission network, the use of PMU measurement
has attracted great attention in the detection of bad key
measurements [19].

Furthermore, most of the current researches assume that
the measurement noise obeys Gaussian distribution [20].
However, in practice, the noise of measurement errors is
unknown and may not necessarily be strictly Gaussian noise,
which may be characterized as heavy tail noise, and is called
non-Gaussian noise in this paper. Under non-Gaussian noise,
the performance of traditional SEmethods based on Gaussian
measurement noise will degrade significantly. At the same
time, as the sampling frequency of PMU and SCADA is
different, the two types of data need to be unified under the
same snapshot.

Therefore, a robust state estimation method based on
mahalanobis distance under non-Gauss noise is proposed
in this paper. The main contributions in this paper are
as follow:

(1) A two-stage state estimationmethod is proposed. Based
on the two-stage processing method, in the first stage, the
SCADA measurements are used for filtering to obtain the
first-stage estimated values, and then the first-stage esti-
mated values and PMU measurements are combined as
the second-stage measurement for filtering, and then the
final results are obtained. The proposed method can effec-
tively avoid the interaction between PMU and SCADA
data compared with the mixed data processing method in
one stage.

(2) The maximum likelihood estimator is used in the
two-stage state estimation, which can limit the influence
of bad data and estimated residuals, and produce good
estimation results for Gauss noise or non-Gauss heavy-tail
distribution noise (such as Laplacian, Gauss mixed and other
non-Gauss noise).

(3) The calculation method of optimal buffer length for
PMU is used based onMahalanobis distance, which can unify
PMU and SCADAdata in the same snapshot when combining
them.

II. NON-GAUSSIAN DISTRIBUTED NOISE AND THE
OPTIMAL BUFFER LENGTH CALCULATION METHOD
A. EQUATION FOR MEASURING NON-GAUSSIAN
DISTRIBUTED NOISE
In practice, we can not know the noise statistics measured
by SCADA or PMU, and the noise of measurement errors
is unknown and may not necessarily be strictly Gaussian
noise. In this paper, the measurement noise is represented
by the following ε-pollution model (i.e., non-Gaussian noise
model):

G(e) = (1 − ε)8(e) + εK (e) (1)

where 8(e) represents Gaussian distribution; K (e) repre-
sents unknown distribution, which is called heavy-tailed
distribution, such as Laplace distribution and Gaussian dis-
tribution with large variance; ε represents contamination
coefficient, which is used to adjust the contribution of
non-Gaussian distribution; G(e) represents non-Gaussian
distribution.

For non-Gaussian noise model (1), by adjusting the con-
tamination coefficient ε, non-Gaussian distribution can be
obtained as follow:

-When ε = 0, it is pure Gaussian distribution noise;
-When 0 < ε < 1, it is non-Gaussian distribution noise;
-When ε = 1, it is pure unknown distribution, such as

Laplace distribution.
Then, the measurement-state equation in the power system

can be formulated as follow:

z = h(x) + G(e) (2)

where z represents the measurement; h(x) represents the mea-
surement function; x represents the state quantity.

B. THE OPTIMAL BUFFER LENGTH CALCULATION
METHOD BASED ON THE MAHALANOBIS DISTANCE
As the sampling frequency of PMU is not synchronous with
SCADA data, so it is necessary to unify the two types
of data under the same snapshot when combining them
[17]. In this paper, the calculation method of optimal buffer
length for PMU is used based on Mahalanobis distance [21],
[22]. All PMU measurement points are treated as a whole,
so that the buffer length of each PMU measurement point is
the same.

The sampling frequency of the PMU is nr = 30 sam-
ples/second. The sampling frequency of the SCADA mea-
surements is Nt = 5 seconds. In this paper, we assume
that the SE is updated every 5 seconds. During two SCADA
sampling intervals, the PMU sampling sequence are N =

Nt ∗ nr = 150PMU samples. The measurement matrix is
Z, and divide Z into nsubset = Nt = 5 subsets, the number
of measurements in each subset is nmeas = 30. Then, the
measurement matrix Z is represented by nsubset = 5 subsets
as: Z = [Y1,Y2,Y3,Y4,Y5],. Y1, Y2, Y3, Y4, Y5 represent
nsubset = 5 subsets of Z .

The calculation steps to determine the optimal buffer
length for all PMU points are as follows:
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(1) Obtain the median value of the matrix Z , which can be
formulated as follow:

Y ′
= median(Z ) =

[
y′1, y

′

2, y
′

3, y
′

4, y
′

5
]

(3)

where: Y ′ represent the median value of the matrix
Z ; median represent the function to get the median
value; y′1, y

′

2, y
′

3, y
′

4, y
′

5 represent the median value of
Y1,Y2,Y3,Y4,Y5.
(2) Change point detection is performed on the latest mea-

surement subset Y5, and if a change occurs, there will be no
PMU buffer and the latest received PMU data, i.e. sample
150 is accepted. Otherwise, Y5 will be included in the PMU
buffer length and proceed to the third step;

(3) Based on Mahalanobis distance, the following matrix
η1 = [y′5, y

′

4], η2 = [y′4, y
′

3],. . . , η4 = [y′2, y
′

1] are used to
detect system changes. The formula for calculating the robust
Mahalanobis distance is:

Pi = max(

∣∣∣yTi v− median(yTj v)
∣∣∣

λ · median(
∣∣∣yTi v− median(yTj v)

∣∣∣) ), ∥v∥ = 1

(4)

where T represent the transposition operation; Pi represent
the Mahalanobis distance; λ represent the correction factor.
If Pi is less than ς1 = χ2

2,0.975, then Y4 will be included in the
PMU buffer length and continue to detect η2 = [y′4, y

′

3], . . .,
η4 = [y′2, y

′

1]. Eventually, we can get the PMU buffer set Z ′.
(4) For the optimal PMU buffer set Z ′, the statistical mean

h̄ and variance C̄ of measurements can be calculated:

h̄ =

∑α
i=1 wihi∑α
i=1 wi

(5)

C̄ =

∑α
i=1 (wihi − h̄)(wihi − h̄)T∑α

i=1 wi − 1
(6)

where α is the number of columns of the PMU buffer set
Z ′, wi is the weight of the i-th column of Z ′, and wi =

min(1, ς2/P2i ), ς2 = χ2
α,0.975.

After the above calculation steps, the optimal buffer length
of PMUmeasurement points can be calculated, and the statis-
tical mean h̄ and variance C̄ of measurements for PMU buffer
can be obtained, which is unified with SCADA data in the
same snapshot.

III. TWO-STAGE ROBUST STATE ESTIMATION METHOD
BASED ON MAHALANOBIS DISTANCE
The method proposed in this paper consists of two stages:

(1) Robust nonlinear SE with using SCADA data, called
the first stage SE;

(2) Robust linear SE with using PMU data and estimated
results from the first stage, called the second stage.

A. FIRST-STAGE MAXIMUM LIKELIHOOD ESTIMATION
BASED ON SCADA MEASUREMENTS
In robust nonlinear SE based on SCADA measurements,
the maximum likelihood estimator is used to deal with

non-Gaussian measurement noise or bad data. The goal is to
minimize the following function J :

J =

m∑
i=1

w2
i ρ(rsi) (7)

where: w2
i represent the weight, wi = min(1, d2/PS2i ), d =

1.5; m represent the number of SCADA measurements; PSi
is a projection statistic; ρ(rsi) is a nonlinear convex function,
which can be formulated as follow:

ρ(rsi) =


1
2
r2si ,

∣∣rsi ∣∣ < c

c
∣∣rsi ∣∣ −

c2

2
, else

(8)

where rsi = ri/swi represent the standardized residual; s
represents robust parameter; ri = zi − hi(x) represents the
residual; c represent the constant.

The robust parameter s can be calculated as follows:

s = 1.1926fm •
lomed

i = 1, . . . ,m
lomed
j ̸= i

∣∣ri − rj
∣∣ (9)

where fm represents the factor; the external operator lomed
represents the low median (i.e., the [(m+ 1)/2] order statis-
tic in the m-th numbers), for example, in number series
‘‘1,2,3,4,5,6’’, 3 is the lowmedian value; the internal operator
lomed represents the high median(i.e., the [m/2] + 1 order
statistic in the m-th numbers), for example, in number series
‘‘1,2,3,4,5,6’’, 4 is the high median value; [ ] represents the
integer operator.

In order to minimize the objective function (7), yields the
partial derivative of (7):

∂J
∂x

=

m∑
i=1

−
wiai
s2i
ψ(rsi) = 0 (10)

where 9(rsi) = ∂ρ(rsi)/∂ρrsi; ai represents the i-th row
element of Jacobian matric H = ∂h/∂x.
The equation (10) is multiplied and divided by the stan-

dardized residual simultaneously, yields:

m∑
i=1

−
wiai
s2i

ψ(rsi )
rsi

rsi = 0 (11)

Then, the following matrix form can be obtained:

HTQR−1(z− h(x)) = 0 (12)

where Q = diag(q(rsi )), q(rsi ) = 9(rsi )/rsi and R =

diag(s2i ); diag represent the diagonal operation.
Newton iteration method is used for (12), and the state

correction equation for the k-th iteration is:

(HTQkR−1H )1xk = HTQkR−1(z− h(xk )) (13)

The convergence condition is:

∥1xk∥∞ = ∥xk+1 − xk∥∞ ≤ 10−3 (14)
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FIGURE 1. The first stage calculation flowchart based on SCADA
measurements.

To improve numerical robustness, using the Givens rota-
tion, the equivalent form of the reconstructed state correction
equation is:

(Q1/2
k R−1/2H )︸ ︷︷ ︸

H̃

1xk = Q1/2
k R−1/2(z− h(xk ))︸ ︷︷ ︸

Z̃

(15)

where H̃ represents corrected Jacobian matric in first stage; z̃
represents corrected measurements in first stage.

The covariance matrix 6 of the maximum likelihood state
estimator is [22]:

6 =
E8

[
92(rs)

]
{E8 [9 ′(rs)]}2

(HTH )−1(HTQwH )(HTH )−1 (16)

where E8 represent the probability distribution of r ; Qw =

diag(w2
i ).

The first stage of robust SE based on SCADA measure-
ments is calculated as follows:

(1) Initialize the state quantity x, set the convergence
threshold ε, the maximum iterations K max and the num-
ber k=0 of current iteration;

(2) calculate the Jacobian matrix H ;
(3) calculate the diagonal matrices Q and R;
(4) Calculate the increment of state quantity 1xk ;
(5) If max |1xk | < ε, the algorithm converges, otherwise,

go to step (6);
(6) xk+1 = xk +1xk , k = k + 1, go to step (2).
The calculation flowchart for the first stage SE is shown in

Figure 1.

B. SECOND-STAGE MAXIMAL LIKELIHOOD ESTIMATION
BASED ON PMU MEASUREMENTS
The PMU configured on the bus can measure the voltage
phasor and branch current phasor. In the second stage SE,
PMU measurements are combined with the estimated results
from the first stage as the second stage measurements, and
the measurement equation is as follow:

Z = Ax + ε (17)

where Z =
[
xs zp

]T represent measurement vector in the
second stage, including PMU measurements zp and the esti-
mated results from the first stage xs; A =

[
I M

]T represents
the correlation between measurements Z and state variable x,
I represents identitymatrix,M represents the constant matrix,
it is a linear correlation between PMU measurements and
state variables; ε =

[
es ep

]T represents the error vector of
Z , whose covariance matrix P = E

[
εεT

]
= SST ,RP =

diag(σ 2
p1, . . . , σ

2
pN ), es and ep represents the error vector of xs

and zp; S can be calculated by the Cholesky decomposition.
Multiply S−1 in both sides of equation (17), we can get:

y = Gx + ξ (18)

where y = S−1Z represent the corrected measurements;
G = S−1A represent the Jacobian matric in the second stage;
ξ represents the error vector of y, E

[
ξξT

]
= I .

Similar to the first-stage maximum likelihood estimation
solution, establishing the objective function and minimizing
it, yields:

GT Q̃(y− Gx) = 0 (19)

where Q̃ can be calculated as Q in the first stage. Using New-
ton iteration method for (19), the state correction equation for
the j-th iteration is:

Q1/2
j G︸ ︷︷ ︸
Ĥ

1xj = Q1/2
j y︸ ︷︷ ︸
Ẑ

(20)

where Ĥ represents corrected Jacobian matric in second
stage; ẑ represents corrected measurements in second stage.

The calculation process of the first stage and the second
stage is basically the same. The comparisons between the first
stage filtering and the second stage filtering are as follows:

(1) The use of measurement is different. In the first stage,
SCADA measurement is used, and in the second
stage, the estimation result of the first stage and PMU
measurement are combined as the second stage mea-
surement.

(2) The measurement equation is different. The first stage
measurement includes nonlinear measurement such as
power, and the measurement equation is nonlinear.
In the second stage, all measurements are linear mea-
surements such as voltage phasor and current phasor,
and the measurement equation is linear equation.
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FIGURE 2. The flowchart of robust SE method based on Mahalanobis
distance.

C. THE STEPS OF TWO-STAGE ROBUST STATE ESTIMATION
Under non-Gaussian noise, the steps for calculating the
two-stage maximal likelihood robust SE based onMahalosto-
bis distance are as follows:

(1) Enter the basic data, initialize the state quantity x, set
the convergence threshold;

(2) Calculate the optimal PMU buffer length and obtain the
statistical mean h̄ and variance C̄ of the PMU buffer;
(3) First-stage SE based on maximum likelihood algorithm

using SCADA data;
(4) Combining the first-stage SE results with PMU data to

carry out the second-stage SE to obtain the final results.
The calculation steps of the two-stagemaximum likelihood

robust SE method based on Mahalanobis distance are shown
in Figure 2.

IV. NUMERICAL TEST AND ANALYSIS
A. SIMULATION DATA
Based on the IEEE-39 buses system, numerical tests under
different simulation conditions are conducted to verify the
robustness and effectiveness of the proposed method. The
structure of the IEEE-39 buses system is shown in Figure 3.
In IEEE 39 buses system, there are 39 buses, 10 generators
and 46 branches. All the measurements are obtained on the
MATLAB simulation platform based on IEEE 39 buses stan-
dard system.

The measurement configuration of the system is: SCADA
measurements are fully configured based on the results of
traditional power flow calculation, which is assumed true
value in the system. The corresponding error is added in
the true value as the measurement. Eight PMU measurement
points are deployed on buses 7, 11, 13, 22, 27, 28, 30 and
32 to increase the measurement redundancy. The PMU can
measure the bus voltage phasor and branch current phasor,

FIGURE 3. IEEE-39 buses system structure diagram

FIGURE 4. The AEE of the voltage amplitude under Gaussian noise.

including their amplitude and phase angle. No. 31 bus is used
as the phase reference point, and the parameters in this paper
are set to c = d = 1.5.
A two-stage weight least square (WLS) non-robust estima-

tor is used to compare with the method proposed herein, and
the absolute estimation error (AEE) is used to evaluate the
estimation accuracy. AEE is defined as follow:

AEE = |xestimated − xture| (21)

where xestimated represents estimated value; xture represents
true value.

B. SIMULATION RESULTS AND ANALYSIS
(1) Simulation results under Gaussian noise

Under Gaussian noise, ε=0, for SCADA and PMU mea-
surement, measurement error is assumed 1.5% and 0.15%
Gaussian noise, respectively. In this case, the AEE of the
two-stage WLS and the method proposed herein are shown
in Figure 4 and Figure 5.
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FIGURE 5. The AEE of the voltage angle under Gaussian noise.

FIGURE 6. The AEE of the voltage amplitude under first type of Gaussian
noise.

From Figure 4 and Figure 5, it can be found that the AEE
results of the two-stage WLS non-robust estimator and the
proposed method in this paper are all very small. Further-
more, under Gaussian noise, most of the results estimated by
the proposedmethod are much better than theWLS. The AEE
of voltage amplitude inWLS are all within 10−4, and theAEE
of voltage amplitude in the proposed method are all within
10−5, therefore, the proposed method has better estimation
performance than WLS.

(2) Simulation results under non-Gaussian noise
Under non-Gaussian noise, two types are considered:
-Use the ε-pollution model with ε=0.12. For SCADA and

PMU, whose variance is assumed 10−4 and 10−6 respectively
to represent Gaussian noise 8(e). For K (e), 100 times vari-
ance of 8(e) is used for SCADA and PMU;
-Use the ε-pollution model with ε=1. Noise for SCADA

and PMU measurements error using Laplace distribution,
whose mean is zero and scale parameter is set at 1.2.

FIGURE 7. The AEE of the voltage angle under first type of Gaussian
noise.

FIGURE 8. The AEE of the voltage amplitude under the second type of
Gaussian noise.

Under the first and second non-Gaussian noise, the AEE
results of the two-stage WLS and the method proposed in
this paper are shown in Figure 6 and Figure 7, Figure 8 and
Figure 9.
From the results of Figure 6 to Figure 9, and comparing

them with Figure 4 and Figure 5, it can be found that the
estimated AEE of the two-stage WLS estimator in Figure 6
to Figure 9 is much higher under non-Gaussian noise and
Laplace noise, compared to the estimated AEE obtained in
Figure 4 and Figure 5 under the assumption of Gaussian
measurement noise. Furthermore, in Figure 6 and Figure 8,
the AEE of voltage amplitude estimated by WLS are all
within 10−3, and the AEE of voltage amplitude estimated
by the proposed method are all within 10−4. And seen from
Figure 9, the AEE of voltage angle estimated by WLS are
larger than the proposed method. Obviously, the proposed
robust estimator herein can effectively constrain the influence
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FIGURE 9. The AEE of the voltage angle under the second type of
Gaussian noise.

FIGURE 10. The AEE of the voltage amplitude in IEEE 118 buses system.

of heavy thick-tail distribution, not only the results are signif-
icantly better (the AEE results are all smaller than WLS), but
also the method itself can maintain good estimation statistical
efficiency under Gaussian or non-Gaussian noise environ-
ment.

In order to prove the effectiveness of the proposed method
in other IEEE standard networks, further simulation is carried
on IEEE 118 buses system. Simulation conditions are consis-
tent with ‘‘the ε-pollution model with ε=1’’. The AEE results
of the two-stage WLS and the method proposed in this paper
are shown in Figure 10 and Figure 11.

From Figure 10 and Figure 11, it can be seen that the
AEE of the proposed method in this paper are still smaller
than WLS. The results are basically consistent with those
of IEEE 39 buses system, which shows that the proposed
method is still effective in other IEEE standard networks
as well.

FIGURE 11. The AEE of the voltage angle in IEEE 118 buses system.

V. CONCLUSION
In this paper, a robust SE method combining SCADA and
PMU measurements under non-Gaussian noise is proposed.

(1) By using the Mahalanobis distance, the optimal PMU
buffer length for PMU measurement is calculated, which can
unify the SCADAmeasurements with PMUmeasurements in
the same snapshot.

(2) The proposed robust two-stage SE method can effec-
tively avoid the interaction between PMU and SCADA data
compared with the mixed data processing method in one
stage.

(3) By using the maximum likelihood estimator, the pro-
posed method can effectively limit the influence of unknown
heavy-tailed non-Gaussian noise and meanwhile maintain
good robustness.

Under Gaussian noise and non-Gaussian noise, the AEE
results of proposed method are all very small, and which are
all within 10−3. Numerical tests under different simulation
conditions verified the robustness and effectiveness.

In the follow-up research, the research on the defense
of false data attack in power system and the research on
the detection and identification of false data combined with
cyber-physical systems model will be carried in the future.
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