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ABSTRACT The current work proposes an efficient assessment of hypertension (HTN) using a
Directional-Guided Motion Sensitive (DGMS) descriptor and Machine Learning (ML) algorithm. The main
objective of the proposed work is to automate the detection of HTN using ultrasound (US) images. The
four-chamber US images from 70 healthy subjects and 70 HTN patients are collected. A novel pipelined
architecture has been developed in two stages with four phases: preprocessing, feature extraction using
DGMS descriptor, feature ranking and selection, and classification using shallow K-Nearest Neighbor
classifier. The proposed model has achieved a classification accuracy of 98% using a set of prominent
features, predominating the performance attained by other approaches. This study suggests US contains
predictive signals even when standard measures are normal and lays the groundwork for artificial
intelligence-assisted cardiac assessment to aid quicker, more objective diagnosis and earlier treatment.
If further validated on additional diverse patient data, the technology could be integrated into clinics to
enhance HTN detection through automated, early discernment of subtle manifestations missed by human
eyes and traditional metrics.

INDEX TERMS Computer aided diagnostic tool, directional-guided descriptor, hypertension, shallow
classifier, ultrasound images.

I. INTRODUCTION
Hypertension (HTN) is one of the leading causes of
cardiovascular disease (CVD) morbidity and mortality. HTN
is diagnosed when a consistent systolic Blood Pressure
(BP) reading is ≥ 140 mmHg and/or diastolic BP of ≥

90 mmHg [1], [2], [3]. Based on office BP recordings, global
prevalence of HTN is 32% in adults aged between 30 and
79 years [4]. Major cardiovascular complications of HTN
include ischemic heart disease, myocardial infarction, sudden
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death, heart failure, ischemic stroke, hemorrhagic stroke,
end-stage renal disease, and peripheral artery disease [5],
[6]. The risk of complications is independently related
to the presence of Hypertensive-Mediated Organ Damage
(HMOD) among HTN patients [7]. HMOD refers to the
presence of structural or functional changes in arteries or
end organs (heart, brain, eyes, kidney, and blood vessels)
caused by elevated BP. Several important HMODs such as
cardiac, retinal, and vascular changes become markers of
preclinical/asymptomatic CVD and have shown prognostic
significance in HTN patients even in the absence of other
cardiovascular risk factors [8]. The presence of single or
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FIGURE 1. Structure of normal and HTN heart.

multiple forms of HMOD is common (not rare) and possesses
a significant increase in cardiovascular risk [9], [10], [11].
Screening and detection of these HMODs are essential
in the evaluation of patients with HTN for risk stratifi-
cation and prognostication. Common patterns of HMOD
are Left Ventricular Hypertrophy (LVH), arterial stiffening,
and Chronic Kidney Disease (CKD) with albuminuria and
proteinuria [12].

Based on the presence and extent of HMOD and other
comorbidities, HTN can be classified as uncomplicated
Stage 1 HTN, asymptomatic Stage 2 HTN, and established
disease with Stage 3 HTN. Figure 1 shows the structural
difference between normal and HTN hearts. These stages
along with individual BP recording status have been used
in the scoring for the risk stratification of cardiovascular
disease [13]. In this aspect evaluation of patients with HTN
requires thorough clinical history, physical examination, and
diagnostic tests to rule out HMODs and other morbidities.

Throughout the disease, the heart is the important end
organ that shows changes in HTN patients. The chronic
burden of increased workload to the left ventricle (LV) leads
to LVH, abnormalities in the LV relaxation, development
of arrhythmias (atrial fibrillation), and heart failure. HTN
increases the workload to the heart leading to structural and
functional alteration in the heart. The spectrum of proven
cardiac changes in HTN is also denoted as hypertensive heart
disease that ranges from asymptomatic LVH to advanced
heart failure. This includes diastolic heart failure with
preserved LV ejection fraction, systolic LV failure, or a
combination of both. Such patients with uncontrolled HTN
are disposed to acute cardiac events such as decompensated
heart failure, acute coronary syndrome, or sudden cardiac
death. HTN also disrupts the endothelial function on the
arterial wall layer, which becomes the precursor for the
development of atherosclerotic plaque on the vessel wall.
This provokes the development of coronary artery disease and

peripheral artery disease. Evaluation of the heart is one of the
key steps in the assessment and management of these HTN
patients [14], [15], [16].

Electrocardiography (ECG) is the first line of diagnostic
tests that can be used to evaluate for the presence of LVH and
arrhythmias. The incidence of LVH in ECG is directly related
to the severity of HTN. As the ECG exhibits poor sensitivity
in the diagnosis of LVH, Echocardiography is recommended
as this influences the treatment decision [14], [15], [16], [17].
2D Trans Thoracic Echocardiographic (TTE) diagnosis of
LVH is a strong predictor of mortality in HTN and general
populations [18], [19]. 2D TTE assessment will also provide
detailed information on LV geometry, chamber volume, and
function [18], [20]. Echocardiography is also used to evaluate
the aortic size and diagnose coarctation of the aorta, one of the
causes of secondary HTN.

Further, screening for blood vessel-related HMOD, carotid
ultrasound, pulse wave velocity, and ankle-brachial index is
used. Carotid intima-media thickness and plaques can be
quantified using carotid artery ultrasound imaging which
predicts cardiovascular risk [21], [22]. Carotid-femoral pulse
wave velocity is efficient in the diagnosis of arterial
stiffness [23]. Screening for CKD is an important part of
the evaluation process as HTN stands the second most
common cause of CKD [24], [25]. Additionally, fundoscopy
is used in the diagnosis of hypertensive retinopathy [26].
Meanwhile, HTN also increases the prevalence of brain
damage in the form of transient ischemic attack and stroke.
However subtle asymptomatic changes in the brain have been
documented in Magnetic Resonance Imaging (MRI) scans in
HTN patients [27], [28]. New onset HTN may show cardiac
findings similar to that of normal well-being. Furthermore,
HTN cannot be diagnosed based on one reading. In a few
circumstances, office BP recording shows high readings,
while the true BP remains normal which is termed white coat
HTN. Meanwhile, few demonstrated masked HTN features
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where office BP recording shows the normal range and home
reading shows elevated BP About 10% to 30% of patients
with high BP readings have white coat HTN and 10% to
15% of them will have masked HTN. Hence the diagnosis
of HTN necessitates multiple BP readings checked during at
least 2 to 3 office visits along with 1 to 4 weeks intervals
unless the BP is more than 180/110mmHg [29]. Because of
this variability, it would be prudent to have a modality that
doesn’t depend just on the BP measurement but incorporates
other measurements to improve the accuracy of the diagno-
sis [29]. Echocardiographic evaluation holds good when it is
associated with LVH. Whereas in the early stages, LVH may
not be evident among them, and the LV size and structure may
appear normal. In addition, manual interpretation of HTN and
HMOD requires specialists and may lead to human errors.
This raises the need for automated evaluation tools in patients
who are diagnosed with HTN which may demonstrate
an objective way to assess subtle myocardial changes in
the heart. Hence, computer aided diagnostic (CAD) tools
have been developed by various researchers as one of the
prospective solutions using Ultrasound (US) images to avoid
human errors [30], [31], [32], [33], [34]. US imaging of heart -
echocardiography is the widely used imaging modality in the
evaluation of heart diseases. Patients visiting the cardiology
department invariably undergo echocardiographic testing for
the evaluation of the heart’s structure and function. In this
aspect, US imaging of the heart in HTN patients facilitates
the evaluation and extent of cardiac involvement in them.
US imaging is a feasible diagnostic test and is lower priced
than MRI and computed tomography. Hence, we used the US
imaging modality for this research study.

II. LITERATURE REVIEW
Generally, CAD tools are widely used for the automated clas-
sification of medical images, signals, and clinical attributes.
A survey was conducted from 2007 to 2016 on U.S. residents
related to demographic, health, and nutrition information etc.,
and the National Health and Nutrition Examination Survey
database was prepared (http:www. cdc.govnchsnhanes.htm).
In [35], a study on this database using an artificial neural
network-based model is conducted to evaluate the association
of BMI, smoking, age etc., on hypertensive patients. The
study attained an Area Under Curve (AUC) of 0.77 suggest-
ing it can be used as a complementary tool to assist clinicians
in recognizing high-risk hypertension patients. In [36],
Mahalanobis (MAH) distance was used to detect HTN
by removing multivariate outliers. The next stage was the
predictive analysis for the detection of HTN. In this stage, the
dataset was applied to multiple algorithms, and it was found
that the MAH algorithm with random forest have attained
an accuracy of 99.48%. Apart from questionnaire-based
studies, research was also conducted to detect hypertension
using various modalities such as ECG [37], [38], [39],
US images [30], [31], and Photoplethysmography (PPG)
signals [40], [41], A machine learning (ML)-based approach

was proposed to detect patients with the probability of
developing pulmonary hypertension (PH) [42]. The study
utilized the data from an electronic health record (EHR)
database. The model has a prediction rate of 0.92 Area
Under the Curve - Receiver Operating Characteristic curve
(AUROC). This model also categorizes the pulmonary arte-
rial hypertension and chronic thromboembolic pulmonary
hypertension subjects. The local interpretable model was
used for the identification of hypertension using ECG
signals [39]. They have used PhysioNet database and hospital
database collected from Yanbian University Hospital, China.
They have achieved an accuracy of 93.33% for the database
collected from the hospital database. In [39], the hybrid
approach is proposed by combining a Convolutional Neural
Network (CNN) and Support Vector Machine (SVM) to
categorize hypertensive and normotensive using ECG signals.
However, Ballistocardiograph (BCG) showed a better result
of 92.21% accuracy using K-Nearest Neighbor (KNN)
classifier [43]. In [31], US images are categorized using
a Globally Weighted Local Binary Pattern (GWLBP) with
entropy and SVM classifier resulting in ∼ 92% accuracy.
Various ML-based techniques are proposed by researchers
for the detection of HTN. However, the training time needed
for these models is a concern since most models take a
sufficiently longer time [44]. The utilization of various
feature selection techniques may help in optimizing the
models thus making it readily available for clinicians in real-
time scenarios.

We have reviewed and summarised related work for the
detection of hypertension using various modalities. We know
that it is just the exploration of available related work and
not follow the systematic review process. However, the
systematic review approach can be further explored for the
benefit of stakeholders, researchers, and doctors in the future.
Table 1 shows the findings of various approaches in terms of
used modalities, methods, and results.

A. LITERATURE GAPS
From Table 1 it is observed that there are very few works
reported for the automated detection of HTN based on
ML and deep learning techniques using various modali-
ties. However, the method using US images has achieved
maximum specificity and sensitivity, as compared to the
other methods. It is also noted that only two works are
available using heart US images. Furthermore, the utilization
of heart US images for the identification of HTN helps to
understand the structural changes of cardiac in HTN patients.
Therefore, we proposed to capture a micro-level texture
descriptor for US four-chamber heart images. Though it is
very significant research work, there is a dearth of publicly
available four-chamber heart US images. The four-chamber
view of the heart in US imaging depicts all 4 chambers of
the heart, i.e. left atrium, left ventricle, right atrium, and right
ventricle. Increased BP in HTN patients directly increases
the workload on the left ventricle, which pumps the blood
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TABLE 1. Various methods for the detection of hypertension using ML-based and deep learning approaches.

towards the aorta with high BP. Also, in advanced stages of
HTN, the left atrium tends to dilate to compensate for the
left ventricular filling pressure that is altered due to increased
stress. As the four-chamber view displays the long axis view
of the left ventricle and left atrium, we extracted these images
for the development of an Artificial Intelligence (AI)-based
automated detection model.

The literature gaps are identified and listed as given below.

• There is a lack of publicly available four-chamber US
heart image datasets for research. This work provides a
substantial dataset of 4200 images.

• Prior studies utilize only small image datasets (112
images total across existing works). This work leverages
4200 images to better represent disease variability.

• Most existing works rely on signals or clinical attributes
rather than cardiac imaging data for HTN detection.
This work is among the first to demonstrate ultrasound’s
capabilities.

• No prior study extracts micro-level texture features
sensitive to structural manifestations in the heart. This

work pioneers a directional guided motion descriptor for
subtle texture characterization.

In summary, by using a sizable dataset and novel
imaging-based analysis using granular texture features, this
work addresses significant data and methodological gaps
impeding progress. The high accuracy achieved underscores
ultrasound’s potential and the utility of an integrated CAD
system for enhanced diagnostic support.

B. MOTIVATION AND OUR PROPOSED APPROACH
Clinical suspicion for HMOD increases based on the history
and presentation. Cardiac changes in the form of LVH and
LV diastolic impairment are the most prevalent changes that
can be seen in HTN patients. Certainly, echocardiography
is a feasible diagnostic method for cardiac structural and
functional abnormalities, this has been widely used in the
evaluation of HTN patients. Yet, cardiac structure and
function may remain normal as per the echocardiographic
evaluation, especially during the early stages of HTN, where
echocardiography cannot rule out HTN. Subtle changes in

3662 VOLUME 12, 2024



A. Gudigar et al.: Directional-Guided Motion Sensitive Descriptor for Automated Detection

FIGURE 2. Architectural illustration of the proposed method.

the myocardium may not be picked by the human eye.
On this facet, we aimed to compare cardiac US images of
HTN patients and healthy controls drawn from transthoracic
echocardiography to develop an automated identification
model in the evaluation of HTN. In this regard, we have
collected four chamber US heart images from more number
of patients and tested the proposed model with the same.

The proposed method comprises two key stages i.e.,
Stage I and Stage II. In Stage I: Initially, the binary mask
superimposing technique on the input US images is used
to acquire only a four-chamber heart view. Further, a novel
texture descriptor i.e., Directional-Guided Motion Sensitive
(DGMS), based on pixel directions is used to extract the
microlevel texture features from the preprocessed US heart
images. These features help to extract the discriminative
feature vectors among normal and HTN hearts. In Stage
II: To reduce the dimensionality of the feature vector,
we have incorporated feature ranking using an entropy-based
technique and are selected based on its significance values.
Further, the selected features are classified using shallow
classifiers to predict HTN conditions in the heart. Moreover,
the performance measures showed that the proposed DGMS
descriptor on US heart images contributes to producing
discriminative features. The rough idea of our approach is
illustrated in Figure 2. A detailed description of the proposed
method is given in the following sections.

C. CONTRIBUTIONS
Themain contributions of the proposed work are listed below,

• The identification of HTN using four chamber heart
images is a critical research area, liable to human bias.
To contribute to this area of research, we have proposed
a novel descriptor to capture the heart motion.

• To the best of our knowledge, first time we have
spawned the new database which comprises a greater
number of four-chamber healthy and HTN heart US
images.

• The proposed system achieved a promising accuracy
of 98% using a reasonably small set of significant
handcrafted features with the help of a shallow classifier.

III. MATERIALS AND METHODS
A. DATASET DESCRIPTION
This retrospective study included cardiac US images drawn
from 70HTN patients (mean age 48± 8 years) and 70 healthy
controls (mean age 46 ± 10 years). The study protocol
was approved by the institutional ethics committee. Patients

FIGURE 3. Some example images of normal and HTN used in the study.

with significant valvular problems, congenital heart disease,
ischemic heart disease, patients not in sinus rhythm or having
irregular heart rates, and cardiomyopathies were excluded
from the study. Recorded apical four-chamber view loops
for each participant was obtained from the Vivid S-60
echocardiographic machine, GE Healthcare system.

These four chamber view clips were recorded and gated
with ECG including ≥1 cardiac cycle. Based on correspond-
ing ECG waveforms we further extracted 15 images from the
diastolic phase (frames between the second half of the Twave
to Q wave) and 15 from the systolic phase (frames between R
to first half of the Twave) from each participant’s data. Hence
there were 30 images drawn per individual subject. Overall,
there were 2100 images in the HTN group and 2100 in the
control group. Figure 3 shows the sample US images used in
the present study.

B. APPROACH DESCRIPTION
In this section, we present a detailed pipelined description of
Stages I and II of the proposed approach.

1) STAGE I
Stage I comprises twomain blocks namely, preprocessing and
DGMS descriptors. The detailed description is presented in
the below section.

a: PREPROCESSING
This is the primary step in which the irrelevant information
such as heart rate signal, grayscale margin, some labels,
etc., are removed and the region of interest (ROI) i.e., four-
chamber heart image is extracted. The irrelevant information
is removed by cropping the image using empirically selected
image coordinates. Further, we have generated the binary
mask using the method available in [48] as shown in Figure 4.
The generated mask is then superimposed on every input
image to get the ROI. Subsequently, the median filter of
size 5 × 5 is applied to improve the quality of ROI and
eliminate the noise. Finally, the obtained images are resized
to 256 × 256 to preserve the generality and it offers superior
results when using handcrafted feature techniques [48], [49].

b: DGMS DESCRIPTOR
The micro-level texture features play a significant role
in interpreting the underlying variations present in
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FIGURE 4. Preprocessed images generated using a binary mask.

four-chamber heart images. Hence DGMS descriptor is
proposed to discriminate normal and HTN heart US images.
Figure 5 shows the complete architectural flow for computing
the DGMS feature vector and the detailed description is given
below.

Consider a pixel coordinate (uc, vc) of an image I is IC (i.e.,
central pixel) and IP(P = 0, 1, . . . ., 7) be the surrounding
pixels of the IC for an image patch 3×3 excluding the central
pixel, as shown in Figure 5. As used in the Local Directional
Pattern (LDP), we have incorporated 8 Kirsch masks (KM )
which are employed in directions of nearby pixels IP(P =

0, 1, . . . ., 7) [50]. Hence for these directions, it determines
the variations in the intensity. Further the 8 Kirsch mask
responsesMRP, w.r.t the pixel intensities IP(P = 0, 1, . . . ., 7)
are computed. Individually these pixels are assigned to a digit
between zero to seven based on its weight (i.e., with less
intensity lN ) in the original image according to the magnitude
of the Kirsch mask responses (i.e.,|MRP|). Herein threshold
δ is considered as 4, so that 50% of the selected surrounding
pixels are assigned by 1 and others are 0, to balance pixel
weightage.

Then the DGMS value is determined by

DGMS(uc, vc) =

7∑
N=0

g (IN − IC ) .2lN (1)

where,

g(s) =

{
1, if s ≥ 0.
0, otherwise.

(2)

and N is the pixel position in the new path as shown in
Figure 5.
This new path helps to get the edge responses in a zig-

zag way, which predominantly preserves the inherent motion
of the heart valve. Once the DGMS coding is performed
on the entire four-chamber heart image, the non-overlapping
blocks with different sizes are generated on the resultant
image (i.e., bo, o = 1, 2 . . . , 6). These non-overlapping
blocks are empirically selected to extract the areas of the
pixel of interest. Finally, the histograms are computed on
non-overlapping blocks (i.e., hbo) and are concatenated to
form the DGMS feature model as described in (3), which is
expected to represent the local micro-level structure of the
heart.

DGMS feature model = hb1∥hb2∥hb3∥hb4∥hb5∥hb6 (3)

where, ∥ is the concatenation operator.

2) STAGE II
Stage II comprises two main blocks namely, Feature ranking
and selection, and classification. The detailed description is
presented in the below section.

a: FEATURE RANKING AND SELECTION
The main rationale of the feature selection is to eliminate
unnecessary information and keep the significant features.
Thus, improves the performance of the ML algorithm by
reducing the feature dimensions [51]. To be specific, our
problem of concern is binary classification, wherein feature
sets belong to normal and HTN. Hence, we have used an
entropy-based ranking approach to calculate the p-value and
criterion [52]. It uses the relative entropy (i.e., Kullback-
Leibler distance) measures to evaluate the significance of the
features [52]. Herein the features with maximum divergence
are considered as more appropriate for separating the classes.
Hence the ranking of features is performed by arranging them
in descending sequence by the criterion value. Finally, a set
of features are selected based on the p < 0.001. This process
allowed us to obtain the best feature vector, which is further
used to train and test various classification method.

b: CLASSIFICATION
In the pursuit of an effective classification solution,
we embarked on the classification task after feature selection
utilizing two primary techniques: KNN [53] and SVM [54].
To enhance the diversity and quality of our extracted features,
we delved deeper into these techniques by employing a range
of sub-techniques. The information on all these techniques
has been mentioned below in brevity.

c: KNN
It is a simple and effective ML algorithm used for classifi-
cation and regression tasks. It operates by assigning a data
point’s class label based on the majority class of its KNN in
the training dataset. KNN’s performance can be influenced
by the choice of K hyperparameter, namely Fine KNN with
K = 1 [55], [56], Medium with K=10 [55], [56] and Coarse
with K=100 [55], [56] and in terms of distance metric used
for neighbor identification. We employed Cosine KNN [55],
[56] with cosine distance, Cubic KNN [55], [56] with a cubic
distance metric and lastly, weighted KNN [55], [56] with
weighted distance metric i.e., weighing nearby neighbors
more heavily. These improve the classification task and help
broaden the spectrum of feature representations.

d: SVM
It is a powerful supervised ML algorithm. It works by finding
a hyperplane that maximizes the margin between different
classes, effectively separating data points into distinct
categories. SVM is particularly effective in high-dimensional
spaces and can handle both linear and non-linear data separa-
tion using pertinent kernel functions; here we leveraged linear
kernel for linearly separable data and a host of non-linear
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FIGURE 5. Illustration of generation of DGMS descriptor.

kernels for non-linear data, namely Gaussian (radial basis
functions) [57], [58].

G(xa, xb) = exp

(
−

|xa − xb|2

2σ 2

)
= exp(−r |xa − xb|2) (4)

where, r =

√
q
4 for fine Gaussian, r =

√
q for median

Gaussian.
For polynomial functions [58], [59]

G(xa, xb) =

(
1 + xTa xb

)
(5)

where, σ represents the width of the kernel, q is the number
of features or the dimension size of xi and xa, xb are feature
points.

We explore many variants within these to improve the
robustness and accuracy of our classification results, namely
fine [58] and median Gaussian [58] function median Cubic
and quadratic polynomial functions [59] for the former and
latter respectively. These facilitated the extraction of a wide

array of feature representations, each tailored to the nuances
of our dataset.

IV. EXPERIMENTAL RESULTS
In the current study, we have proposed a novel descriptor
called DGMS descriptor or feature model. In this section,
we have presented the results obtained using this descriptor.
The complete proposed model is implemented on a system
with the following specifications: Core i5-1235U, 1.30 GHz
and RAM of 8 GB. We have used MATLAB R2022a envi-
ronment to develop and test the proposed model. Initially, the
feature of size 1536 is extracted using 256×256 preprocessed
four-chamber heart images. The coding was performed for
δ=4. Further, the significant features are selected using
an entropy-based ranking method. We have selected highly
ranked 585 features with p<0.001. The selected significant
features are further classified using a 10-fold cross-validation
approach. For the classification, the MATLAB classification
learner tool is utilized. Herein shallow classification models
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FIGURE 6. Confusion matrices using a) Bhattacharyya and b) entropy
methods.

FIGURE 7. Specificity (%) and sensitivity (%) plot for various ranking
approaches.

such as KNN and SVM are used to select the best possible
classifier for the proposed feature model.

A. RESULTS
The problem of concern is a two-class classification problem,
as it uses the feature sets for normal and HTN. Generally,
there are four performance evaluation measures available for
CAD systems. Hence, in this work, we have used accuracy,
sensitivity, specificity, and AUC. By assessing these mea-
sures, we were able to gain a comprehensive understanding
of the classification capabilities of the proposed method.

Table 2 shows the performance using KNN and SVM
classifiers using different ranking approaches such as Bhat-
tacharyya, entropy, Receiver Operating Characteristic (ROC),
t-test, andWilcoxon [52], [60], [61]. The best three classifiers
from KNN and SVM classifiers are shown in Table 2.
It is observed that Weighted KNN has achieved the highest
accuracy of 98% using the entropy ranking method.

It is observed that the weighted KNN has achieved the
highest specificity, sensitivity, and AUC of 98.4%, 97.5%
and 1 respectively using the entropy method. Figure 6 shows
the classification performance using confusion matrices of
the best ranking methods for the weighted KNN classifier.
It is observed from Figure 6 that Bhattacharya and entropy
methods have the misclassification observations 89 and
86 respectively. Figure 7 shows the performances of all
the ranking methods. It is observed that the accuracy of
Bhattacharyya and entropy ranking methods achieved better
performance as compared to other techniques.

It is also observed that the accuracy and precision of the
entropy technique is 0.1% higher than the Bhattacharyya

technique. Hence entropy ranking approach is considered the
best ranking approach for the proposed feature extraction
technique. The results exhibit that the proposed model
reached promising results using shallow classifiers.

It is observed from the related work that only two works
have been proposed to identify the HTN using four-chamber
heart US images [30], [31]. Moreover, these works have
utilized only a few US images from the patients. The
sensitivity and specificity achieved by the graph embedding is
100%, however, only one image per subject is utilized [30].
A greater number of frames to cover one complete cardiac
cycle is utilized and proposed GWLBP [31]. Moreover,
they could be able to achieve a specificity of only 87.33%.
The proposed method achieved a specificity of 98.4% by
considering more number of patients. From this observation,
we can conclude that the proposed system identifies almost
all normal patients correctly.

V. DISCUSSION
In the present study, we have developed a handcrafted
feature learning approach by combining DGMS descriptor,
entropy ranking method, and shallow classifier. This provides
a different dimension in the field of feature extraction
technique, as it results in a classification accuracy of 98%.
The proposed DGMS helps to extract significant features
from the heart valve. As a result, a set of distinct features
contributes to achieve remarkable system performance.
Table 3 shows the mean (mn) and standard deviation (sd) of
extracted features for HTN and normal classes. We have used
38% of the extracted features based on its significance (p <

0.001) to establish the best classification model. In Table 3
only initial 10 features are shown to restrict the area constraint
for the table. Further, to show the distributions of the features
scatter plot is drawn and is shown in Figure 8. It is noted that
non-ranked features have achieved a classification accuracy
of 78.8%. From Figure 8 it is observed that ranked DGMS
features are more distinctive and more significant when
compared to non-ranked features.

A. COMPARATIVE STUDY
Initially, to understand the usefulness of the Kirsch Masks
(KM ), we used Frei–ChenMasks (FCM ) and RobinsonMasks
(RM ) [62]. Firstly, we combined(KM ) and (FCM ), and then
(KM ) and (FCM ) and (RM ) are combined, it is observed that
Kirsch masks alone have achieved the highest accuracy and
specificity. Hence, Kirsch masks can understand the edge
information in all the directions of the heart valve in a better
way as compared to other masks (please refer to Table 4).
Further to show the efficiency of the proposed method we

have evaluated the proposedDGMS feature descriptor against
popular descriptors such as Local Binary Pattern (LBP) [63],
LDP [50], and Local Optimal-Oriented Pattern (LOOP) [64].
The features obtained from these methods are ranked and
classified using a weighted KNN classifier. It is observed
that our proposed method has achieved 0.7%, 2.1%, and
8.2% higher results as compared to LBP, LDP, and LOOP

3666 VOLUME 12, 2024



A. Gudigar et al.: Directional-Guided Motion Sensitive Descriptor for Automated Detection

TABLE 2. Highest achieved accuracies (%) using different variants of KNN and SVM classifier.

TABLE 3. Range (mn±sd) of DGMS features for normal and HTN with p < 0.001.

FIGURE 8. Scatter plot of a) non-ranked and b) ranked DGMS feature.

descriptors respectively. From the results, it is evident that
the DGMS descriptor captures the pixel variations induced
by heart valve motion effectively. The major limitations of
these methods are that the pattern that is generatedmay repeat
in the same class of images or the different locations of the
same image, thereby confusing the process of classification.
However, for the proposed DGMS descriptor, the binary
words are generated based on the new path (as shown in
Figure 5) and weights are assigned as per the combined
rule based on the significance of the pixel values and mask
activation. Hence the proposed approach has achieved a
specificity of 98.4%.

Further, we conducted extensive experiments to eval-
uate the performance of various compact CNN models,

including ResNet50 and ResNet50v2 [65], EfficientNetB4
[66], XceptionNet [67], DenseNet210 [68], and Inceptionv3
[69]. These models were chosen due to their proven track
records of achieving exceptional results across various
computer vision tasks and compactness in terms of size and
parameter size [70]. To facilitate a fair comparison, we first
preprocessed and fine-tuned these models on our dataset.
We trained each model separately and obtained encoded vec-
tors from the final feature extraction layers. These encoded
vectors were subsequently fed into a dense classification
layer. It is observed that ResNet50v2 achieved the highest
accuracy of 93.8%, which is 4.2% less than the proposed
approach. We have used Google Colab Pro with NVIDIA-
SMI 460.32.03 Tesla T4 GPU to implement CNN models.
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TABLE 4. Comparison of the proposed method with various approaches.

Our evaluation process involved conducting a 10-fold
cross-validation, which helped ensure the robustness of
our findings. Table 4 shows the comparative analysis of
various approaches. This comparative approach allowed us
to draw meaningful insights into the suitability of various
approaches/models for the specific classification task under
investigation. It is noted that our proposed system has
achieved outstanding classification accuracy when compared
to other approaches. In addition, the data set is very huge, and
no data augmentation technique is utilized.

Since the proposed DGMS uses the new path rule in a zig-
zag way, it helps to capture pixels variation efficiently, when
compared to other CNNs and feature learning methods. Thus,
encourages finer coding patterns and attains an impressive
performance as compared to other methods. From Table 4,
we can determine that the proposed approach can be utilized
in the development of AI techniques to predict the pathologi-
cal condition of the heart using US images. Demonstrating
subtle cardiac changes on US heart images among HTN
patients may unveil the opportunity for clinicians to predict
future structural or functional changes and understand the
management goals and the overall prognosis. The use of
a US defined model might improve diagnostic accuracy
since it is independent of biological variability of the BP,
technical limitations in its measurements, the effect of human
errors, and may potentially eliminate the need for multiple
measurements over extended periods for establishing the
diagnosis.

The significant findings from the current study are listed
below.

• To the best of our knowledge, this is the pioneering work
in the field of automated detection of HTN using US
images with huge datasets.

• We presented a substantial 2 class four-chamber heart
US images, which comprises images of 2100 normal
and 2100 HTN from 70 normal and 70 HTN patients,
establishing the base for the HTN identification system.

• Our proposed novel DGMS feature model is suitable for
the analysis of four-chamber heart US images.

• Combining the DGMS feature model with the feature
ranking approach enables us to extract prominent
features.

• A robust 10-fold cross-validation scheme is adopted
to obtain the classification accuracy of 98% using a
shallow KNN classifier.

• It does not require any GPU and thus can be deployed
with minimum system requirements.

In the future, we want to perform the following with a greater
number of US images.

• Producing deep features under the framework of deep
neural networks with ML algorithms for the advance-
ment of medical image analysis.

• Inherently US images pose noises, and further intro-
ducing uncertainty quantification may reduce the uncer-
tainty while predicting various US heart images [71].

• Use of Explainable AI, to rearrange the features while
performing compound classification tasks. Thus, assists
the clinicians with their conclusions [72], [73].

VI. CONCLUSION
We have proposed an automated system for the detection
of HTN using a handcrafted feature descriptor i.e., DGMS.
This descriptor with an entropy-based ranking technique has
attained remarkable accuracy and specificity of 98% and
98.4% respectively, using the KNN classifier.

Here are the key takeaways from this study:
• A new dataset of 4200 four-chamber cardiac US
images from 70 healthy and 70 hypertensive patients is
established, helping address the lack of database.

• A novel DGMS descriptor is proposed to capture subtle
textural changes in heart walls as indicative of HTN.

• Using DGMS and feature selection, a shallow ML
classifier achieved 98% accuracy in identifying HTN,
outperforming deep learning models.

• The high performance suggests US imaging can discern
HTN even when standard echocardiographic measures
are normal or inconsistent with blood pressure.

• The automated system could aid quicker, more objective
diagnosis in clinics, enabling early risk stratification and
treatment through AI-assisted assessment.

In summary, this pioneering study shows an accurate
automated CAD system for HTN detection is viable using
cardiac US images. By addressing key data and algorithm
gaps, the groundwork is laid for clinical translation and
validation of these AI tools for diagnostic support. The
remarkable performances paved the way for the utilization of
the DGMS, encouraging the development of CAD tools using
US images in the field of ML-based approaches. In addition,
we plan to develop a pipeline-based handcrafted feature
approach using more patients extracted from multicenter in
the future.
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